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Outline

= Microscopic inelastic scattering modeling, to discrete levels and continuum,
spherical/deformed targets : answer to applicative questions ?

* Nuclear data production
e Experimental set-up optimization
e Experimental interpretation, especially for exotic nuclei.

~ Applications for nuclear data : (n,n'y) ; (n,xn) ; fission ; isomer production ; (n,y) .
= Nuclear reaction modeling input for surrogate reaction method.

- Applications for nuclear structure : new mean field input.

= Three main directions of improvements : NS input / reaction mechanisms / UQ and
propagation.

@ = Conclusions and perspectives.




What pre-equilibrium means ?

— Inclusive spectra often require more than “direct + compound”.
— Process of thermalisation of the composite system
— Reaction time : longer than direct but much faster than compot

— Pre-equilibrium emission = emission before full equilibration of
compound nucleus.
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Pre-quilibrium Emission
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Pre-equilibriumModels

e Exciton (statistical master equation) : E = few MeV - 200 MeV

e Quantum multistep direct and compound (MSD vs MSC) : E = threshold - 200 MeV,
perturbative, statistical approximation (energy/ensemble averaging, sudden/adiabatic
approximation ...)

eHybrids (non-equilibrium nuclear dynamics, smooth connection to CN regime, excited
configuration with time evolution) = solve effective transport equation in exciton space. E =

20-200 MeV

e Intra-nuclear cascade (INC, classical trajectory, event by event dynamic, quantum correction)
: E > 100 MeV, but good results for E> 14 MeV,

e Eikonal/Glauber : E > 100 MeV



Exciton model for pre-equilibrium emission

— Time evolution of excitons number which caracterise the system state

- Incident nucleon, n particle — n hole excitation : N = 2n + 1 excitons (projectile count as 1)

- N=2n+1 - p=n+1;

- transition rate : AE(n, E) ~ [M|? o (n, E)
dP(n,t)

dt

= Pn—=2,t)\"(n—2,E)+ P(n+2,)A\"(n+ 2, E)

— Master equation for occupation probability : — P t) [N (n 42, E) + A (n—2,E) + L(n, E)]

- Ingredients : M — matrix element is an adjustable parameter.

Pn’ - model level density for n’ particle- n’ hole.
— Angular distribution : not modeled, use Kalbach systematics (emperical shape).
— Pros : fast calculations — good fit of energy distribution of emitted particles

— cons : do not predict angular distribution nor spin transfer,
@ do not include collective effects — transition direct — pre-equilibrium
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Why quantum model ?

00 1 n |
n=>0

- Semi-classical models (such as the exciton model) capture part of the
reaction evolution but remain limited in their treatment of nuclear structure.

— Coherent effects (collectivity: vibrations/rotations, interference
effects) are intrinsically quantum-mechanical.

-~ A quantum framework allows a unified treatment of both incoherent
excitations (1plh, 2p2h, ..) and collective modes.

- Quantum models separate the spectrum into continuum (P) and bound-

state (Q) components, which lead to very different angular distributions: the
continuum may be forward-peaked, whereas the bound-state contribution is
necessarily symmetric about 90°.
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Multi-step Direct Theories

Tii = (X (kg), FlV+VGEPIVLVEPIVEHIV .. |xP(K),0)

- FKK: Feshbach, Kerman, Koonin (1980) On-Shell Approximation for Green’s Function + Non-normal matrix
elements.

- TUL: Tamura, Udagawa, Lenske (1982) : Adiabatic Approximation for the Second Step

- NWY: Nishioka, Weidenmdtiller, Yoshida (1988) : GOE for residual interaction, Sudden Approximation for the
Second Step

H. Feshbach, A. Kerman, S. Koonin, Ann. Phys. (N.Y.) 125 (1980) 429.
H. Nishioka, H.A. Weidenmdller, S. Yoshida, Ann. Phys. (N.Y.) 183 (1988) 166.

T. Tamura, T. Udagawa, H. Lenske, Phys. Rev. C 26 (1982) 379.

— One-step process is believed to be dominant below 10-20 MeV

— The First step expression of FKK, TUL, and NWY is the same ; various implementation : choice of nuclear
structure
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MSD : focus on first step

— Description of direct inelastic scattering and one-step process within the
same formalism :

- Effective interaction for projectile - target interactions

— Accurate description of target excitations within a large range of excitation
energy.

- Pros:

- No ad-hoc transition direct - pre-eq, no double-counting
- predicts angular distribution

- predicts spin transfer,

- includes collective effects



One microscopic Folding potentials derived from nuclear-matter

- interaction : very successfull for medium mass
a pproaCh to direct to heavy nuclei, nucleon and ion scattering.
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Inelastic scattering

to discrete levels
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Inelastic to the

conti nuum Pre-equilibrium emission E;; <20 MeV: one-step direct
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Deformed
targets

Nuclear structure
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JLM deformed with state of
the art NR and NS codes

- TALYS 1.97
- HFB3 1.0
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Spin distribution of

residual nucleus
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very sensitive to the mean value

of the spin distribution

M. Kerveno et al., Phys. Rev. C 104, 044605 (2021)
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182,184,.186W (I‘I,n’y) .
73 transitions measured

G. Henning et al.

Global Modeling of Inelastic Processes
Recent progress (implemented in TALYS / CoH)

¥ Microscopic inputs: LD, GSF, pre-equilibrium
* OMP, Engelbrecht—Weidenmiiller transformation

“  BR, Discrete levels extended into the continuum

This study confirmed needs

*Inclusion of low-energy M1 upbend + scissors
* Reduced spin distributions (PE residual nucleus & LD)

v Extented discrete-level scheme
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G. Henning et al., to be published in Phys. Rev. C (2026)
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Direct/pre-eq (n,n') mechanism
for spherical targets

Example:

208 Pp(n,xn) ddx :
neutron emitted from
* direct, pre-equilibrium (n,n")
compound nucleus decay.

I : I x T . T T
Takahashi (1987) —&— 7
Elfruth (1986) —&—
Direct, par. nat.
Direct, par. unnat.
CN
Elastic = -
Total

[

[ II|III|
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- ) e ., \ A .
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/ 4 e g |
=4 * \ E
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Structure theory for 208 Pp(n,n") :
* RPA one-phonon excitations.
Reaction theory for 208 Pp(n,n’) :
* Spherical target

- weak coupling -~ DWBA.
* One-step process (one phonon).
* Non-local transition potentials

(M3Y interaction)
* Two-body spin-orbit and tensor :

generate unnatural parity transitions.

> Natural parity : shape vibration (E1, E2,

E3..).

' Un-natural parity : vibration in the spin

space (ex : scissors M1 mode) : strong
contribution to direct/pre-eq process.



Direct/pre-eq (n,n') mechanism
for deformed targets (actinides)

Example:
238 U(n,xn) ddx :

. 238 '
neutron emitted from Stru;t:;e theorlz/ for ~ = U(n,n)
- B . * - +
* direct, pre-equilibrium (n,n"), Q _ one-phonon excitations
* compound nucleus decay, rotations.
* fission fragment decay. _ .
S — Reaction theory for 238 U(n,n")
P Matsugﬁmg,gg%‘}g T _Ocm. =602 * Strong channels couplings
- M =a=sss= .
- HEsion == = : - Coupled chap_nel (CC) f_ramework.
Slee T i * Uses local transition potentials (JLM
e B interaction and CC code limitations).
3 10%F ™ E
= ¥ -
2t ) Natural parity transitions.
£ ] i
LIJ - -
S10'E /Un-natural parity not included :
= L - - -
= 3 B No two-body spin-orbit, no tensor in JLM :
© 3 / . - cannot generate un-natural parity transitions
0] P . .
107 P * I '\ FE— Missing xsecs:
: ¥ 5 o I * un-natural parity ?
: I - ! 2, 1) 1. ° - ?
r a 15 s S0 Two-step process ~

8
E (MaV/) MSC 2



MSD two-step process, with 2-phonon RPA final sates

One and two-step processes, “°Zr(n,n")
one-step : 1 ph or one-phonon

[Ny ®N2)= IN3)

SRpEN

two-step : 2 ph (intermediate 1ph) or two-phonon (intermediate 1 phonon). |n;) =éé;(,1‘]1|6) <> IN,Y = ©f5,210)

100 ;

Approximations : 10 |

» interference between paths
not considered,

» on-shell calculation for

do/dE (mb/str.)

two-step, 0.01
» only central part o_f 0.001 |
Melbourne g-matrix. i
0.0001

(No un-natural parity for now)

'

0.1 F

~a |0) ="

1-partilce-hole ===-

1-phonon
2-particle-hole -----
2-phonon

E =80 MeV -
E.,.=0-16 MeV

exc

0 20 40 60 80 100 120 140 160 180
O.m (deg.)  A. Nasri et al.

Two step :2-phonon vs 2-particle-hole

» Collective enhancement with two-phonon.

» Quasi-Boson approximation : Pauli principle not respected.



Work in progress :MultiStep Compound

— The magnitude of the MSC contribution strongly depends on the specific implementation and

underlying assumptions.

— Known to be strong for charge exchange

- Inelastic : Magnitude with respect to MSD need to be determined.

— Impact on spin-distributions of residual system.

- Implementation with new ingredients (LD...) — computing power to test approximations.

K
o
+

0
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o
e
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b
e,

B. Menant, PhD since Jan. 2025.

Py

— MSD: Multistep Direct

— MSC : Multistep Compound

..............




Principle, choice of unified/hybrid methods

Principle: one interaction/framework should, in spirit, cover natural and unnatural parity;
requirement is comparable data quality in both channels.

— Broader scope: this questioning also applies to using separate structure and reaction methods,
and to competing mechanisms (one-step direct vs various multistep paths), where different ingredients
may be required or optimal (structure inputs, effective interactions, continuum coupling).

Enforce uniformity if it degrades agreement with measurements ?
— Consistency is a goal, not a hard constraint; apply it with care and with a clear domain of validity.
— But may reveal missing physics and/or compensating effect.

When to hybridize methods:
- Systematic underperformance after « honest retuning ».
- Physics-based rationale: missing spin-isospin response, tensor or spin-orbit dependance ...

Validation protocol and decision rule:
-~ Metrics (X2 ...) on a benchmark set : choice of NS method.
-~ Use various hybrids methods (ex for nat/unnat parity : Melbourne, xx-M3Y)




State of the art nuclear structure method, Relevant models, Developments

Effective | Chiral interactions : comparison when possible, choice depending on the system.

Small-amplitude vs large-amplitude
QRPA valid for small density-matrix oscillations (linear response, Matrix/QFAM ; S. Péru et al., J.P.Ebran et al.
Large collective motion -~ GCM - PGCM /5DCH (J.P. Ebran et al. ; J. Libert et al. CEA/DAM)
QRPA typically excellent for giant resonances for most nuclei.

Rotations
Apply exact projection methods
Rotational approximation for well-deformed nuclei (|| = 0.15 : actinides, rare earth ...) : applied with axially-deformed QRPA.

Complex excitations
In 160, low-lying 0+, 2+ need ~8p—8h — MPMH / configuration mixing (N. Pillet et al.)

Pre-equilibrium
MSD : Two-phonon couplings for 2-step pre-equilibrium (beyond QRPA)
QBA limitations - second-QRPA / SRPA-like extensions (to be developed)
MSC

New interactions (Gogny family)
D1S - D2 (finite-range in density dependence)
DG (D2-like + finite-range spin—orbit & tensor) (N. Pillet et al., CEA, DAM)

Exotic nuclei and coupling to the continuum : weak binding, halo systems, Strong N/Z asymetry
Berggren basis / Gamow Shell Model (bound + resonant + scattering on equal footing).
Continuum HFB/RHB (DFT with explicit scattering channels) ;Continuum QRPA for collective response in weakly bound systems.

Not discussed : cluster, light nuclei.




Uncertainty Quantification and Propagation

Nuclear-structure inputs (work in progress with new Gogny interactions)
Parameterize D1S -. D2 -, DG variants (density dependence, spin-orbit, tensor, pairing).

Reactions
UQ for optical potentials and two-body effective interactions : JLM, Melbourne g -matrix, M3Y ...

Propagate to all channels: elastic, inelastic (one-step DWBA/CCBA; pre-equilibrium : multistep
direct/compound)

Spectrum, angular distributions, total and partial cross sections

End-to-end workflow (structure - reaction) ; obviously not a unique protocole

Likelihood using the experiment’s full covariance




Conclusions - [T I =10

v Microscopic inelastic scattering model based on NM effective interaction and HFB+QRPA Gogny-based NS input
provides good account of various inelastic processes

— Improvement in (n,n’y) and( n,xn) reactions modeling, impact on (n,xn), fission
v Analysis of large set of partial cross sections : test various aspects of modeling

— move towards global improvement of inelastic modeling.
v Spin distributions : input for analyses based on surrogate method.

" Input for exp. NS studies allows to calibrate experiment, and extract NS informations from measured cross sections.

P Good predictive power, requires validated NS inputs and suitable NR formalism. ¢

(n,xny) data : analyses in progress 182183184186y 238y - Application to ND evaluation process.
Improve/generalize UQ and propagation.

Recent implementation of deformed JLM in TALYS : global analysis EXFOR data.

Coupling rotational bands : systematics
Elastic/inelastic from MPMH, PGCM : ab-initio / effective forces. &

Improve P-re-equilibrium model : two-steps and beyond MSD, review of MSC mechanism




- JLM framework : Veff

+ based Brueckner-Hartree-Fock in Nuclear matter 100 -
+ ad-hoc prescriptions :
* improved LDA (Gaussian form factors)
* spin-orbit

+ energy dependant parameters (remained close to unity) :
fitted on set of el. and charge-exch exp. data for spherical and
near-spherical nuclei (Bauge et al., Phys. Rev. C 2001)

— Good description :
+ total, elastic differential cross sections

2%8pp (x1.3)°

: 210 -
- spherieal/deformed. & 18170 (x 1.3)%)
* n,p, (dble folding : “He, '*C) {
+ inelastic cross sections for discrete/continuum excitations "%Ho (x1.3)°
2 4
— Input : needs accurate NS model : + mean field HF(B) Y (1.9
+ beyond mean field :
(Q)RPA, MPMH, PGCM ... ®er(x13)
+ shell model ... JLM HFB (D1M)
1t “Oca (x 1)
— predictive power, “validity domain” : Depends on NS Input |
P P ) y P put, 102 107" 10° 10 102 103

Limit of LDA, use adequate coupled channels framework.

Ejap (MeV)

* Validation of NS input to reaction models *



20pu(a,a’) : validation method for direct model : ii) elastic on spherical

Double fOIding L U(ra) = f dry f erPA(rl)pa(I?)V(lrl_r?‘7 1, p2, E) P

- Effective N-N interaction: JLM-B. Hogenbrik et al,, PLB 223, p.262 (1989)
- Additional density-dependence Vipr, po, E) = Virars(py, E)(1 — Bpd)
— Alpha frozen (not too high energy).

/Oa(7”2) — 0.4229 6_0'7014T§
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24Pu(a,a’) : validation method for direct model : ||) Inelastic on spherical

"Nocoulexc. -----
Coul. exc.

[ — Experience
- — RPA/D1S

12 T T -
107 ¢ No coul exc. --- - - .
B Coul. exc. _:

2[7%%Pb (a,0) 374 E,=2.61 Me

30 60 90 120 150 18 0 10 20 30 40 50 I6(
0 (dedn) 0 (deaq)




20pu(a,a’) : validation
method for direct model :
Iii) elastic + inelastic on

deformed

N W H

-

0%

~ Exp.:David (1976)

50 MeV 232Th(*He,*He’)-
JLM/HFB CC L1, =8,J,112,=8 -
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