

Functionality analysis and Upgrade of the single stretched wire (SSW) bench for PERLE magnets

Mohammedkhaled Fawzi Salah

Supervised by:

Dr. Hadil Abualrob

Introduction

• I am working on performing measurements of the quadrupole magnet used in the **PERLE magnetic** accelerator, using the **SWM Bench**, which is controlled by the **Igor Pro** software.

• PERLE project: is a linear accelerator project using Energy Recovery Lin.ac (ERL) technology.

The Organisation of PERLE Collaboration is described in the COLLABORATION AGREEMENT of the following Instituts

Lattice of PERLE

SWM Bench

SWM bench consist of:

Granite bench & Two Towers.

Titanium wire

NI Acquisition board

XPS controller

Keithley 2182 nanovoltmeter

PC

Schematic diagram of SWM bench

SWM bench Initialization

1)

SWLab Measurement SWLab Auto SWLab Processing SWLab Motion

2)

Quadrupole magnet

Magnet type	Qpole THOM X
Serial number	19
Year of construction	2015
Maximum current	10 A
	4 V
Maximum voltage	39,8 W
Maximum power	360 mΩ
Resistance at 20°C Total Magnet weight	33,3 Kgs

The radial field component Br equation as follows:

$$\mathbf{B}_r = \sum_{n} \left[a_n \cos(n\theta) + b_n \sin(n\theta) \right] r^{n-1}$$

Where an, bn on T and n=1 refers to a dipole field, n=2 quadrupole, n=3 sextupole etc.

Results of Manual measurements

• Manual: do each measurement individual

The results were as follows:

Results of Automatic measurements

Automatic: code do all measurements

The results were as follows:

Results

Туре	b1 (mT)	b2 (mT)	b3 (mT)	b4 (mT)	b5 (mT)
Value	5.309	10000	1.757	-3.061	0.960
ratio	0.53*10^-3	1	0.17*10^-3	0.3*10^-3	0.09*10^-3

X0	ZO	Gradient (T)	Mag. Length (mm)	Field gradient (T/m)	Roll Angle (mrad)
-6.435	-2.024	-0.668	237.720	2.809	-0.366

Conclusion

 In comparing the manual and automatic methods, the automatic one proved better as it saves time and effort by performing all measurements sequentially and providing clear and complete results.

• As a result, it is necessary to write an auto dipole measurement code to ensure accuracy and save time.

Required now

Study stretch wire bench code hierarchy

Required now

Study quadrupole magnet auto code as classes to write dipole magnet auto code.

Thank you Any question