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Bayesian Dynamic Models Hidden Markov Models and State-Space Models

Hidden Markov Model (HMM)

The Hidden State Process {Xk}k≥0 is a Markov chain with initial
probability density function (pdf) t0(x) and transition
density function t(x, x′) such that*

p(x0:k) = t0(x0)
k−1∏
l=0

t(xl, xl+1) .

The Observed Process {Yk}k≥0 is such that the conditional joint
density of y0:k given x0:k has the conditional
independence (product) form

p(y0:k|x0:k) =
k∏
l=0

`(xl, yl) .

*x0:k denotes the collection x0, . . . , xk.



Bayesian Dynamic Models Hidden Markov Models and State-Space Models

Graphical Representation of the Dependence Structure

The HMM can be represented pictorially by a Bayesian network
which depicts the conditional independence relations:

· · · -��
��

-��
��

- · · ·

?

��
�� ?

��
��

Xk Xk+1

Yk Yk+1



Bayesian Dynamic Models Hidden Markov Models and State-Space Models

State-Space Form

Here the model is described in a functional form:

Xk+1 = a(Xk, Uk) ,
Yk = b(Xk, Vk) ,

where {Uk}k≥0 and {Vk}k≥0 are mutually independent i.i.d.
sequences of random variables (also independent of X0).

Remark

The term state-space model often refers to the case where a and b
are linear functions of their arguments (and {Uk}, {Vk}, X0 are
jointly Gaussian).
Likewise, the term HMM is sometimes used (not in this talk!)
more restrictively for the case where X is a finite set.
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HMM Examples
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Bayesian Dynamic Models Extensions

Beyond HMMs
For sequential Monte Carlo methods, the key point is the structure
of the joint conditional p(x0:k|y0:k). The methods described in this
talk directly apply in cases where the joint conditional may be
factored as

p(x0:k|y0:k) = p(x0|y0)
k−1∏
l=0

p(xl+1|xl, y0:l+1)
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The Filtering and Smoothing Recursions Basic Recursions

Tasks of interest for HMMs

State Inference How to make probabilistic statements on the state
sequence given the model and the observations?

Filtering πk|k(xk) = p(xk|Y0:k)
Prediction πk+1|k(xk+1) = p(xk+1|Y0:k)

Smoothing π0:k|k(x0:k) = p(x0:k|Y0:k)
(fixed-interval: πl|k for l = 0, . . . , k;
fixed-lag: πk|k+∆ for k = 0, . . . )

Parameter Inference How to tune the model parameters based on
the observations?



The Filtering and Smoothing Recursions Basic Recursions

Recursive Structure of the Joint Smoothing Density

By Bayes’ rule

π0:k+1|k+1(x0:k+1)

= (Lk+1(Y0:k+1))
−1 t0(x0)

k∏
l=0

t(xl, xl+1)
k+1∏
l=0

`(xl, Yl)

=
(

Lk+1(Y0:k+1)
Lk(Y0:k)

)−1

π0:k|k(x0:k) t(xk, xk+1)`(xk+1, Yk+1) ,

where the normalization constants Lk, i.e., the likelihood of the
observations, is usually not computable.



The Filtering and Smoothing Recursions Basic Recursions

The Joint Smoothing Recursion

π0:k+1|k+1(x0:k+1) =
(

Lk+1

Lk

)−1

π0:k|k(x0:k) t(xk, xk+1)`(xk+1, Yk+1)

The marginal recursion may be decomposed in two steps:

Prediction

πk+1|k(xk+1) =
∫
πk|k(xk)t(xk, xk+1)dxk

Filtering

πk+1|k+1(xk+1) =
(

Lk+1

Lk

)−1

πk+1|k(xk+1)`(xk+1, Yk+1)



The Filtering and Smoothing Recursions Computational Filtering and Smoothing Approaches

Exact Implementation of the Filtering and Smoothing
Recursions

When X is finite (Baum et al., 1970) The computational cost of
filtering is |X|2 per time index.

In linear Gaussian state-space models (Kalman & Bucy, 1961) The
filtering and prediction recursion is implemented by
the Kalman filter (Lk+1/Lk is interpreted as the
likelihood of the (k + 1)-th innovation).

Such finite dimensional filters exist only in very specific models
(see, e.g., Runggaldier & Spizzichino, 2001).



The Filtering and Smoothing Recursions Computational Filtering and Smoothing Approaches

The Finite Case

Forward (Filtering) – Backward (Smoothing)

Forward For k = 0 up to n− 1,

πk+1|k+1(xk+1) =
`(xk+1, Yk+1)

∑
xk
πk|k(xk)t(xk, xk+1)∑

x′ `(x′, Yk+1)
∑

x πk|k(x)t(x, x′)

Backward For k = n− 1 down to 0,

πk|n(xk) =
∑
xk+1

bk(xk|xk+1)πk+1|n(xk+1)

where

bk(xk|xk+1) =
πk|k(xk)t(xk, xk+1)∑
x πk|k(x)t(x, xk+1)

= P(Xk = xk|Xk+1 = xk+1, Y0:k)



The Filtering and Smoothing Recursions Computational Filtering and Smoothing Approaches

Approximate Implementations of the Filtering and
Smoothing Recursions

EKF (Extended Kalman Filter) Linearization-based approach
(for non-linear Gaussian state space models);

UKF (Unscented Kalman Filter, Julier & Uhlmann, 1997)
Point-based approach;

and more Gaussian or Assumed Density Filters (ADF) (Wu,
Hu, Xu & Hu, 2006).

Variational Methods (e.g., Valpola & Karhunen, 2002) Based
on parametric density approximation arguments.

Exact Suboptimal Filters In particular, Kalman filter viewed as
minimum mean square error linear filtering.



The Filtering and Smoothing Recursions Computational Filtering and Smoothing Approaches

Sequential Monte Carlo (SMC)

Sequential Monte Carlo (sometimes called particle filtering) is
a method which uses pseudo-random simulations to produce
successive populations of “particles” X1:n

k and associated
weights W 1:n

k such that

n∑
i=1

W i
kf(Xi

k) ≈
∫
f(x)πk|k(x)dx ,

for all functions f of interest.

The SMC process is sequential in the sense that given X1:n
k ,

W 1:n
k and the observations Y0:k+1, X1:n

k+1 and W 1:n
k+1 are

conditionally independent of previous populations of particles.

SMC is based on importance sampling and resampling.
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Sequential Importance Sampling Self-Normalized Importance Sampling

Self-Normalized Importance Sampling, or IS (Hammersley
& Handscomb, 1964)

IS is a weighted form of Monte Carlo approximation, in which
expectations under the target pdf π

π(f) = Eπ[f(X)]

are estimated as

π̂nq (f) =
n∑
i=1

ωi∑n
j=1 ω

j︸ ︷︷ ︸
W i

f(Xi) =
1
n

∑n
i=1 ω

if(Xi)
1
n

∑n
j=1 ω

j
,

where

Xi ∼ iid q, where q is an instrumental pdf

ωi = π
q (X

i).

This form of IS (sometimes also called Bayesian IS) does not
necessitate that π be properly normalized.



Sequential Importance Sampling Self-Normalized Importance Sampling

Performance of IS

Assuming that Eπ[πq (X)(1 + f2(X))] <∞, π̂nq (f) is consistent
and asymptotically normal, with asymptotic variance given by

υq(f) = Eπ

[
π

q
(X) (f(X)− π(f))2

]
.

The asymptotic variance can be estimated from the IS sample by

υ̂nq (f) = n
n∑
i=1

(W i)2{f(Xi)− π̂nq (f)}2 ,

where W i = ωi/
∑n

j=1 ω
j are the normalized weights.



Sequential Importance Sampling Sequential Importance Sampling (SIS)

Back to the Filtering and Smoothing Problem

How to estimate expectations under the posterior
π0:k|k(x0:k) = p(x0:k|Y0:k) in the model

p(x0:k) = t0(x0)
k−1∏
l=0

t(xl, xl+1) ,

p(y0:k|x0:k) =
k∏
l=0

`(xl, yl) ,

using a sequential algorithm ?



Sequential Importance Sampling Sequential Importance Sampling (SIS)

Sequential Smoothing through IS, or SIS (Handschin & Mayne,
1969-1970)

1 Propose n independent particle trajectories {Xi
0:k+1}1≤i≤n

under a Markovian scheme such that

p(x0:k+1) = ρ0:k+1(x0:k+1) = q0(x0)
k∏
l=1

ql(xl, xl+1) .

2 Compute importance weights sequentially:

ωik+1 =
π0:k+1|k+1(Xi

0:k+1)
ρ0:k+1(Xi

0:k+1)
= ωik×

t(Xi
k, X

i
k+1)`(X

i
k+1, Yk+1)

qk(Xi
k, X

i
k+1)

.

Then,
n∑
i=1

ωik+1∑n
j=1 ω

j
k+1

f(Xi
0:k+1)

is an estimate of E [f(X0:k+1)|Y0:k+1].
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Sequential Importance Sampling Sequential Importance Sampling (SIS)

FILT.

INSTR.

FILT. +1

One step of the SIS algorithm with just seven particles.



Sequential Importance Sampling Weight Degeneracy

Weight Degeneracy

Empirically, the SIS approach always fail when the time-horizon k
is more than a few tens; the IS weights ω1:n

k usually become very
unbalanced with a few weights dominating all the other

To understand why it is the case, consider the (silly) model where{
t(x, x′) = t(x′) = t0(x′) , (Independent states)

`(x, y) = `(y) , (Non-informative observations)

and the instrumental kernel is such that ql(x, x′) = q0(x′) = q(x′)

Then

ωik+1 = ωik ×
t(Xi

k+1)
q(Xi

k+1)
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Sequential Importance Sampling Weight Degeneracy

Weight Degeneracy (Contd.)

For a function of interest f that only depends on the last
coordinate xk of the trajectory x0:k, the asymptotic variance of the
SIS approximation to πk|k(f) = Eπk|k [f(X)] is given by

υk(f) =∫
· · ·
∫ ( k∏

l=0

t

q
(xl)

)2 (
f(xk)− πk|k(f)

)2 k∏
l=0

q(xl) dx0 . . . dxk

=
(∫ t

q
(x)t(x)dx︸ ︷︷ ︸
>1

)k ∫ t

q
(x)
(
f(x)− πk|k(f)

)2
t(x)dx .

In practise, this situation can usually be detected by monitoring the
effective sample size or entropy criterions, which become
abnormally small.



Sequential Importance Sampling SIS: Summary

Summary

Sequential Importance Sampling (SIS) is based on simulating
independent Markovian trajectories.

SIS is bound to degenerate in the long-term (depends on
everything, including n, but typically between 10 to 100
observations).
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Sequential Importance Sampling with Resampling Sampling Importance Resampling

In IS, it is indeed possible to reset the weights to a constant value
at the price of a, usually moderate, increase in variance.

Sampling Importance Resampling (Rubin, 1987)

Replace {X1:n,W 1:n} by {X̃1:Ñ , W̃ 1:Ñ} such that the discrepancy

between the resampled weights {W̃ 1:Ñ} is reduced and∑Ñ
i=1 W̃

iδX̃i is a good approximation to
∑n

i=1W
iδXi .

In general the resampling is random and subject to the constraints
Ñ = n ,

W̃ i = 1/Ñ ,

E
[∑Ñ

i=1 1{X̃i = Xj}
∣∣∣X1:n,W 1:n

]
= ÑW j (1 ≤ j ≤ n).

The last condition is often referred to as unbiasedness or proper
weighting.
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Ñ = n ,

W̃ i = 1/Ñ ,
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= ÑW j (1 ≤ j ≤ n).

The last condition is often referred to as unbiasedness or proper
weighting.



Sequential Importance Sampling with Resampling Sampling Importance Resampling

Multinomial Resampling

1 Draw, conditionally independently given {X1:n,W 1:n}, n
discrete random variables (J1, . . . , Jn) taking their values in
the set {1, . . . , n} with probabilities (W 1, . . . ,Wn).

2 Set, for i = 1, . . . , n, X̃i = XJi and W̃ i = 1/n.

Let Ci =
∑n

j=1 1{X̃j = Xi}
(i = 1, . . . , n) denote the number of
times each particle is duplicated in the
resampling process. The counts
(C1, . . . , Cn) follow a multinomial
distribution with parameters n,
(W 1, . . . ,Wn), conditionally to
{X1:n,W 1:n} .

INSTRUMENTAL

TARGET

Resampled particles
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Sequential Importance Sampling with Resampling Sampling Importance Resampling

Some Results on SIR

1 X̃i D−→ π as n→∞ (some extensions of this result)

2
1
n

∑n
i=1 f(X̃i) is an asymptotically normal estimator of π(f)

(assuming Eπ[πq (X)(1 + f2(X)) + f2(X)] <∞) with
asymptotic variance given by

υ̃q(f) = Eπ

[
π

q
(X) (f(X)− π(f))2

]
︸ ︷︷ ︸

υq(f)

+ Eπ
[
(f(X)− π(f))2

]
︸ ︷︷ ︸

Varπ [f(X)]

If n is sufficiently large, the cost of resampling is very moderate in
situation that are challenging for IS, i.e., when
υq(f)� Varπ[f(X)].



Sequential Importance Sampling with Resampling Sequential Importance Sampling with Resampling (SISR)

The Simplest Functional Algorithm (Gordon et al., 1993)

Regular resampling is added to avoid weight degeneracy and to
guarantee the long-term (k →∞) stability of the particle filter.

The Bootstrap filter

1 Given X̃1:n
k , propose new positions Xi

k+1 independently under

the prior dynamic t(X̃i
k, ·), for i = 1, . . . , n;

2 Compute the weights ωik+1 = `(Xi
k+1, Yk+1), for i = 1, . . . , n

and normalize them (W i
k+1 = ωik+1/

∑n
j=1 ω

j
k+1);

3 Resample to obtain X̃1:n
k+1, e.g., by drawing independent

indices J ik+1 such that P
(
J ik+1 = j

∣∣W 1:n
k+1

)
= W j

k+1 and

setting X̃i
k+1 = X

Jik+1

k+1 (Multinomial Resampling).



Sequential Importance Sampling with Resampling Sequential Importance Sampling with Resampling (SISR)

FILT.

FILT. +1

FILT. +2

FILT.

FILT. +1

FILT. +2

SIS (left) and SISR (right).



Sequential Importance Sampling with Resampling Marginal and Trajectory-Wise Approximations

Marginal and Trajectory-Wise Approximations
SMC is expected to approximate the filtering pdfs in the sense that

n∑
i=1

W i
kf(Xi

k) −→
∫
f(x)πk|k(x)dx ,

as n increases, for abitrary functions f .

But recalling our original SIS interpretation, one should also have

n∑
i=1

W i
kf(Xi

0:k) −→
∫
· · ·
∫
f(x0:k)π0:k|k(x0:k)dx0 . . . dxk .

1 In what sense is this true? [Several: Consistency, central limit
theorem, Lp bounds, convergence in distribution of
subpopulations (“propagation of chaos”)]

2 What is the influence of n? [Easy: 1
√
n]

3 What is the influence of k? [Harder: depends on forgetting
properties of the model and whether one considers marginal or
trajectory-wise approximations]
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The Particle Paths
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Sequential Importance Sampling with Resampling SISR: Summary

Summary

With resampling, SISR can achieve long-term stability.

The increase in variance due to resampling is moderate,
especially when resampling is applied only when needed.

The method is still sensitive to outliers, model
misspecification, etc., which may necessitate the use of more
elaborate strategies (clever choices of the instrumental kernel,
adaptive strategies, etc.)

Accurate smoothing approximations require more elaborate
techniques
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