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Outline
✎ Microscopic inelastic scattering modeling, to discrete levels and continuum, 

spherical/deformed targets : answer to applicative questions ? 
● Nuclear data production

● Experimental set-up optimization 
● Experimental interpretation, especially for exotic nuclei.

✎ Applications for nuclear data : (n,n’γ) ; (n,xn) ; fission ; isomer production ; (n,γ).

✎ Nuclear reaction modeling input for surrogate reaction method. 

✎ Applications for nuclear structure :  new mean field input.

✎ Three main directions of improvements : NS input / reaction mechanisms / UQ and 
propagation.

✎ Conclusions and perspectives.



What pre-equilibrium means ?

→ Inclusive spectra often require more than “direct + compound”.

→ Process of thermalisation of the composite system

→ Reaction time : longer than direct but much faster than compound decay.

→ Pre-equilibrium emission = emission before full equilibration of the 
compound nucleus.
 

Emission Energy
Emiss

ion angle

Reaction time10-16 s.-10-22 s.



Pre-quilibrium Emission

(Direct)

Total = Dir. Elastic + Reaction

Reaction = Non Elastic + CN elastic

Non Elastic = Dir Non el. + Pre-eq + CN non-eq

Calculated with code Talys 



Pre-quilibrium Emission

Calculated with code Talys 
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• Exciton (statistical master equation) : E = few MeV - 200 MeV

• Quantum multistep direct and compound (MSD vs MSC) : E = threshold - 200 MeV, 
perturbative, statistical approximation (energy/ensemble averaging, sudden/adiabatic 
approximation …)

•Hybrids (non-equilibrium nuclear dynamics, smooth connection to CN regime, excited 
configuration with time evolution) → solve effective transport equation in exciton space. E = 
20-200 MeV

• Intra-nuclear cascade (INC, classical trajectory, event by event dynamic, quantum correction) 
: E > 100 MeV, but good results for E> 14 MeV, 

• Eikonal/Glauber : E > 100 MeV  

Pre-equilibriumModels



→Time evolution of excitons number which caracterise the system state  
→ Incident nucleon,  n particle – n hole excitation : N = 2n + 1 excitons (projectile count as 1)
→ N=2n+1 → p=n+1 ; 
→ transition rate : 

→ Master equation for occupation probability :

→ Ingredients : M → matrix element is an adjustable parameter.

                                → model level density for n’ particle- n’ hole.   

→ Angular distribution : not modeled, use Kalbach systematics (emperical shape).

→ Pros : fast calculations – good fit of energy distribution of emitted particles

         → cons : do not predict angular distribution nor spin transfer,
do not include collective effects – transition direct – pre-equilibrium 

Exciton model for pre-equilibrium emission



A.J. Koning, M.C. Duijvestijn, 
Nuclear Physics A 744 (2004) 15–76

 209 Bi(n, xn) 
spectrum 
at 20 MeV.

Transition 
Direct – Pre-
eq : ad-hoc→ 

subjective

Double-
counting



.

→ Semi-classical models (such as the exciton model) capture part of the 
reaction evolution but remain limited in their treatment of nuclear structure.

→ Coherent effects (collectivity: vibrations/rotations, interference 
effects) are intrinsically quantum-mechanical.

→ A quantum framework allows a unified treatment of both incoherent 
excitations (1p1h, 2p2h, ..) and collective modes.

→ Quantum models separate the spectrum into continuum (P) and bound-
state (Q) components, which lead to very different angular distributions: the 
continuum may be forward-peaked, whereas the bound-state contribution is 
necessarily symmetric about 90°.

Why quantum model ?

MSD: Multistep Direct

MSC : Multistep Compound



→ FKK: Feshbach, Kerman, Koonin (1980) On-Shell Approximation for Green’s Function + Non-normal matrix 
elements.

→ TUL: Tamura, Udagawa, Lenske (1982) :  Adiabatic Approximation for the Second Step

→ NWY: Nishioka, Weidenmüller, Yoshida (1988) : GOE for residual interaction, Sudden Approximation for the 
Second Step

→ One-step process is believed to be dominant below 10-20 MeV 

→ The First step expression of FKK, TUL, and NWY is the same ; various implementation : choice of nuclear 
structure

Multi-step Direct Theories



Multistep Direct and Multistep Compound Contribution
 



MSD : focus on first step

→ Description of direct inelastic scattering and one-step process within the 
same formalism :

→ Effective interaction for projectile – target interactions 

→ Accurate description of target excitations within a large range of excitation 
energy.

→ Pros:
- No ad-hoc transition direct – pre-eq, no double-counting
- predicts angular distribution 
- predicts spin transfer,
- includes collective effects



Eff.

Eff. Eff.

Eff.

One microscopic 
approach to direct 
inelastic scatering

Folding potentials derived from nuclear-matter 
interaction : very successfull for medium mass 
to heavy nuclei, nucleon and ion scattering.

Target states
Effective interaction

Elastic channel
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Inelastic scattering 
to discrete levels

HF(B) / (Q)RPA densities

Nuclear optical/transition 
potentials

DWBA: 
spherical, 

vibrational nucleus

+ Rearrangement

(n,n´)

JLM  + (Q)RPA-Gogny-D1S)

(α,α´)
Double 
folding

M. Dupuis, G. Haouat, J.-P. Delaroche et al., Phys. Rev. C 100 (2019) : (n,n’) ; (p,p’)

Charge

neutron

proton

QRPA  
with Gogny 
D1S force.



208Pb(n,xn)
Target excited states : RPA one-phonon + 

damping widths

Inelastic to the 
continuum

Ein=14.1 
MeV
Angle = 120o

M. Dupuis, T. Kawano, E. Bauge and J.-P. Delaroche, Phys. Rev. C 83 014602  (2011) 



Sn

 

 

S. Sguazzin, B. Jurado et al., Phys. Rev. Lett. 134, 072501 (2025) ; 
Phys. Rev. C 111 024614 (2025)

Surrogate sutdies: 208Pb(p,p’)←→207Pb(n,γ) 
TALYS

Spin distribution in 208Pb*  
JLMB / RPA-D1S (Nat. Par.) 
Melbourne/KD (Unnat. Par.)

Details later on



Coupled 
Channels

Nuclear structure 
input :HFB-Gogny D1S 
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targets

multipoles HFB (D1S)
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¨ rotational 
approximation ¨



JLM deformed with state of 
the art NR and NS codes 
→ TALYS 1.97 
→ HFB3 1.0

HFB solver, N. Dubray,et al.

→to built  nuclear structure 
database for various Gogny 
forces : D1S, D1M, D2, DG ...

Local CEA Talys-1.97 : 
→ include latest developpement (EWT, pre-eq 
micro ...)

→ Now  microscopic deformed JLM model for 
incident channel and CN decay.



182W(n,el) (n,inl) 2+
1

Systematic study of  neutron 
cross sections for GS band 
levels for deformed nuclei 
In progress (actinides, rare 
earth ..,) : ntot, excitation 
functions, differential cross 
sections

State of the Art NS Models :
→ HFB with new interactions
→ Beyond HFB (QRPA, MPMH, 
PGCM/5DCH …)
→ Prediction for targets/energies
 with no data : 

* fission fragments
* astrophysis



Eff.

Eff. Eff.

Eff.

GS rot. 
band

+ Rear.

Previous validation of GS multipoles, B(E2), B(E3) HFB/QRPA vs Exp.

QRPA 
one-phonon 
excitation



238U(n,xn)Target excited states : QRPA one-phonon + 
damping width

Inelastic to the 
continuum

Ein=11.8 MeV
Angle = 90o

JLM – QRPA
potentials

Coupled channels

Previous validation of GS multipoles, B(E2), B(E3) HFB/QRPA vs Exp.



Transfert moment 
angulaire L=0-12

… L=2

L=3

L=4 ...

Transitions with angular 
momentum transfer L=0-8

 JLMB + QRPA : 
 collective excitations for Ex=1-6 MeV 

→ do not need pseudo-states (still 
used to produce latest nuclear data 

libraries)
→ equivalent results for medium 

mass and heavy targets



238U

Kerveno 2021

238U(n,n′γ)

M. Kerveno et al., Phys. Rev. C 104, 044605 (2021)

Spin distribution of 
residual nucleus

γ-cascade after one neutron emission

Population of high spin levels 
very sensitive to the mean value 

of the spin distribution



Spin distribution of 
residual nucleus

Systematics A=16-240  
Constraints to spin-distributions for 
exciton pre-eq. model TALYS ≥ 1.97



182,184,.186W (n,n’γ)  :
 73 transitions measured 

G. Henning et al.

G. Henning et al., to be published in Phys. Rev. C (2026)

Global Modeling of Inelastic Processes
Recent progress (implemented in TALYS / CoH)

 Microscopic inputs: LD, GSF, pre-equilibrium

 OMP, Engelbrecht–Weidenmüller transformation

 BR, Discrete levels extended into the continuum

This study confirmed needs

 Inclusion of low-energy M1 upbend + scissors

 Reduced spin distributions (PE residual nucleus & LD)

 Extented discrete‐level scheme

5 % best global chi2 (all 
transition included for one 
isotope)

Full model space



 

(a,a’γ/f) 

0

R. Pérez Sànchez et al., Phys. Rev. Lett. 125, 122502  (2020) 

TALYS

Surrogate sutdies: 240Pu(α,α’)←→239Pu(n,γ);(n,f) 

 

Spin distribution in 240Pu*  
JLMB / QRPA-D1S



Structure theory for 208 Pb(n,n') :
● RPA one-phonon excitations.

Reaction theory for 208 Pb(n,n') :
● Spherical target

→ weak coupling → DWBA.
● One-step process (one phonon).
● Non-local transition potentials 

(M3Y interaction)
● Two-body spin-orbit and tensor :
  generate unnatural parity transitions.

Natural parity : shape vibration (E1, E2, 
E3 …).

Un-natural parity : vibration in the spin 
space (ex : scissors M1 mode) : strong 
contribution to direct/pre-eq process.

Direct/pre-eq (n,n') mechanism 
for spherical targets

Example:
208 Pb(n,xn) ddx : 

neutron emitted from 
● direct, pre-equilibrium (n,n')

● compound nucleus decay.



Structure theory  for 238 U(n,n')
● QRPA one-phonon excitations + 

rotations.

Reaction theory for  238 U(n,n')
● Strong channels couplings

→ Coupled channel (CC) framework.
● Uses local transition potentials  (JLM 

interaction and CC code limitations). 

Natural parity transitions. 

Un-natural parity not included :
No two-body spin-orbit, no tensor in JLM : 
→ cannot generate un-natural parity transitions

Missing xsecs : 
● un-natural parity ?
● Two-step process ?

MSC ?

Direct/pre-eq (n,n') mechanism 
for deformed targets (actinides)

Example:
238 U(n,xn) ddx : 

neutron emitted from 
● direct, pre-equilibrium (n,n'),

● compound nucleus decay,
● fission fragment decay.



(No un-natural parity for now)

MSD two-step process, with 2-phonon RPA final sates

A. Nasri et al.



Work in progress :MultiStep Compound

B. Menant, PhD since Jan. 2025.

→ The magnitude of the MSC contribution strongly depends on the specific implementation and 
underlying assumptions.

→Known to be strong for charge exchange 

→Inelastic : Magnitude with respect to MSD need to be determined.

→ Impact on spin-distributions of residual system.

→ Implementation with new ingredients (LD...) – computing power to test approximations.

.

MSD: Multistep Direct

MSC : Multistep Compound



Principle: one interaction/framework should, in spirit, cover natural and unnatural parity;
requirement is comparable data quality in both channels.

→  Broader scope: this questioning also applies to using separate structure and reaction methods, 
and to competing mechanisms (one-step direct vs various multistep paths), where different ingredients 
may be required or optimal (structure inputs, effective interactions, continuum coupling).

Enforce uniformity if it degrades agreement with measurements ? 
→ Consistency is a goal, not a hard constraint; apply it with care and with a clear domain of validity.

→ But may reveal missing physics and/or compensating effect.

When to hybridize methods:
→ Systematic underperformance after « honest retuning ».
→ Physics-based rationale: missing spin–isospin response, tensor or spin–orbit dependance …

Validation protocol and decision rule:
→ Metrics (χ2 ...) on a benchmark set : choice of NS method.
→ Use various hybrids methods (ex for nat/unnat parity : Melbourne, xx-M3Y)

Principle, choice of  unified/hybrid methods



Effective / Chiral interactions : comparison when possible, choice depending on the system.

Small-amplitude vs large-amplitude
QRPA valid for small density-matrix oscillations (linear response, Matrix/QFAM ; S. Péru et al., J.P.Ebran et al.
Large collective motion → GCM → PGCM / 5DCH (J.P. Ebran et al. ; J. Libert et al. CEA/DAM)
QRPA typically excellent for giant resonances for most nuclei.

Rotations
Apply exact projection methods
Rotational approximation for well-deformed nuclei (|β|  0.15 : actinides, rare earth …) : applied with axially-deformed QRPA.≳

Complex excitations
In 16O, low-lying 0+, 2+ need ~8p–8h → MPMH / configuration mixing (N. Pillet et al.)

Pre-equilibrium
MSD : Two-phonon couplings for 2-step pre-equilibrium (beyond QRPA)
           QBA limitations → second-QRPA / SRPA-like extensions (to be developed)
MSC

New interactions (Gogny family)
D1S → D2 (finite-range in density dependence)
DG (D2-like + finite-range spin–orbit & tensor) (N. Pillet et al., CEA, DAM)

Exotic nuclei and coupling to the continuum : weak binding, halo systems, Strong N/Z asymetry
       Berggren basis / Gamow Shell Model (bound + resonant + scattering on equal footing).
       Continuum HFB/RHB (DFT with explicit scattering channels) ;Continuum QRPA for collective response in weakly bound systems.

Not discussed : cluster, light nuclei.

State of the art nuclear structure method, Relevant models, Developments



Nuclear-structure inputs (work in progress with new Gogny interactions)
Parameterize D1S→D2→DG variants (density dependence, spin–orbit, tensor, pairing).

Reactions
UQ for optical potentials and two-body effective interactions : JLM, Melbourne g -matrix, M3Y ...

Propagate to all channels: elastic, inelastic (one-step DWBA/CCBA; pre-equilibrium : multistep 
direct/compound)

Spectrum, angular distributions, total and partial cross sections

End-to-end workflow (structure → reaction) ; obviously not a unique protocole 

Likelihood  using the experiment’s full covariance

Uncertainty Quantification and Propagation



 Microscopic inelastic scattering model  based on NM effective interaction and HFB+QRPA Gogny-based NS input 
provides good account of various inelastic processes 

→ Improvement in (n,n’γ) and( n,xn) reactions modeling, impact on (n,xn), fission

 Analysis of large set of partial cross sections : test various aspects of modeling  

→ move towards global improvement of inelastic modeling.

 Spin distributions : input for analyses based on surrogate method.

 Input for exp. NS studies allows to calibrate experiment, and extract NS informations from measured cross sections.

Conclusions - Perspectives

(n,xnγ) data : analyses in progress 182,183,184,186W, 238U ...  - Application  to ND evaluation process.

Improve/generalize UQ and propagation.

Recent implementation of deformed JLM in TALYS :  global analysis EXFOR data. 

Coupling rotational bands : systematics

Elastic/inelastic from MPMH, PGCM : ab-initio / effective forces.

Improve P-re-equilibrium model : two-steps and beyond MSD, review of MSC mechanism

 Good predictive power, requires validated NS inputs and suitable NR formalism.  



→ JLM framework : Veff
+ based Brueckner-Hartree-Fock in Nuclear matter 

 + ad-hoc prescriptions : 
              * improved LDA (Gaussian form factors)
              * spin-orbit

+ energy dependant parameters (remained close to unity) : 
         fitted on set of el.  and charge-exch exp. data for spherical and 
         near-spherical nuclei (Bauge et al., Phys. Rev. C 2001)

→ Good description :
    + total, elastic differential cross sections

 ⋅ spherical/deformed. 
                                                ⋅ n,p, (dble folding : 4He, 12C)

    + inelastic cross sections for discrete/continuum excitations

→ Input : needs accurate NS model :  + mean field HF(B)  
  + beyond mean field :
    (Q)RPA, MPMH, PGCM ...  

                                                                + shell model ...

→ predictive power, “validity domain” :  Depends on NS Input,
     Limit of LDA, use adequate coupled channels framework.

(n,tot
)

* Validation of NS input to reaction models *



 240Pu(α,α’) : validation method for direct model : ii) elastic on spherical



4He
r1

r12

ra

 240Pu(α,α’) : validation method for direct model : ii) inelastic on spherical



J Π =0 +

J Π =2 +

J Π =4 +

J Π =6 +

Ground state in the intrinsic  
frame

States in the 
laboratory frame : 

Ground state rotational band

Neutron  
scattering data : 

Sum of 0 + , 2 + , 4 +   
cross sectionsK Π =0 +

4He
r1

r12

ra

 Coupled channels

 240Pu(α,α’) : validation 
method for direct model : 
iii) elastic + inelastic on 
deformed
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