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Outline
• Introduction:  

Particle detectors and particle-flow objects; simulation challenges


• Analogy with Stable Diffusion 3.x:  
Generative models in AI, diffusion vs flow matching, conceptual parallels to PF 
simulation


• Method & Results:  
The set-to-set generative model (Parnassus), architecture (transformers, flow matching), 
experiments and performance (accuracy, speedup, generalization)


• Conclusion:  
Impact and integration into HEP workflows
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Piecing 
together 
particles

A Particle Detector
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Configurable Calorimeter  
simulation for AI
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Challenge 1: Reconstruct the Detector responses into Particle Flow Candidates
Challenge 2: Fast Simulation of Detector Response / Particle Flow CandidatesAnimation by Nilopal Kakati



Data cycle of particle physics
Truth particles

Reconstructed  
particles

Detector hits

ℒ = ?

p+p+

Statistical analysis

Theory

Particle collision

Simulation

Reconstruction
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Data cycle of particle physics
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Data cycle of particle physics

Theory

Truth particles

Reconstructed  
particles

Detector hits

ℒ = ?

p+p+

Statistical analysis

Particle collision

NN
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Problem to Solve
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Final state 
truth particles

Reconstructed 
objects

Set to Set 

NN

Amount of objects 
+ 

Their properties



High-Luminosity

Why Fast Simulation
• We expect ~9x more data in the coming 15 years

Source: http://lhc-commissioning.web.cern.ch/schedule/images/2024/rampup_2023_YETS15weeks_NoIon_MDs_ULT.png 

Higgs boson  
discovery

14 Slide from Etienne Dreyer

http://lhc-commissioning.web.cern.ch/schedule/images/2024/rampup_2023_YETS15weeks_NoIon_MDs_ULT.png


GEANT4 simulation 

Credit::  
Michael Pitt 

Phys. Lett. B 796 (2019) 68 

The simulation  
challenge

Testing hypotheses requires large  
amounts of simulated reference data (ideally 
25-100x more than recorded data)

Fully simulating 1 event ~  
  events ~ O(1000) CPU years

𝒪(minutes)

⇒ 𝒪(100M)
Slide from Etienne Dreyer

https://michael-pitt.github.io/Geant4-models/ATLAS-simplified/
https://www.sciencedirect.com/science/article/pii/S0370269319304721?via=ihub


Why Fast Simulation
• High Luminosity LHC—>Orders of magnitude more simulated events 

• Future Colliders will operate at higher energies and luminosities—>1M Gbytes 
data/day 

• Full Detector simulations (GEANT) consumes >50% High Energy Phyiscs.  
They do not scale and power and budget are limited 

• High granularity detectors will cost even more CPU power—>Computing 
Bottleneck 

• Precise physics background modelling required for rare physics events, 
 current fast simulations cannot cope with that


• Designing future acceleerators require fast detector simulation response 

• GENERATIVE AI is fast and promising as we will see
16



Why Fast Simulation

JHEP 02 (2014) 057. 3200 citations

• Fast simulations are not just a convenience-they are essential for the survival of HEP in 
the HL-LHC era and beyond. 


• There is a fast simulation which also produces Particle Flow Candidates 
Delphes (an hardcoded smearing based fast simulation): 
Fast but less precise 
 
 
 
 
 

• —>Need accurate and fast AI/ML and perhaps Quantum Ready Tools 
to overcome computational limits, unlock new physics and design 
detectors for 100-TeV frontier.

DELPHES 
is our 

BASELINE
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Introducing Parnassus
• Set to Set learned mapping:  

GEN truth particles → PF candidates (PFC)


• Trained on CMS full simulation data


• Two models: Diffusion (D) and Flow Matching (F) 

• Outputs PF Candidate sets with kinematic features and class types

Dmitrii Kobylianskii, Vinicius Mikuni, 
Benjamin Nachman, Nathalie Soybelman, 
Nilotpal Kakati, Etienne Dreyer, Eilam Gross

Parnassus Particle-flow Neural Assisted 
Simulations
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HOW?
VAE (2013) GAN (2014) PixelCNN (2016) BigGAN (2018)

Imagen (2022) Stable Diffusion 3 (2024) GPT 4o (2025)

Diffusion Flow Matching Auto-Regressive



Stable Diffusion 3

20

Flow Matching



But how?

A bird standing 
upon the waters

Text prompt:

NN

Stable Diffusion 3.5

21

https://stability.ai/news/introducing-stable-diffusion-3-5


x0 ∼ q = 𝒩(0,1) x1 ∼ pdata

(Gaussian Noise) (Data)

NN ⋮

t = 0 t = 1t + dt

512 × 768 × 3

Conditional 
generation

Text prompt:

c
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A bird standing 
upon the waters

Slide from Etienne Dreyer



But how? A small, exquisite bird 
with vibrant pink 
feathers, adorned with 
intricate, sparkling 
jewels and pearls, 
Perched on a branch of a 
cherry tree, wearing an 
ornate golden crown 
encrusted with a 
kaleidoscope of colorful 
gemstones, is set against 
a dreamy, blurred 
background of soft 
purples and blues, 
reminiscent of a 
fantastical sky.  
including a "cute king" 
label at the top, with a 
touch of ethereal soft 
focus and heavenly 
sunshine, as if divine 
beams are illuminating 
the clouds.

Text prompt:

NN

Stable Diffusion 3.5
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      ״out of distribution״

https://stability.ai/news/introducing-stable-diffusion-3-5


Leveraging Stable Diffusion Techniques?
Feature/Principle SD3.x Parnassus

Output Images (pixels) Particle Flow Candidates - 
PFC

Conditioning Text Prompts Generator-level-particles 
(truth particles)

Generation text—>image 2 stages: Event, PFC

set (truth)—>set (PFC)

Generative Principle Flow Matching  
(Rectified Flow)

Flow Matching  
(Rectified Flow)

Probability Path Rectified Flow,  
straight trajectory

Rectified Flow,  
straight trajectory

Sampling Efficiency ODE based ODE based

Architecture Transformer based Transformer based

Generalization Unseen Text/Image Prompts Unseen Physics Processes

Flow Matching 
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Leveraging Stable Diffusion Techniques?
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Flow Matching at SCALE

Text-2-Video
MovieGen, Meta

Text-2-Image
Stable Diffusion 3

Protein Generation
Huguet el a. 24

(c) Yaron Lipman, Meta, WIS
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https://ai.meta.com/research/movie-gen/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2405.20313


A scalable method to train flow generative models.  

WHAT IS FLOW MATCHING?

Train by regressing a velocity, sample by following the velocity 

HOW DOES IT WORK?

27
slide by Yaron Lipman



x

ℝd

The Generative Modeling  Problem

28
Figures by Yaron Lipman

x ∈ ℝHxWx3

The distribution of dogs  is unknown 
but we have training data from which we can sample

pdata



The Generative Modeling  Problem

p
q

X0 ∼ p

ℝd
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Noise~Gaussian

A generative model converts samples from an initial 
distribution into samples from an unknown Data distribution

Figures by Yaron Lipman

X1 ∼ q

Transfer from some base ( ) distribution to our data ( ) distributionp q

The goal is to find such , that  ψt : xt = ψt(x0) x1 = ψ1(x0) ∼ q

This  we call flowψt

X0 Xt

X1



Xt ∼ pt
pt

p
q

X1 ∼ q

Flow

Marginal probability path and Flows

(Xt)0≤t≤1

Figure by Yaron Lipman

X0 ∼ p

uθ
t

Figure by Yaron Lipman

The flow defines a trajectory   
that solves a differential equation 

ψt(x0)

d
dt

xt = ut(xt)

Figure by Yaron Lipman
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X1 ∼ q

Flow

Marginal probability path and Flows

(Xt)0≤t≤1

Xt ∼ pt
pt

p
q

Figure by Yaron Lipman

X0 ∼ p0

Figure by Yaron Lipman

The flow defines a trajectory   
that solves a differential equation 

ψt(xt)

d
dt

xt = ut(xt)

Animation by Dmitrii Kobylianskii31

Velocity field

Defines probability path  

Such that 

pt
xt ∼ pt



Flow Matching

Train a velocity
generating  with

 and 
pt

p0 = 𝒩(0,1) p1 = pdata = q

Sample
from X0 ∼ 𝒩(0,1)

uθ
t

ut

uθ
t

X1

32slide by Yaron Lipman



Flow Match Loss
• We need to minimize the marginal velocity loss


• But we do not know to calculate the marginal velocity target


• Define the conditional Flow Match loss


•   


• Minimizing  —> minimizing  ℒCFM(θ) ℒFM(θ)

ℒFM(θ) = 𝔼Xt∼pt
uθ

t (Xt) − ut(Xt) 2

ut(Xt)

ut(Xt)

ℒCFM(θ) = 𝔼Xt∼pt|z(x|z) uθ
t (Xt) − ut(Xt |X1 = z) 2

Losses are equivalent                                    

∇θℒFM(θ) = ∇θℒCFM(θ)

33

z

Figures by Dmitrii Kobylianskii



 distributionpt(xt)

Time

Target

Lines are  sampled during training 
So for one pair of 

xt
(x0, x1)

1D Conditional Flow Match

Time

Set  Data Set 
 

Noise  

 
 

 

 

X1 = z ∈
Pinit(X) = 𝒩(0,1)

X0 = ϵ ∼ 𝒩(0,Id)

t ∼ Unif [0,1]
xt = (1 − t)ϵ + tz

ut(X) = z − ϵ

Pt(X) = 𝒩(tz, (1 − t)2))
z

ϵ

Pt(X) = 𝒩(tz, (1 − t)2)) xt = (1 − t)ϵ + tz

Figures by Dmitrii Kobylianskii



1D Conditional Flow Match

Time

Pt(X) = 𝒩(tz, (1 − t)2))
xt = (1 − t)ϵ + tz

Time
ut(Xt) = 𝔼X1∼Pdata

ut(Xt |X1)Conditional Velocity ut(Xt |X1 = z) Marginal Velocity 

Figures by Dmitrii Kobylianskii



1D Conditional Flow Match

Time Time
ut(Xt) = 𝔼X1∼Pdata

ut(Xt |X1)Conditional Velocity ut(Xt |X1 = z)

Conditional Probability Pt(Xt |X1) Pt(Xt) = 𝔼X0∼Pinit,X1∼Pdata
Pt(Xt |X1)

36 Figures by Dmitrii Kobylianskii



 distributionpt(xt)

Time

Train by Sampling Pairs (X0,X1)=(ϵ, z)
Sample a data example 

  from Data Set 

Sample a random time 
 

Sample Noise 
 

Set   

Compute Loss 
 

Update  via gradient 
descent on 

X1 = z

t ∼ Unif[0,1]

X0 = ϵ ∼ 𝒩(0,Id)

xt = (1 − t)ϵ + tz

ℒ(θ) = | |uθ
t (xt) − (z − ϵ) | |2

θ
ℒ(θ) Figures by Dmitrii Kobylianskii



Trained  distributionuθ
t (Xt)

Time

Source Target

Lines are flow — solutions of ODE1D toy Example
The trained  defines the velociy from which we calculate the flow  

which is the solution of the ODE 
uθ

t (Xt) ψt(x)
dXt = uθ

t (Xt)dt

Figures by Dmitrii Kobylianskii



Time

Lines are flow — solutions of ODESampling Algorithm is learnt 

Set  

Set step size  

Draw a random sample  
For  do 
    
   
end for 
Return 

uθ
t (Xt)

t = 0
h =

1
N

X0 ∼ pinit
i = 1,....,N − 1

Xt+1 = Xt + huθ
t (Xt)

t → t + h

X1

Figures by Dmitrii Kobylianskii



Leveraging Stable Diffusion Techniques?
Feature/Principle SD3.x Parnassus

Output Images (pixels) Particle Flow Candidates - 
PFC

Conditioning Text Prompts Generator-level-particles 
(truth particles)

Generation text—>image 2 stages: Event, PFC

set (truth)—>set (PFC)

Generative Principle Flow Matching  
(Rectified Flow)

Flow Matching  
(Rectified Flow)

Probability Path Rectified Flow,  
straight trajectory

Rectified Flow,  
straight trajectory

Sampling Efficiency ODE based ODE based

Architecture Transformer based Transformer based

Generalization Unseen Text/Image Prompts Unseen Phyiscs Processes

Flow Matching 

Transformer based

40



Leveraging Stable Diffusion Techniques?
Feature/Principle SD3.x Parnassus

Output Images (pixels) Particle Flow Candidates - 
PFC

Conditioning Text Prompts Generator-level-particles 
(truth particles)

Generation text—>image 2 stages: Event, PFC

set (truth)—>set (PFC)

Generative Principle Flow Matching  
(Rectified Flow)

Flow Matching  
(Rectified Flow)

Probability Path Rectified Flow,  
straight trajectory

Rectified Flow,  
straight trajectory

Sampling Efficiency ODE based ODE based

Generalization Unseen Text/Image Prompts Unseen Phyiscs Processes

Flow Matching 

Transformer based
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Draw a 
walking 
smiling cat
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Draw a 
walking 
smiling cat
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Walking
Smiling

Cat

CROSS  
ATTENTION 

TRANSFORMER

( )QKT V→Q

The embedded Image issues a Querry:  For this patch of the image, 
 which words are relevant

The embedded text projects a Key: 
                                       and a Value:

How relevant each word is 
How much content should 
 be injected into the image?



Walking
Smiling

Cat

M 
L 
P

xt+1 = xt + ⃗vθΔt

⃗vθ

CROSS  
ATTENTION 

TRANSFORMER
( )QKT V→Q



Walking
Smiling

Cat

M 
L 
P

xt+1 = xt + ⃗vθΔt

⃗vθ

CROSS  
ATTENTION 

TRANSFORMER
( )QKT V→Q



Draw a 
walking 
smiling cat
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Stable Diffusion 3

Ada LN
Ada LN

Ada LN



Stable Diffusion 3

Ada LN
Ada LN

Ada LN



Leveraging Stable Diffusion Techniques?
Feature/Principle SD3.x Parnassus

Output Images (pixels) Particle Flow Candidates - 
PFC

Conditioning Text Prompts Generator-level-particles 
(truth particles)

Generation text—>image truth—>event Level

truth+event—>PFC

Generative Principle Flow Matching  
(Rectified Flow)

Flow Matching  
(Rectified Flow)

Probability Path Rectified Flow,  
straight trajectory

Rectified Flow,  
straight trajectory

Sampling Efficiency ODE based ODE based

Architecture Transformer based Transformer based

Generalization Unseen Text/Image Prompts Unseen Phyiscs Processes

Flow Matching 

Transformer based
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2024 PRD 110, 092013 Advancing set-conditional set generation: Diffusion models 
for fast simulation of reconstructed particles

2024 PRL 133, 211902 Automated Approach to Accurate, Precise, and Fast 
Detector Simulation and Reconstruction

2025 arXiv:2503.19981 Conditional Deep Generative Models for Simultaneous 
Simulation and Reconstruction of Entire Events

5151

https://doi.org/10.1103/PhysRevD.110.092013
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.211902
https://arxiv.org/abs/2503.19981


x0 ∼ q = 𝒩(0,1) x1 ∼ pdata

(Gaussian Noise) (Data)

NN ⋮

t = 0 t = 1t + dt

Conditional 
generation

c

Truth particles

Reco. particles

pT η ϕ vx vy vz C

Nmax = 400
⋮

2 models investigated: 

• Diffusion 
• Conditional Flow Matching 
(guided)
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DATA SET
• CMS Open 2011 Data


• Trained on QCD (mainly di-jet ( ) events 
and top-anti top ( ) production events


• Tested on QCD,  and  
High momentum QCD,H->4 leptons (out of distribution)

qq̄
tt̄

tt̄

53



2011 CMS Open Data Train: 2.8M QCD and  events 
Test:   200k QCD, , and 

tt
tt H → 4ℓ

Jet 

Jet 

Input: set of stable generator particles in event 
Target: set of CMS particle flow candidates 5454



Parnassus Methodology
• Two networks:


• Event Level Network 


• Particle Flow Candidates Network 


• Networks conditions on the set of Gen particles


• Classes: Charged Hadron, Electron, Muon, Neutral hadron, Gamma

εpf = (Emiss
x , Emiss

y , HT, Npart)

𝒫pf = (prel
T , η, ϕ, ⃗vertex , class)

prel
T =

pT

HT

𝒫genεgen,

missing 
Transverse 

Energy

Sum of Scalar 
Transverse  

Energy

Number of 
Particle Flow 
Candidates
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Event Level Network
• Based on ResNet (NN, No Transformer)

𝒫gen

εgen

embedding Adaptive 
Layer Normalization

Concatenated 
Context
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🎗

Event Level Performance
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out of distribution



🎗

Event Level Performance
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out of distribution
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out of distribution



🎗

Event Level Performance
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out of distribution



🎗

Event Level Performance
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out of distribution



🎗

Event Level Performance
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out of distribution



Particle Level Network
• Based on Diffusion Transformer

𝒫gen

εgen,

embedding

Concatinated 
Context

Diffusion 
TRANSFORMER

εpf

63

truth

PFC

TRANSFORMER



𝒫gen

εgen,

embeddi

Concatinat

Diffusion 

εpf

Particle Level Network

truth PFC

TRANSFORMER
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🎗

Particle Level Performance
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out of distribution
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out of distribution



🎗

Particle Level Performance
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out of distribution



🎗

Particle Level Performance

68

out of distribution



🎗

Particle Level Performance
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out of distribution

Delphes 
cannot cope 

with vertex resolution 
modelling



🎗

Particle Level Performance
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out of distribution

Parnassus 
models well 

transition  
regions



🎗

Jet Substructure Performance

71

Jet Substructure Variables are Sensitive 
to the Radiation Pattern 
 (angular correlations) within a Jet 

Low C2->Single Hard Core  (q/g jets),  
High C2->Resolved Substructure (W->qq)



🎗

Jet Substructure Performance
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Jet Substructure Variables are Sensitive 
to the Radiation Pattern 
 (angular correlations) within a Jet 

Low C2->Single Hard Core  (q/g jets),  
High C2->Resolved Substructure (W->qq)



🎗

Jet Substructure Performance
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Jet Substructure Variables are Sensitive 
to the Radiation Pattern 
 (angular correlations) within a Jet 

Low C2->Single Hard Core  (q/g jets),  
High C2->Resolved Substructure (W->qq)
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The Magic using Replicas

Animation by Etienne Dreyer



The Magic using Replicas

Animation by Etienne Dreyer



The Magic using Replicas

Animation by Etienne Dreyer



Work In Progress

Common standalone Python-only framework 
Separate model checkpoint for every experiment 

Open and easy-to-use for non-expert



Conclusions I/IV
• Accuracy: Parnassus achieves simulation accuracy very close to full 

simulation (GEANT4+PF) across a wide range of observables.  
Distributions of energies, angles, multiplicities, and jet variables are all well-modeled, 
significantly better than the traditional smeared base fast-sim (Delphes)


• Speed: Flow matching provides a substantial speed-up in generating 
events (compared to Full Sim). 
In practice, this means fast turn-around and possibility of online or on-demand 
simulation in analysis workflows.


• Generalization: The model successfully generalized to processes and 
energy ranges beyond its training,  
showing promise that it can be trained on a representative sample and then 
used for many physics studies. It was not narrowly overfit to one process.
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Conclusion II/IV
• Particle-Flow as a Learning Target: We have shown that complex 

reconstruction (which involves tracking, calorimetry, clustering) can be 
approximated by a learned function. The ML model effectively learned 
to “reconstruct” an event like the PF algorithm does, in one go.  
This is an interesting validation of AI techniques on a structured physics 
task.


• Flow Matching as a Technique: The success of Parnassus (F) highlights 
the power of flow matching in physics simulation. 
 It could pave the way for other uses, e.g., fast simulation of other 
detectors or even cosmological simulations, where you want to morph one 
distribution to another quickly.
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Conclusions III/IV
•We demonstrated a successful marriage of cutting-

edge AI (flow-matching transformers) with HEP 
simulation.


•  It achieves the Holy Grail of fast simulation:  
significant speedup with full-sim accuracy.  
This could become a foundation for the next generation of 
simulation tools in high-energy physics, complementing 
traditional methods and enabling the community to tackle 
the computational challenges of future experiments.
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Conclusions 
•Current and Future work: 

We are now establishing a collaboration with ATLAS and 
CMS Simulation group to train Parnasus on the RUN 2/3 
detectors response


•We are aiming at training Parnasus on prospective future 
detectors (FCC, CEPC, etc….)


•We believe Parnasus is the future of Fast Simulation


• A Friendly GUI will be available in the 1st quarter of 2026

83
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Performance & Timings
CFM Delphes

Batch size/Time for 1 event GPU CPU CPU

1 0.669 4.38 0.0112

10 0.0734 1.59

100 0.0147 1.29

1000 0.0136 -

Only 5M parameters model 
40 Flow-DPM Solver steps 

Can achieve almost same performance with 20 
Can be optimized more?



History of NNs
1943 McCulloch-Pitts neuron 
1958 Perceptron John Hopkins Medicine

dendrites

x1

x2

DecisionAggregate

“a perceptron may eventually be able to learn, 
    make decisions, and translate languages”

Frank 
Rosenblatt

1970s — ‘80s: “AI winter”, ups & downs 

‘90s recurrent models, computational barriers 

2006 Hinton et al. kickstart modern deep learning 

2010 — ’20 rise of GPUs, computer vision, transformers, … 

2020s LLMs, Nobel prizes in Physics and Chemistry

1993
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Multivariate classification, regression, …

Neural networks

Input feature  
space

Deep latent 
space

Predictions Target  
/ truth
 2.46

-0.88

L(ypred, ytrue)
Loss 
function

∂L/∂wi Backpropagation

Artificial neuron

∑
i∈Nhid

(wixi + bi)
out

in

x1

x2

activation fnlin. comb.
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Dataset
Single jets extracted from CMS Open Data in Phys. Rev. D 101, 034009 
• Full CMS simulation and reconstruction 
• Our goal is to mimic it

For each jet, extract sets of: 
• Truth particles (input) 
• Particle Flow Candidates (ground truth)

As reference, we run Delphes with: 
• CMS Run-1 card 
• Same truth particles as input 
• appropriate pileup conditions

1M examples each

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.034009#
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012045/meta

