Gersende FORT

LTCI / CNRS - TELECOM ParisTech, France

I. Examples of adaptive and interacting MCMC samplers

- 1. Adaptive Hastings-Metropolis algorithm $_{\rm [HAARIO\ ET\ AL.\ 1999]}$
- 2. Equi-Energy algorithm [KOU ET AL. 2006]
- 3. Wang-Landau algorithm [WANG & LANDAU, 2001]

Adaptive Hastings-Metropolis algorithm

Adaptive Hastings-Metropolis algorithm

- Symmetric Random Walk Hastings-Metropolis algorithm
 - Goal: sample a Markov chain with known stationary distribution π on \mathbb{R}^d (known up to a normalizing constant)
 - Iterative mecanism: given the current sample X_n ,
 - propose a move to $X_n + Y$ $Y \sim q(\cdot X_n)$ where q(-z) = q(z)
 - · accept the move with probability

$$\alpha(X_n, X_n + Y) = 1 \land \frac{\pi(X_n + Y)}{\pi(X_n)}$$

and set $X_{n+1} = X_n + Y$; otherwise, $X_{n+1} = X_n$.

Adaptive Hastings-Metropolis algorithm

Adaptive Hastings-Metropolis algorithm

- Symmetric Random Walk Hastings-Metropolis algorithm
 - Goal: sample a Markov chain with known stationary distribution π on \mathbb{R}^d (known up to a normalizing constant)
 - Iterative mecanism: given the current sample X_n ,
 - propose a move to $X_n + Y$ $Y \sim q(\cdot X_n)$ where q(-z) = q(z)
 - · accept the move with probability

$$\alpha(X_n, X_n + Y) = 1 \land \frac{\pi(X_n + Y)}{\pi(X_n)}$$

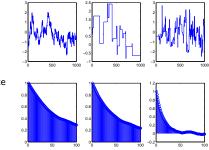
and set $X_{n+1} = X_n + Y$; otherwise, $X_{n+1} = X_n$.

• Design parameter: how to choose the proposal distribution q?

For example, in the case $q(\cdot - x) = \mathcal{N}_d(x; \theta)$ how to scale the proposal i.e. how to choose the covariance matrix θ ?

Examples of adaptive MCMC samplers

L_Adaptive Hastings-Metropolis algorithm



"goldilock principle"

Too small, too large, better variance

Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Gelman et al. 1996; \cdots] when the proposal is Gaussian $\mathcal{N}_d(x, \theta)$, choose θ

• as the covariance structure of π [Haario et al. 1999]: $\theta \propto \Sigma_{\pi}$. In practice, Σ_{π} is unknown and this quantity is computed "online" with the past samples of the chain

$$\theta_{n+1} = \frac{n}{n+1}\theta_n + \frac{1}{n+1} \left\{ (X_{n+1} - \mu_{n+1})(X_{n+1} - \mu_{n+1})^T + \kappa \operatorname{Id}_d \right\}$$

where μ_{n+1} is the empirical mean. $\kappa > 0$, prevent from badly scaled matrix

Adaptive Hastings-Metropolis algorithm(s)

Based on theoretical results [Gelman et al. 1996; \cdots] when the proposal is Gaussian $\mathcal{N}_d(x, \theta)$, choose θ

• as the covariance structure of π [Haario et al. 1999]: $\theta \propto \Sigma_{\pi}$. In practice, Σ_{π} is unknown and this quantity is computed "online" with the past samples of the chain

$$\theta_{n+1} = \frac{n}{n+1}\theta_n + \frac{1}{n+1} \left\{ (X_{n+1} - \mu_{n+1})(X_{n+1} - \mu_{n+1})^T + \kappa \operatorname{Id}_d \right\}$$

where μ_{n+1} is the empirical mean. $\kappa > 0$, prevent from badly scaled matrix

• OR such that the mean acceptance rate converges to α_{\star} [Andrieu & Robert 2001]. In practice this θ is unknown and this parameter is adapted during the run of the algorithm

$$\theta_n = \tau_n \operatorname{Id}$$
 with $\log \tau_{n+1} = \log \tau_n + \gamma_{n+1} (\alpha_{n+1} - \alpha_\star)$

where α_n is the mean acceptance rate.

• OR · · ·

► In practice, simultaneous adaptation of the design parameter and simulation. Given the current value of the chain X_n and the design parameter θ_n

- Draw the next sample X_{n+1} with the transition kernel $P_{\theta_n}(X_n, \cdot)$.
- Update the design parameter: $\theta_{n+1} = \Xi_{n+1}(\theta_n, X_{n+1}, \cdot).$

► In practice, simultaneous adaptation of the design parameter and simulation. Given the current value of the chain X_n and the design parameter θ_n

- Draw the next sample X_{n+1} with the transition kernel $P_{\theta_n}(X_n, \cdot)$.
- Update the design parameter: $\theta_{n+1} = \Xi_{n+1}(\theta_n, X_{n+1}, \cdot).$

▶ In this MCMC context, we are interested in the behavior of the chain $\{X_n, n \ge 0\}$ e.g.

- Convergence of the marginals: $\mathbb{E}\left[f(X_n)\right] \to \pi(f)$ for f bounded.
- Law of large numbers: $n^{-1} \sum_{k=1}^n f(X_k) \to \pi(f)$ (a.s. or \mathbb{P})
- Central limit theorem

but

- we have $\pi P_{\theta} = \pi$ for any θ : all the transition kernels have the same inv. distribution π
- so, stability / convergence of the adaptation process $\{\theta_n, n \geq 0\}$ is not the main issue.

Equi-Energy sampler

▶ Proposed by Kou et al. (2006) for the simulation of multi-modal density π . How to define a sampler that both allows

- local moves for a local exploration of the density.
- and large jumps in order to visit other modes of the target ?

Equi-Energy sampler

▶ Proposed by Kou et al. (2006) for the simulation of multi-modal density π . How to define a sampler that both allows

- local moves for a local exploration of the density.
- and large jumps in order to visit other modes of the target ?

▶ Idea: (a) build an auxiliary process that moves between the modes far more easily and (b) define the process of interest

- by running a "classical" MCMC algorithm
- and sometimes, choose a value of the auxiliary process as the new value of the process of interest: draw a point at random + acceptation-rejection mecanism

Equi-Energy sampler

▶ Proposed by Kou et al. (2006) for the simulation of multi-modal density π . How to define a sampler that both allows

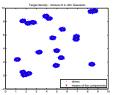
- local moves for a local exploration of the density.
- and large jumps in order to visit other modes of the target ?

▶ Idea: (a) build an auxiliary process that moves between the modes far more easily and (b) define the process of interest

- by running a "classical" MCMC algorithm
- and sometimes, choose a value of the auxiliary process as the new value of the process of interest: draw a point at random + acceptation-rejection mecanism

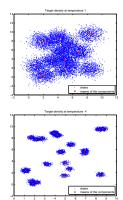
How to define such an auxiliary process ? Ans.: as a process with stationary distribution π^{β} ($\beta \in (0, 1)$), a tempered version of the target π .

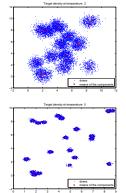
▶ On an example: a *K*-stage Equi-Energy sampler.

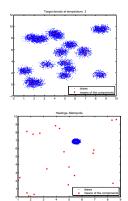


- target density: $\pi = \sum_{i=1}^{20} \mathcal{N}_2(\mu_i, \Sigma_i)$
- K auxiliary processes: with targets π^{1/T_i}

$$T_1 > T_2 > \cdots > T_{K+1} = 1$$







- ► Algorithm: (2 stages) Repeat:
 - Update the adaptation process

$$\theta_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{Y_k}$$

where $\{Y_n, n \ge 0\}$ is the auxiliary process with stationary distribution π^{β} .

1

• Update the process of interest with transition : $X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$ where

`

$$P_{\boldsymbol{\theta}_{n}}(x,A) = (1-\epsilon)P(x,A) + \epsilon \left\{ \int_{A} \underbrace{\alpha(x,y)}_{\text{accept/reject mecanism}} \boldsymbol{\theta}_{n}(dy) + \delta_{x}(A) \int (1-\alpha(x,y))\boldsymbol{\theta}_{n}(dy) \right\}$$

- ► Algorithm: (2 stages) Repeat:
 - Update the adaptation process

$$\theta_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{Y_k}$$

where $\{Y_n, n \ge 0\}$ is the auxiliary process with stationary distribution π^{β} .

1

• Update the process of interest with transition : $X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$ where

`

$$P_{\theta_n}(x,A) = (1-\epsilon)P(x,A) + \epsilon \left\{ \int_A \underbrace{\alpha(x,y)}_{\text{accept/reject mecanism}} \theta_n(dy) + \delta_x(A) \int (1-\alpha(x,y))\theta_n(dy) \right\}$$

► In this example, $\pi P_{\theta} \neq \pi$ BUT $\pi P_{\pi^{\beta}} = \pi$ i.e. asymptotically, when θ_n "is" π^{β} , the process of interest $\{X_n, n \ge 0\}$ behaves like a Markov chain with invariant distribution π .

- ► Algorithm: (2 stages) Repeat:
 - Update the adaptation process

$$\theta_n = \frac{1}{n} \sum_{k=0}^{n-1} \delta_{Y_k}$$

where $\{Y_n, n \ge 0\}$ is the auxiliary process with stationary distribution π^{β} .

• Update the process of interest with transition : $X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$ where

`

$$P_{\theta_n}(x,A) = (1-\epsilon)P(x,A) + \epsilon \left\{ \int_A \underbrace{\alpha(x,y)}_{\text{accept/reject mecanism}} \theta_n(dy) + \delta_x(A) \int (1-\alpha(x,y))\theta_n(dy) \right\}$$

► In this example, $\pi P_{\theta} \neq \pi$ BUT $\pi P_{\pi^{\beta}} = \pi$ i.e. asymptotically, when θ_n "is" π^{β} , the process of interest $\{X_n, n \ge 0\}$ behaves like a Markov chain with invariant distribution π .

In this MCMC context, we are again interested in the behavior of $\{X_n, n \ge 0\}$ but convergence of θ_n is crucial since the algorithm is designed to "sample from π " only when $\theta_n = \pi^{\beta}$.

Wang-Landau algorithm

▶ Proposed by Wang & Landau (2001) to favor the moves between elements of a partition of the state space, when the weights of these elements are unknown.

• Goal:

• sample a chain on $\prod_{i=1}^d (\mathsf{X}_i imes \{i\})$ with stationary distribution

$$\Pi(A_i \times \{i\}) = \frac{1}{d} \int_{A_i} \frac{h_i(x)}{\theta_{\star}(i)} \mathbbm{1}_{\mathsf{X}_i}(x) \ dx \ ,$$

when θ_{\star} is unknown

• and/ or estimate the normalizing constants $\theta_{\star}(i)$.

Wang-Landau algorithm

▶ Proposed by Wang & Landau (2001) to favor the moves between elements of a partition of the state space, when the weights of these elements are unknown.

- Goal:
 - sample a chain on $\prod_{i=1}^d (\mathsf{X}_i imes \{i\})$ with stationary distribution

$$\Pi(A_i \times \{i\}) = \frac{1}{d} \int_{A_i} \frac{h_i(x)}{\theta_{\star}(i)} \mathbbm{1}_{\mathsf{X}_i}(x) \ dx \ ,$$

when θ_{\star} is unknown

• and/ or estimate the normalizing constants $\theta_{\star}(i)$.

• Tool :

- A family of transition kernels P_{θ} on $\prod_{i=1}^{d} (X_i \times \{i\})$
- $\bullet \,$ where $\theta = (\theta(1), \cdots, \theta(d))$ is a probability on $\{1, \cdots, d\}$
- with invariant distribution known up to a normalizing constant

$$\Pi_{\theta}(A_i \times \{i\}) = \left(\sum_{j=1}^d \frac{\theta_{\star}(j)}{\theta(j)}\right)^{-1} \int_{A_i} \frac{\pi(x)}{\theta(i)} \mathbbm{1}_{\mathsf{X}_i}(x) \ dx \ ,$$

Stochastic approximation for adaptive Markov chain Monte Carlo algorithms Examples of adaptive MCMC samplers Wang-Landau algorithm

- ► Algorithm: repeat
 - Draw $(X_{n+1}, I_{n+1}) \sim P_{\theta_n}((X_n, I_n), \cdot)$
 - Update the adaptation process

$$\theta_{n+1}(i) \propto \theta_n(i) + \gamma_{n+1}\theta_n(i)\mathbb{1}_{I_{n+1}}(i)$$

Stochastic approximation for adaptive Markov chain Monte Carlo algorithms Examples of adaptive MCMC samplers Wane-Landau algorithm

► Algorithm: repeat

• Draw
$$(X_{n+1}, I_{n+1}) \sim P_{\theta_n}((X_n, I_n), \cdot)$$

Update the adaptation process

$$\theta_{n+1}(i) \propto \theta_n(i) + \gamma_{n+1}\theta_n(i)\mathbb{1}_{I_{n+1}}(i)$$

▶ In this MCMC context, we are also interested in the convergence of the sequence $\{\theta_n, n \ge 0\}$: at a first order,

$$\theta_{n+1}(i) \approx \theta_n(i) + \gamma_{n+1}\theta_n(i) \left(\mathbb{1}_{I_{n+1}}(i) - \theta_n(I_{n+1}) \right)$$

and when $(X_n, I_n) \sim \Pi_{\theta_n}$

$$\mathbb{E}\left[\theta_{n}(i)\left(\mathbf{1}_{I_{n+1}}(i)-\theta_{n}(I_{n+1})\right)|\mathcal{F}_{n}\right] = \left(\sum_{j=1}^{d}\frac{\theta_{\star}(j)}{\theta_{n}(j)}\right)^{-1} \ \left(\theta_{\star}(i)-\theta_{n}(i)\right)$$

i.e. $\{\theta_n, n \geq 0\}$ should converge to θ_\star !

Conclusion (I)

In adaptive MCMC,

- given a family of transition kernels $\{P_{\theta}, \theta \in \Theta\}$
- ergodic with invariant distribution π_{θ}

we define a bivariate process $\{(X_n, \theta_n), n \ge 0\}$ such that

 $\mathbb{P}\left(X_{n+1} \in \cdot | \mathcal{F}_n\right) = P_{\theta_n}(X_n, \cdot)$

 θ_n is updated s.t. it should converge to θ_{\star}

Two cases: $\pi_{\theta} = \pi$ for any θ OR $\pi_{\theta_{\star}} = \pi$.

What kind of conditions on the adaptation mecanism, in order the process $\{X_n, n \ge 0\}$ to converge to the target distribution π ? In the sequel, "convergence" means " convergence of the marginals"

 $\mathbb{E}\left[f(X_n)\right] \to \pi(f) \qquad f \text{ bounded}$

Conclusion (II)

Trois exemples illustrant des situations différente :

- Hastings Metropolis adaptatif :
 - tous les noyaux P_{θ} ont même mesure invariante π .

equi-Energy sampler :

- Chaque noyau P_{θ} a sa propre mesure invariante π_{θ} .
- On sait que π_{θ} existe mais on n'a pas d'expression explicite (régularité en $\theta \cdots$)

Wang-Landau :

- Chaque noyau P_{θ} a sa propre mesure invariante π_{θ} .
- On a l'expression de π_{θ} (en fonction de θ).

II. Convergence of adaptive / interacting MCMC samplers

(Joint work with E. Moulines (Telecom ParisTech, France) and P. Priouret (Paris VI, France))

Convergence of adaptive/interacting MCMC samplers

Adaptation can be really bad for convergence

Adaptation can be really bad for convergence

• Consider a family of transition kernels on $\{0, 1\}$:

$$P_{\theta} = \begin{pmatrix} 1 - \theta & \theta \\ \theta & 1 - \theta \end{pmatrix} \qquad \qquad \theta \in (0, 1)$$

• Then, for any $\theta \in (0,1)$, $\pi P_{\theta} = \pi$ with $\pi = (1/2; 1/2)$.

▶ Choose $t_0, t_1 \in (0, 1)$. Define the adaptive process:

$$\begin{cases} X_{n+1} \sim P_{\theta_n}(X_n, \cdot \\ \theta_{n+1} = t_{X_{n+1}} \end{cases}$$

• Then, the transition kernel is
$$\begin{pmatrix} 1-t_0 & t_0 \\ t_1 & 1-t_1 \end{pmatrix}$$

• and the invariant distribution is $\pi \propto (t_1, t_0)$.

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

Conditions for the convergence

We write

$$\mathbb{E}\left[f(X_n)\right] - \pi(f) = \mathbb{E}\left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N})\right] \\ + \mathbb{E}\left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi_{\theta_{n-N}}(f)\right] \\ + \mathbb{E}\left[\pi_{\theta_{n-N}}(f)\right] - \pi(f)$$

Three sets of conditions:

- Term 1: is null when no adaptation. Comparison of the adapted process to a "frozen" chain (i.e. a chain for which we stop adaptation).
- **2** Term 2: ergodicity of the transition kernels P_{θ} .
- ③ Term 3: only if π_θ ≠ π; it is the most difficult (i.e. technical!) step ··· mainly in the case π_θ isnot known in closed form.

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

$$\mathbb{E}\left[f(X_n)\right] - \pi(f) = \mathbb{E}\left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N})\right] \\ + \mathbb{E}\left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi_{\theta_{n-N}}(f)\right] + \mathbb{E}\left[\pi_{\theta_{n-N}}(f)\right] - \pi_\star(f)$$

▶ [Term 3] when $\pi_{\theta} \neq \pi_{\star}$, conditions so that $\lim_{n} \pi_{\theta_{n}}(f) = \pi_{\star}(f)$ Since

 $\pi_{\theta_{\star}+\Delta}(f) - \pi_{\theta_{\star}}(f) = \pi_{\theta_{\star}} \left(P_{\theta_{\star}+\Delta} - P_{\theta_{\star}} \right) \left(I - P_{\theta_{\star}} \right)^{-1} \left(I - \pi_{\theta_{\star}} \right) (f) + \text{``Remainder term''}$

the convergence of $\{\pi_{\theta_n}(f), n \ge 0\}$ to $\pi_{\theta_*}(f)$ is a consequence of the convergence of the transition kernels P_{θ_n} to P_{θ_*} .

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

$$\mathbb{E}\left[f(X_n)\right] - \pi(f) = \mathbb{E}\left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N})\right] \\ + \mathbb{E}\left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi_{\theta_{n-N}}(f)\right] + \mathbb{E}\left[\pi_{\theta_{n-N}}(f)\right] - \pi_\star(f)$$

▶ [Term 3] when $\pi_{\theta} \neq \pi_{\star}$, conditions so that $\lim_{n} \pi_{\theta_{n}}(f) = \pi_{\star}(f)$ Since

$$\pi_{\theta_{\star}+\Delta}(f) - \pi_{\theta_{\star}}(f) = \pi_{\theta_{\star}} \left(P_{\theta_{\star}+\Delta} - P_{\theta_{\star}} \right) \left(I - P_{\theta_{\star}} \right)^{-1} \left(I - \pi_{\theta_{\star}} \right) (f) + \text{``Remainder term''}$$

the convergence of $\{\pi_{\theta_n}(f), n \ge 0\}$ to $\pi_{\theta_*}(f)$ is a consequence of the convergence of the transition kernels P_{θ_n} to P_{θ_*} .

- Easiest situation: convergence in "operator norm".
- Otherwise: quite technical results! for example, when we know

 $\forall x \in \mathsf{X}, A \in \mathcal{X}, \quad \exists \Omega_{x,A}, \quad \mathbb{P}(\Omega_{x,A}) = 1 \quad \forall \omega \in \Omega_{x,A} \quad \lim_{n} P_{\theta_n(\omega)}(x,A) = P_{\theta_{\star}}(x,A)$

what can be said on the convergence of $\lim_{n} \pi_{\theta_n}(f)$?

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

Starting from :

 $\forall x \in \mathsf{X}, A \in \mathcal{X}, \quad \exists \Omega_{x,A}, \quad \mathbb{P}(\Omega_{x,A}) = 1 \quad \forall \omega \in \Omega_{x,A} \quad \lim_{x \to 0} P_{\theta_n(\omega)}(x,A) = P_{\theta_{\star}}(x,A) \; .$

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

Starting from :

 $\forall x \in \mathsf{X}, A \in \mathcal{X}, \quad \exists \Omega_{x,A}, \quad \mathbb{P}(\Omega_{x,A}) = 1 \quad \forall \omega \in \Omega_{x,A} \quad \lim_{n} P_{\theta_n(\omega)}(x,A) = P_{\theta_{\star}}(x,A) \;.$

the steps are:

$$\forall x \in \mathsf{X}, \quad \exists \Omega_x, \qquad \mathbb{P}(\Omega_x) = 1 \qquad \forall \omega \in \Omega_x \qquad \lim_n P_{\theta_n(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P_{\theta_\star}(x, \cdot)$$

 \hookrightarrow Tool: separable metric space X (ex. Polish)

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

Starting from :

 $\forall x \in \mathsf{X}, A \in \mathcal{X}, \quad \exists \Omega_{x,A}, \quad \mathbb{P}(\Omega_{x,A}) = 1 \quad \forall \omega \in \Omega_{x,A} \quad \lim_n P_{\theta_n(\omega)}(x,A) = P_{\theta_\star}(x,A) \; .$

the steps are:

 $\forall x \in \mathsf{X}, \quad \exists \Omega_x, \qquad \mathbb{P}(\Omega_x) = 1 \qquad \forall \omega \in \Omega_x \qquad \lim_n P_{\theta_n(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P_{\theta_\star}(x, \cdot)$

 \hookrightarrow Tool: separable metric space X (ex. Polish)

$$\exists \Omega', \qquad \mathbb{P}(\Omega') = 1 \qquad \forall \omega \in \Omega', x \in \mathsf{X} \qquad \lim_{n} P_{\theta_{n}(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P_{\theta_{\star}}(x, \cdot) ,$$

 \hookrightarrow Tool: Polish space X + equicontinuity of $\{P_{\theta}f - P_{\theta_{\star}}f, \theta \in \Theta\}$

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

Starting from :

 $\forall x \in \mathsf{X}, A \in \mathcal{X}, \quad \exists \Omega_{x,A}, \quad \mathbb{P}(\Omega_{x,A}) = 1 \quad \forall \omega \in \Omega_{x,A} \quad \lim_n P_{\theta_n(\omega)}(x,A) = P_{\theta_\star}(x,A) \; .$

the steps are:

 $\forall x \in \mathsf{X}, \quad \exists \Omega_x, \qquad \mathbb{P}(\Omega_x) = 1 \qquad \forall \omega \in \Omega_x \qquad \lim_n P_{\theta_n(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P_{\theta_\star}(x, \cdot)$

 \hookrightarrow Tool: separable metric space X (ex. Polish)

 $\exists \Omega', \qquad \mathbb{P}(\Omega') = 1 \qquad \forall \omega \in \Omega', x \in \mathsf{X} \qquad \lim_{n} P_{\theta_{n}(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P_{\theta_{\star}}(x, \cdot) ,$

 \hookrightarrow Tool: Polish space X + equicontinuity of $\{P_{\theta}f - P_{\theta_{\star}}f, \theta \in \Theta\}$

 $\exists \Omega_{\star}, \qquad \mathbb{P}(\Omega_{\star}) = 1 \qquad \forall \omega \in \Omega_{\star} \qquad \lim_{n} P^{k}_{\theta_{n}(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P^{k}_{\theta_{\star}}(x, \cdot) \;,$

 \hookrightarrow Tool: Feller properties of the kernels $\{P_{\theta}, \theta \in \Theta\}$

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

Starting from :

 $\forall x \in \mathsf{X}, A \in \mathcal{X}, \quad \exists \Omega_{x,A}, \quad \mathbb{P}(\Omega_{x,A}) = 1 \quad \forall \omega \in \Omega_{x,A} \quad \lim_n P_{\theta_n(\omega)}(x,A) = P_{\theta_\star}(x,A) \; .$

the steps are:

 $\forall x \in \mathsf{X}, \quad \exists \Omega_x, \qquad \mathbb{P}(\Omega_x) = 1 \qquad \forall \omega \in \Omega_x \qquad \lim_n P_{\theta_n(\omega)}(x, \cdot) \overset{\mathcal{D}}{\longrightarrow} P_{\theta_\star}(x, \cdot)$

 \hookrightarrow Tool: separable metric space X (ex. Polish)

$$\exists \Omega', \qquad \mathbb{P}(\Omega') = 1 \qquad \forall \omega \in \Omega', x \in \mathsf{X} \qquad \lim_n P_{\theta_n(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P_{\theta_\star}(x, \cdot) \;,$$

 \hookrightarrow Tool: Polish space X + equicontinuity of $\{P_{\theta}f - P_{\theta_{\star}}f, \theta \in \Theta\}$

$$\exists \Omega_{\star}, \qquad \mathbb{P}(\Omega_{\star}) = 1 \qquad \forall \omega \in \Omega_{\star} \qquad \lim_{n} P^{k}_{\theta_{n}(\omega)}(x, \cdot) \xrightarrow{\mathcal{D}} P^{k}_{\theta_{\star}}(x, \cdot) ,$$

 \hookrightarrow Tool: Feller properties of the kernels $\{P_{\theta}, \theta \in \Theta\}$ Then

$$\begin{aligned} |\pi_{\theta_n}(f) - \pi_{\theta_{\star}}(f)| &\leq |P_{\theta_n}^k f(x) - \pi_{\theta_n}(f)| + |P_{\theta_{\star}}^k f(x) - \pi_{\theta_{\star}}(f)| + \left|P_{\theta_n}^k f(x) - P_{\theta_{\star}}^k f(x)\right| \\ &\hookrightarrow \text{Tool: ergodicity} \end{aligned}$$

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

$$\mathbb{E}\left[f(X_n)\right] - \pi(f) = \mathbb{E}\left[f(X_n) - P^N_{\theta_{n-N}}f(X_{n-N})\right] \\ + \mathbb{E}\left[P^N_{\theta_{n-N}}f(X_{n-N}) - \pi_{\theta_{n-N}}(f)\right] + \mathbb{E}\left[\pi_{\theta_{n-N}}(f)\right] - \pi(f)$$

► [Term 2] condition on the ergodicity of the transition kernels "Usually", the transition kernels $\{P_{\theta}, \theta \in \Theta\}$ are geometrically ergodic :

$$\sup_{f,|f|_{\infty} \le 1} |P_{\theta}^{n}f(x) - \pi_{\theta}(f)| \le C_{\theta} \ \rho_{\theta}^{n} \ V(x) \qquad \rho_{\theta} \in (0,1)$$

BUT the rate of convergence may depend upon $heta\cdots$ in such a way that

$$\rho_{\theta} \rightarrow 1$$
 when $\theta \rightarrow \partial \Theta$

Therefore, the rate at which $\theta_n \rightarrow \partial \Theta$ has to be controlled.

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

In practice,

 control of ergodicity is a consequence of drift conditions and minorization conditions

. If

$$P_{\theta}V \le \lambda_{\theta}V + b_{\theta} \qquad P_{\theta}(x, \cdot) \ge \delta_{\theta}\nu_{\theta}(\cdot)$$

then

$$\|P_{\theta}^{n}(x,\cdot) - \pi_{\theta}\|_{\mathrm{TV}} \leq C_{\theta} \rho_{\theta}^{n} V(x)$$

where

$$C_{\theta} \vee (1 - \rho_{\theta})^{-1} \leq C \left(b_{\theta} \vee \delta_{\theta}^{-1} \vee (1 - \lambda_{\theta})^{-1} \right)^{3}$$

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

In practice,

• control of ergodicity is a consequence of drift conditions and minorization

conditions

$$P_{\theta}V \le \lambda_{\theta}V + b_{\theta} \qquad P_{\theta}(x, \cdot) \ge \delta_{\theta}\nu_{\theta}(\cdot)$$

then

$$\|P_{\theta}^{n}(x,\cdot) - \pi_{\theta}\|_{\mathrm{TV}} \leq C_{\theta} \rho_{\theta}^{n} V(x)$$

where

$$C_{\theta} \vee (1 - \rho_{\theta})^{-1} \leq C \left(b_{\theta} \vee \delta_{\theta}^{-1} \vee (1 - \lambda_{\theta})^{-1} \right)^{3}$$

- and, in order to prove that this control does not degenerate when $\theta \to \partial \Theta$, quite ad-hoc conditions
 - do such that the "parameter" θ "remains far from the boundaries" (reprojection on compact sets for instance)
 - OR do not modify the procedure but, control the rate at which the parameter tends to the boundaries [Vihola & Saksman, 2010], [Vihola, 2010]

Ex. for adaptive HM, [Vihola & Saksman, 2010] show that

$$\begin{split} &C_{\theta} \vee (1-\rho_{\theta})^{-1} \leq c \sqrt{\det \theta} \\ &\forall \tau > 0, \qquad n^{-\tau} |\theta_n| < +\infty \qquad \text{a.s} \end{split}$$

Convergence of adaptive/interacting MCMC samplers

Conditions for convergence of the marginals

$$\mathbb{E}\left[f(X_n)\right] - \pi(f) = \mathbb{E}\left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N})\right] \\ + \mathbb{E}\left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi_{\theta_{n-N}}(f)\right] + \mathbb{E}\left[\pi_{\theta_{n-N}}(f)\right] - \pi(f)$$

► [Term 1] condition on the adaptation mecanism since

$$\begin{split} \left| \mathbb{E} \left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N}) \right] \right| \\ & \leq \sum_{j=1}^{N-1} (N-j) \mathbb{E} \left[\underbrace{\sup_{x} \left\| P_{\theta_{n-N+j}}(x, \cdot) - P_{\theta_{n-N+j-1}}(x, \cdot) \right\|_{\mathrm{TV}}}_{\text{"distance" between two successive transition kernels}} \right] \end{split}$$

Therefore, the adaptation has to be diminishing.

Convergence of adaptive/interacting MCMC samplers

Adaptation and Ergodicity

Adaptation and Ergodicity

$$\mathbb{E}\left[f(X_n)\right] - \pi(f) = \mathbb{E}\left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N})\right] + \mathbb{E}\left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi(f)\right]$$

Example:
$$X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$$
 $\theta_n = n^{-1/4}$ $P_{\theta} = \begin{pmatrix} 1 - \theta & \theta \\ \theta & 1 - \theta \end{pmatrix}$
In this case, since $\theta \to 0$.

In this case, since $\theta_n \to 0$

$$\left| \mathbb{E} \left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi(f) \right] \right| \le \left| 1 - 2\theta_{n-N} \right|^N \to 1 \qquad N \text{ is fixed}$$

Convergence of adaptive/interacting MCMC samplers

Adaptation and Ergodicity

Adaptation and Ergodicity

$$\mathbb{E}\left[f(X_n)\right] - \pi(f) = \mathbb{E}\left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N})\right] + \mathbb{E}\left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi(f)\right]$$

• Example:
$$X_{n+1} \sim P_{\theta_n}(X_n, \cdot)$$
 $\theta_n = n^{-1/4}$ $P_{\theta} = \begin{pmatrix} 1 - \theta & \theta \\ \theta & 1 - \theta \end{pmatrix}$

In this case, since $\theta_n \rightarrow 0$,

$$\left| \mathbb{E} \left[P_{\theta_{n-N_n}}^{N_n} f(X_{n-N_n}) - \pi(f) \right] \right| \le \left| 1 - 2\theta_{n-N_n} \right|^{N_n} \to 0 \quad \text{ for convenient } N_n$$

Therefore, we choose N depending upon $n \colon N_n \to +\infty$ and the adaptation has to be such that

$$\sum_{j=1}^{N_n-1} (N_n - j) \mathbb{E} \left[\underbrace{\sup_{x} \left\| P_{\theta_{n-N_n+j}}(x, \cdot) - P_{\theta_{n-N_n+j-1}}(x, \cdot) \right\|_{\mathrm{TV}}}_{\text{"distance" between two successive transition kernels}} \right] \to 0$$

 \hookrightarrow The "rate" of adaptation depends on the ergodic behavior of the transition kernels

Convergence of adaptive/interacting MCMC samplers

Adaptation and Ergodicity

III. Conclusion

Tools for convergence of adaptive MCMC samplers

- Markov chain theory (ergodicity, Poisson equation, ···)
- Stochastic approximation (stability/convergence, control of "non-stability")

Tools for convergence of adaptive MCMC samplers

- Markov chain theory (ergodicity, Poisson equation, ···)
- Stochastic approximation (stability/convergence, control of "non-stability")
- \blacktriangleright When the transition kernels have the same invariant distribution π
 - Ergodicity of transition kernels.
 - Diminishing adaptation

Ex. convergence of $\{\theta_n, n \ge 0\}$ is not required BUT the control of "divergence to $\partial \Theta$ " in needed

Tools for convergence of adaptive MCMC samplers

- Markov chain theory (ergodicity, Poisson equation, ···)
- Stochastic approximation (stability/convergence, control of "non-stability")
- \blacktriangleright When the transition kernels have the same invariant distribution π
 - Ergodicity of transition kernels.
 - Diminishing adaptation

Ex. convergence of $\{\theta_n, n \ge 0\}$ is not required BUT the control of "divergence to $\partial \Theta$ " in needed

- ▶ When they have their own invariant distribution and $\pi_{\theta_{\star}} = \pi$.
 - Ergodicity, Diminishing adaptation
 - Convergence of θ_n to θ_{\star}

Procédures d'approximation stochastique

Est-il nécessaire de modifier l'adaptation pour que la procédure d'approximation stochastique

- soit récurrente
- soit p.s. bornée (stabilité)
- converge vers l'ensemble d'intérêt.

par exemple en introduisant

- une reprojection sur un compact fixe
- une reprojection sur des compacts croissants
- ...

doublée d'une "troncation" de la chaîne

 \hookrightarrow pas toujours utile de forcer la récurrence / stabilité puisqu'on sait s'accomoder d'une non-stabilité du paramètre \cdots

 \hookrightarrow travaux de recherche en cours pour éviter ces reprojections / troncations.

Some references

- Adaptive MCMC (methodologies)
 - C. Andrieu, J. Thoms. Statistics and Computing, 2008.
 - J.S. Rosenthal. MCMC handbook, 2009.
 - Y. Atchadé, G. Fort, E. Moulines, P. Priouret. Time sSeries book, 2010.

General results for convergence of adaptive MCMC

- C. Andrieu, E. Moulines. Ann. Appl. Probab., 2006.
- G.O. Roberts, J.S. Rosenthal. J. Appl. Probab. 2007.
- Y. Atchadé, G. Fort. Stoch. Processes Appl., 2010.
- G. Fort, E. Moulines, P. Priouret. Preprint, 2010.
- Onvergence of some adaptive MCMC
 - C. Andrieu, A. Jasra, A. Doucet, P. DelMoral Preprint 2007
 - Y. Atchadé Statistica Sinica, 2010
 - E. Saksman, M. Vihola, Ann. Appl. Probab. 2010
 - M. Vihola Preprint, 2010