Trying to improve on the jump method with Sequential Monte Carlo

Siminole Meeting, October 26th 2010

Rémi Bardenet
LAL, LRI, University Paris-Sud XI

26 octobre 2010
(1) The problem
(2) Two probabilistic methods
(3) Difficulties
(4) Conclusions
'Take home' message
A progressive scan of the FADC traces will allow better MCMC proposals for muon counting and more.

Summary

(1) The problem
(2) Two probabilistic methods

3 Difficulties
4. Conclusions

The signal model

\mathcal{P}	$\left(y_{1: N}\right.$	k_{N}	$\tau_{1: k_{N}}$	$u_{1: k_{N}}$	$\theta)$
signal	muon number	arrivals	muon param.	tank param.	

This likelihood has been finely parametrized (cf Balazs' work).

Target distribution

$$
\pi_{N}\left(k_{N}, \tau_{1: k_{N}}, u_{1: k_{N}}, \theta\right)=\mathcal{P}\left(k_{N}, \tau_{1: k_{N}}, u_{1: k_{N}}, \theta \mid y_{1: N}\right)
$$

$$
\pi_{N}\left(k_{N}, \tau_{1: k_{N}}, u_{1: k_{N}}\right) \propto \mathcal{P}\left(y_{1: N} \mid k_{N}, \tau_{1: k_{N}}, u_{1: k_{N}}\right) \times \mathcal{P}\left(k_{N}, \tau_{1: k_{N}}, u_{1: k_{N}}\right)
$$

$$
\begin{gathered}
\mathcal{P}\left(k_{N}, \tau_{1: k_{N}}, u_{1: k_{N}}\right)=\left(\prod_{i=1}^{k_{N}} \mathcal{P}\left(u_{i} \mid \tau_{i}\right)\right) \times \mathcal{P}\left(\tau_{1: k_{N}}, k_{N}\right) \\
\mathcal{P}\left(\tau_{1: k_{N}}, k_{N}\right)=k_{N}!1_{\left(0<\tau_{1}<\ldots<\tau_{k_{N}}\right)} \prod_{i=1}^{k_{N}} \mathcal{P}\left(\tau_{i}\right) \times \mathcal{P}\left(k_{N}\right) . \\
\mathcal{P}\left(k_{N}\right)=\mathcal{P O \mathcal { I }}\left(\overline{k_{N}} \times F_{\tau}\left(t_{N}\right)\right)
\end{gathered}
$$

What prior should we take for $\overline{k_{N}}$? Note that it can depend on θ.

Summary

(1) The problem
(2) Two probabilistic methods

3 Difficulties

4 Conclusions

- Try to estimate the posterior of interest by directly trying several realizations of k, τ, u, θ.
- It is hard to find good proposals without looking at the data!

Key idea : add bins one at a time

- Run a SMC sweep, sequentially approximating

$$
\pi_{n}=\mathcal{P}\left(k_{n}, \tau_{1: k_{n}}, u_{1: k_{n}} \mid \theta, y_{1: n}\right), n=1 . . N
$$

- Plug π_{N} into a higher-level MH algorithm, taking

$$
\pi_{N}\left(k^{\prime}, \tau^{\prime}, u^{\prime}\right) \otimes q\left(\theta^{\prime} \mid \theta\right)
$$

as a proposal (particle MCMC [AnDoHo10]).

Following a few SMC steps together

Summary

(1) The problem
(2) Two probabilistic methods
(3) Difficulties
4. Conclusions

- Adding several muons at a time \rightarrow draw a Poissonian number of muons to add, use F_{τ} and $\overline{k_{N}}$.
- Model the EM signal in a tractable fashion
\rightarrow use between-bin covariance through a shot noise process?
- The spaces on which the π_{n} are defined are not of strictly increasing dimension
\rightarrow need for SMC samplers [DeDoJa06, DoMoJa06, WhJoGo10].

Summary

(1) The problem
(2) Two probabilistic methods

3 Difficulties
(4) Conclusions

'Take home' message

A progressive scan of the FADC traces will allow better MCMC proposals for muon counting and more.

'To do' list

- Implement the model and the SMC procedure in $\mathrm{C}++$ /Root (currently Matlab),
- Assess it on simulated data,
- Treat the EM part,
- Try to use "foreseeing" to propose even better moves?

