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Working meeting CMT in ATLAS

• discussed CMake and CMT performance measurements
made in Pere Mato’s presentation, in particular, showed
that for the GAUDI project, CMake was more rapid

1. ' 2 times with make simple
2. ' 4 times with make -j8 said parallel

• it was needed to understand the origin of such differences
• for details see CMT in ATLAS, LAL, 7 October 2010

http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://indico.lal.in2p3.fr/getFile.py/access?resId=0&materialId=slides&confId=1233
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Code Optimisation

CMake configuration—in the tests being discussed—built code
without optimisation while that of CMT—with optimisation -02,
expensive in terms of compilation time. This explains difference
1

Table: The measurements of elapsed time in seconds on a 16 core
machine when I applied -02 optimisation for the GAUDI project

CMake
+make+install

CMT/v1r22
cmt br make

CMake
+make+install

-j8

CMT/v1r22
cmt br make -j8

1080 1110 240 400

CMake still uses better make parallel
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More Detailed Measurements

Table: The measurements of elapsed time in seconds on a 16 core
machine for the GAUDI project with make simple

CMake CMT
generation 10 40

g++ 960 1010
install 10
total 1060 1150
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More Parallelism with CMT

At the same time build independent packages in different
[tbroadcast] threads
[project level Makefile] processes

Table: The measurements of elapsed time in seconds on a 16 core
machine for the GAUDI project

tbroadcast
make

project level
make

tbroadcast
make -j8

project level
make -j8

990 1120 360 350
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Parallelism with CMake

At the same time build independent targets in different
processes

Table: The measurements of elapsed time in seconds on a 16 core
machine for the GAUDI project when I added to the CMake
configuration dependencies between the packages equivalent to
those of CMT

CMake with deps
+make+install

project level
make

CMake with deps
+make+install

-j8

project level
make -j8

1080 1120 330 350

This explains difference 2
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News from Pere Mato

Pere has
• managed to chain projects and export/import targets

between them. This is important for simplifying the library
dependencies

• moved all the Gaudi tests to CTest
• explored CPack to produce tar files or RPMs
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Conclusion

• factor ' 2 of the CMake and CMT performances difference
explained by the difference of code optimisations

• CMake may gain in performance thanks to building in
parallel, depending on

• the structure of the project and the packages
• the availability of computing resources

• tbroadcast and project level Makefile give more parallelism
with CMT

• explore how to introduce even more parallelism
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