
Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

CMake versus CMT

Grigory Rybkin

Laboratoire de l’Accélérateur Linéaire
Orsay

working meeting, 9 November 2010



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Plan

Introduction

Performance Measurements

Parallelism of Execution

News from Pere Mato



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Plan

Introduction

Performance Measurements

Parallelism of Execution

News from Pere Mato



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Plan

Introduction

Performance Measurements

Parallelism of Execution

News from Pere Mato



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Plan

Introduction

Performance Measurements

Parallelism of Execution

News from Pere Mato



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Working meeting CMT in ATLAS

• discussed CMake and CMT performance measurements
made in Pere Mato’s presentation, in particular, showed
that for the GAUDI project, CMake was more rapid

1. ' 2 times with make simple
2. ' 4 times with make -j8 said parallel

• it was needed to understand the origin of such differences
• for details see CMT in ATLAS, LAL, 7 October 2010

http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://indico.lal.in2p3.fr/getFile.py/access?resId=0&materialId=slides&confId=1233


Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Code Optimisation

CMake configuration—in the tests being discussed—built code
without optimisation while that of CMT—with optimisation -02,
expensive in terms of compilation time. This explains difference
1

Table: The measurements of elapsed time in seconds on a 16 core
machine when I applied -02 optimisation for the GAUDI project

CMake
+make+install

CMT/v1r22
cmt br make

CMake
+make+install

-j8

CMT/v1r22
cmt br make -j8

1080 1110 240 400

CMake still uses better make parallel



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

More Detailed Measurements

Table: The measurements of elapsed time in seconds on a 16 core
machine for the GAUDI project with make simple

CMake CMT
generation 10 40

g++ 960 1010
install 10
total 1060 1150



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

More Parallelism with CMT

At the same time build independent packages in different
[tbroadcast] threads
[project level Makefile] processes

Table: The measurements of elapsed time in seconds on a 16 core
machine for the GAUDI project

tbroadcast
make

project level
make

tbroadcast
make -j8

project level
make -j8

990 1120 360 350



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Parallelism with CMake

At the same time build independent targets in different
processes

Table: The measurements of elapsed time in seconds on a 16 core
machine for the GAUDI project when I added to the CMake
configuration dependencies between the packages equivalent to
those of CMT

CMake with deps
+make+install

project level
make

CMake with deps
+make+install

-j8

project level
make -j8

1080 1120 330 350

This explains difference 2



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

News from Pere Mato

Pere has
• managed to chain projects and export/import targets

between them. This is important for simplifying the library
dependencies

• moved all the Gaudi tests to CTest
• explored CPack to produce tar files or RPMs



Introduction Performance Measurements Parallelism of Execution News from Pere Mato Conclusion

Conclusion

• factor ' 2 of the CMake and CMT performances difference
explained by the difference of code optimisations

• CMake may gain in performance thanks to building in
parallel, depending on

• the structure of the project and the packages
• the availability of computing resources

• tbroadcast and project level Makefile give more parallelism
with CMT

• explore how to introduce even more parallelism


	Introduction
	Performance Measurements
	Parallelism of Execution
	News from Pere Mato
	Conclusion

