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Outline
 Introduction:

Particle detectors and particle-flow objects; simulation challenges

 Analogy with Stable Diffusion 3.x:

Generative models in Al, diffusion vs flow matching, conceptual parallels to PF
simulation

e Method & Results:

The set-to-set generative model (Parnassus), architecture (transformers, flow matching),
experiments and performance (accuracy, speedup, generalization)

e Conclusion:
Impact and integration into HEP workflows
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Configurable Calorimeter
S imUlati on fOr AI A. Charkin-Gorbulin, K. Cranmer,
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Configurable calorimeter simulation for AI application
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https://arxiv.org/abs/2303.02101

COCOA Event Display
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Data cycle of particle B&gsics

tor hits

Particle collision Truth particles

Reconstructed

Statistical analysis ,
particles 11

Slide from Etienne Dreyer
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Why Fast Simulation

e We expect ~9x more data in the coming 15 years  High-Luminosity
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Fully simulating 1 event ~ G(minutes)

= O(100M) events ~ O(1000) CPU years

Slide from E


https://michael-pitt.github.io/Geant4-models/ATLAS-simplified/
https://www.sciencedirect.com/science/article/pii/S0370269319304721?via=ihub

Why Fast Simulation

e High Luminosity LHC —>Orders of magnitude more simulated events

 Future Colliders will operate at higher energies and luminosities—>1M Gbytes
data/day

* Full Detector simulations (GEANT) consumes >50% High Energy Phyiscs.
They do not scale and power and budget are limited

e High granularity detectors will cost even more CPU power—>Computing
Bottleneck

* Precise physics background modelling required for rare physics events,
current fast simulations cannot cope with that

e Designing future acceleerators require fast detector simulation response

e GENERATIVE Al is fast and promising as we will see
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Why Fast Simulation

e Fast simulations are not just a convenience-they are essential for the survival of HEP In
the HL-LHC era and beyond.

e There is a fast simulation which also produces Particle Flow Candidates
Delphes (an hardcoded smearing based fast simulation):
Fast but less precise

DELPHES _ _ _ _
DELPHES 3, A modular framework for fast simulation of a generic collider
LIRS experiment

J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, M. Selvaggi

JHEP 02 (2014) 057. 3200 citations

 —>Need accurate and fast Al/ML and perhaps Quantum Ready Tools
to overcome computational limits, unlock new physics and design

detectors for 100-TeV frontier.
17



Introducing Parnassus

Set to Set learned mapping: Final stte Reconstructed
GEN truth particles = PF candidates (PFC) ruth paricles | ovlees
o . Set to Set O
o O e ] .
Trained on CMS full simulation data ° 0, “ -

Two models: Diffusion (D) and Flow Matching (F)

Outputs PF Candidate sets with kinematic features and class types

Particle-flow Neural Assisted

Parnassus

Dmitrii Kobylianskii, Vinicius Mikuni,
Benjamin Nachman, Nathalie Soybelman,
Nilotpal Kakati, Etienne Dreyer, Eilam Gross
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HOW?

VAE (2013) GAN (2014) Pixel CNN (2016) BigGAN (2018)

Diffusion ,‘ ' Auto-Regressive



2403.03206v1 [cs.CV] 5 Mar 2024

arxiv

Stable Diffusion 3

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Patrick Esser© Sumith Kulal Andreas Blattmann Rahim Entezari Jonas Miiller Harry Saini  Yam Levi
Dominik Lorenz Axel Sauer Frederic Boesel Dustin Podell Tim Dockhorn Zion English
Kyle Lacey Alex Goodwin Yannik Marek Robin Rombach’
Stability Al

Figure I. High-resolution samples rom our 8B reclified Mlow maodel, showceasing its capabililies in typography, precise prompt (ollowing
and spatial reasoning, attention to fine details, and high image quality across a wide variety of styles.

Abstract strate the superior performance of this approach

Diffusion models create data from noise by invert- compared Lo established diffusion formulations
ing the forward paths of data towards noise and f(ff_ high-resolution text-to-image synthesis. Ad-
have emerged as a powerful generative modeling ditionally, we present a novel transtormer-based
technique for high-dimensional, perceptual data architecture for text-to-image generation that uses

Flow Matching



Text prompt:

A bird standing
upon the waters

Stable Diffusion 3.5

stablediffusionyieBEEmnS
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https://stability.ai/news/introducing-stable-diffusion-3-5

Slide from Etienne

Conditional
generation

(Gaussian Noise)

X~ q=N(0,1)

Dreyer

Text prompt:

A bird standing
upon the waters
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Text prompt:

A small, exquisite bird

But hOW? with wvibrant pink

feathers, adorned with

e intricate, sparkling
Jjewels and pearls,
Perched on a branch of a
cherry tree, wearing an
ornate golden crown
encrusted with a
kaleidoscope of colorful
gemstones, 1s set against
a dreamy, blurred
background of soft
Stable Diffusion 3.5 purples and blues,
reminiscent of a
fantastical sky.
including a '"cute king"
label at the top, with a
touch of ethereal soft
focus and heavenly
sunshine, as 1f diwvine
¥ beams are illuminating
stablediffusionweb.com the clouds.
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https://stability.ai/news/introducing-stable-diffusion-3-5
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Leveraging Stable Diffusion Techniques?
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Flow Matching at SCALE

. .

Text-2-Video

MovieGen, Meta

Text-2-Image
Stable Diffusion 3

26

Protein Generation
Huguet el a. 24

(c) Yaron Lipman, Meta, WIS


https://ai.meta.com/research/movie-gen/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2405.20313

WHAT IS FLOW MATCHING?

A scalable method to train flow generative models.

HOW DOES IT WORK?

Train by regressing a velocity, sample by following the velocity

27

slide by Yaron Lipman



The Generative Modeling Problem

[ d

The distribution of dogs p, ., is unknown
but we have training data from which we can sample

28

Figures by Yaron Lipman



The Generative Modeling Problem

| d A generative model converts samples from an initial
distribution into samples from an unknown Data distribution

ransfer from some base (p) distribution to our data (g) distributio

Noise~Gaussian

The goalisto find suchy, : x, = w(xy), thatx; = y;(xy) ~ g

his y, we call flow .

Figures by Yaron Lipman



Marginal probability path and Flows

The flow defines a trajectory v/ (x;)
that solves a differential equation

d

—X, = u(x,)

dt

Figure by Yaron Lipman
g y P Figure by Yaron Lipman

Flow



Marginal probability path and Flows

Figure by Yaron Lipman

Flow

Def

The flow defines a trajectory v/ (x,)

that solves a differential equation

d
E = UlX,)
Velocity fiela

!

nes probability path p,

Such that x, ~ p,

51 Animation by Dmitrii KobylianskKii




Flow Matching

Train a velocity Sample
generating p, with from Xy ~ 4 (0,1)

po=NO,1)andp,=p,... =q

slide by Yaron Lipman



Flow Match Loss

e We need to minimize the marginal velocity loss ut(Xt)

<z ,(0) =L ut@ (X) — u(X)

 But we do not know to calculate the marginal velocity target ut(Xt
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e Define the conditional Flow Match loss

L i 0) = Exp, iy || X) = (X, 1 Xy = 2)||
Losses are equivalent

. V@"CZFM(H) — VQgCFM(H)

e Minimizing £ _.,,(6) —> minimizing &£ ,(0)

33



1 D Conditional FIOW Match Lines are x, sampled during training

So for one pair of (xg, X;)

P(X) = N (tz,(1 — %)) x, = —-ne+1z

Set X; = z € Data Set
P, .(X)= /(0,1)
Noise X, = ¢ ~ /(0,))

t ~ Unif|0,1]
x,={—-0De+1z

u(X)=z—c¢€

P(X) = N (tz, (1 = 1))

Time Time



1D Conditional Flow Match
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1D Conditional Flow Match
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Train by Sampling Pairs (X0,X1)=(¢, 2)
Sample a data example
X; = z from Data Set

p(x,) distribution

Sample a random time

t ~ Unif[0,1]

Sample Noise

Set x, = (1 —nNe+1z

Compute Loss
L) = |ulx) — z—e) ||’

Update & via gradient Time
descent on £ (0)



Lines are flow — solutions of ODE
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Lines are flow — solutions of ODE

Sampling Algorithm

u?(X) is learnt
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CROSS
ATTENTION
TRANSFORMER

The embedded Image issues a Querry: For this patch of the image,
which words are relevant

The embedded text projects a Key: How relevant each word is (Q K T) V— Q

and a Value: How much content should

‘injected into the image?
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Stable Diffusion 3

—— - - —

; ™
{ . 1
( CLIP-Gn4 [ CLIP-L/14 | T5XXL
| / |
/
f';'_‘*--'—”' 77 + 77 tokens ;"";
,-" P !‘/ A - / ‘
J{/ ' \ Jt \‘ / P ~
3/ —F 4096  dEEdnE )
2| o T/ channel ' \
£ | (_ Linear )
i Positional b 7 L\
s 3 - . A E . '
L MEP ) ( Linear y | Embedding ,%“CL/'
N P /l\ %
‘ﬁ/—"\i’/‘ = E
oM )|
) | N ( MM-DiT-Block 1 )
I\Sinusoidal Encoding) |
I : ( MM-DiT-Block 2 )
[ Timestep ) ‘
'd ) .
i ( MM-DiT-Block d )
|
‘{ Modulation :l
|
( Linear :l
|
[\ Unpatching :I
( Output :l




[ Caption
- N S
f'/-’ - S \
4 . 4
( cupcne ) cLp-Lna ) TSXXL )
| J |
'
f ';'
,.'!f-"‘«;--"”' 77 + 77 tokens / ( Noised Latent )
- - ,"‘/ - N /
{ ' + \ / . N
3 /| 5 14096 ( Patching |
S| ] '>channel 4 I N
A J L Linear )
i Positional
. ™ - ™ §
~ MJI:P J ( / s Embedding
N L
"\%,/ A
( MLP ) | )
) | N ( MM-DiT-Block 1 )
|Sinusoidal Encoding |
| { MM-DiT-Block 2 )
[ Timestep ) ‘
{ MM-DiT-Block d )
L MM-DiT-Block d
|
{ Modulation :l
|
( Linear :I
|
[\ Unpatching :l
( Output jl

-Stable Diffusion 3




50

Leveraging Stable Diffusion Techniques?

Feature/Principle

Output

Conditioning

Generation

Generative Principle

Probability Path

Sampling Efficiency

Architecture

Generalization

SD3.x

Images (pixels)

Text Prompts

text—>image

Flow Matching
(Rectified Flow)

Rectified Flow,
straight trajectory

ODE based

Transformer based

Unseen Text/Image Prompts

Parnassus

Particle Flow Candidates -
PFC

Generator-level-particles
(truth particles)

truth—>event Level
truth+event—>PFC

Flow Matching
(Rectified Flow)

Rectified Flow,
straight trajectory

ODE based

Transformer based

Unseen Phyiscs Processes




1222 | WEIZMANN
12JX3T | INSTITUTE
97:35 OF SCIENCE

N

ﬂ BERKELEY LAB

Advancing set-conditional set generation: Diffusion models

2024 PRD 110, 092013 . . .
for fast simulation of reconstructed particles

Automated Approach to Accurate, Precise, and Fast

2024 PRL 133, 211902 Detector Simulation and Reconstruction

Conditional Deep Generative Models for Simultaneous

2025 arXiv:2503.19981

Simulation and Reconstruction of Entire Events

51

51


https://doi.org/10.1103/PhysRevD.110.092013
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.211902
https://arxiv.org/abs/2503.19981

Slide from Etienne Dreyer
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DATA SET

e CMS Open 2011 Data

e Trained on QCD (mainly di-jet (gg) events

and top-anti top (¢7) production events

e Tested on QCD,f and
High momentum QCD,H->4 leptons (out of distribution)

53



2011 CMS Open Data Train: 2.8M QCD and ff events
Test: 200k QCD, tf, and H — 47

$ { . .
’ | \ > . _
- 1 | \
- . \ ’
Jet | |
|
\
) . "l A
] | )
{
| :

Input: set of stable generator particles in event

Target: set of CMS particle flow candidates
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Parnassus Methodology

missing [|Sum of Scalar
Transverse] Transverse
Energy Energy

e Two networks:

Number of
Particle Flow
Candidates

* Event Level Network Epf — (E)'C% iSS, E;/n iSS, H T, N, part)

I—_'> Particle Flow Candidates Network

—

PrL = (pie,n, ¢, vertex , class)€!

e Networks conditions on the set of Gen particles & & en, L@g 2L

e (Classes: Charged Hadron, Electron, Muon, Neutral hadron, Gamma



Event Level Network

e Based on ResNet (NN, No Transformer)

Time

Ll encoding

Concatenated
Context

Global | MLP
Features
|
Truth Pool
particles
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Event Level Performance
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Event Level Performance
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Event Level Performance
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Event Level Performance
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Particle Level Network

e Based on Diffusion Transformer
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Particle Level Performance
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Particle Level Performance
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Particle Level Performance
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Particle Level Performance
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Particle Level Performance

Parnassus
models well
transition
regions
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Jet Substructure Performance

CMS Pflow

Jet Substructure Variables are Sensitive
to the Radiation Pattern =
(angular correlations) within a Jet <
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Jet Substructure Performance

Jet Substructure Variables are Sensitive
to the Radiation Pattern
(angular correlations) within a Jet
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Jet Substructure Performance

CMS Pflow " __J Delphes [ 1 Parnassus (F)

Jet Substructure Variables are Sensitive
to the Radiation Pattern
(angular correlations) within a Jet

QCD 470

Low C2->Single Hard Core (a/g jets),
High C2->Resolved Substructure (W->qq)
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Performance Summary
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Performance Summary

B Delphes B Parnassus (F)
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The Magic using Replicas




The Magic using Replicas




VPARNASSUS,Y

I

SN\

Common standalone Python-only framework
Separate model checkpoint for every experiment

Open and easy-to-use for non-expert



Conclusions I/1V

* Accuracy: Parnassus achieves simulation accuracy very close to full

simulation (GEANT4+PF) across a wide range of observables.

Distributions of energies, angles, multiplicities, and jet variables are all well-modeled,
significantly better than the traditional smeared base fast-sim (Delphes)

* Speed: Flow matching provides a substantial speed-up Iin generating

30

events (compared to Full Sim).

In practice, this means fast turn-around and possibility of online or on-demand
simulation in analysis workflows.

Generalization: The model successfully generalized to processes and
energy ranges beyond its training,

showing promise that it can be trained on a representative sample and then
used for many physics studies. It was not narrowly overfit to one process.



Conclusion lI/1V

* Particle-Flow as a Learning Target: \We have shown that complex
reconstruction (which involves tracking, calorimetry, clustering) can be
approximated by a learned function. The ML model effectively learned

to “reconstruct” an event like the PF algorithm does, in one go.
This is an interesting validation of Al techniques on a structured physics

task.

* Flow Matching as a Technique: The success of Parnassus (F) highlights

the power of flow matching in physics simulation.
It could pave the way for other uses, e.g., fast simulation of other
detectors or even cosmological simulations, where you want to morph one

distribution to another quickly.
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Conclusions llI/1V

* \We demonstrated a successful marriage of cutting-
edge Al (flow-matching transformers) with HEP

simulation.

e |t achieves the Holy Grail of fast simulation:
significant speedup with full-sim accuracy.
This could become a foundation for the next generation of
simulation tools in high-energy physics, complementing
traditional methods and enabling the community to tackle
the computational challenges of future experiments.
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Backup
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Performance & Timings

CFM Delphes
Batch size/Time for 1 event GPU CPU CPU
1 0.669 4.38 0.0112
10 0.0734 1.59
100 0.0147 1.29
1000 0.0136

Only 5M parameters model
40 Flow-DPM Solver steps
Can achieve almost same performance with 20

Can be optimized more?
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Multivariate Analysis Methods to Tag

b Quark Events at LEP /SLC
1970s — '80s: “Al winter”, ups & downs 1993

tional barriers B. BRANDLY, A. FALVARD™, C. GuicHENEY*,
‘90s recurrent models, computatio

P. HENRARD*, J, JoussET**, J. PRORIOL**

2006 Hinton et al. kickstart modern deep learning

8010 — '20 rise of GPUs, computer vision, transformers,
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Dataset

Single jets extracted from CMS Open Data in Phys. Rev. D 101, 034009

® Full CMS simulation and reconstruction
® Our goalisto mimicit

X B Neutral
For each jet, extract sets of: : A Charged|
® Truth particles (input) a B - m . X Pileup
® Particle Flow Candidates (ground truth) _2‘:0 kj2r w X,
= A
@ . A8 o X
As reference, we run Delphes with: £ | = .
® CMS Run-1 card £ 0 . ' .
® Same truth particles as input f;o " o ™
® appropriate pileup conditions = .
2
S R/2F "
— . .
1™ examples each - CMS 2011 Open Data
' L Event 24981665, AKAH Jet
p?m - p;;ax [GeV] Type Training Testing L Run 167043, Lumi. Block 27
470 - 600 Out-of-distribution — Rl — ]'? 2 ! (‘) ! Rl 2‘
600 - 800  Out-of-distribution —h —1 - /

800 - 1000 In-distribution v Iranslated Rapidity y
v

1000 - 1400 In-distribution
1400 - 1800 Out-of-distribution
1800 - oo Out-of-distribution

SENENENENEN
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.034009#
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012045/meta

