Configuration Management review status

Author: Sebastien Binet
Institute: LAL/IN2P3
Date: 2010-12-02

() December 2, 2010 1/11



Review, collect feedback and then improve usage/performances of:
@ Release building

Release distribution

Release managing

Simple analysis running

Single package development

Power-user development

Usage at CERN

Usage outside CERN

() December 2, 2010 2/11



Status / organization

@ Current report is available on CDS with reference
ATL-COM-SOFT-2010-014

» http://cdsweb.cern.ch/record/1266290

@ created work groups to work on each of the areas recognized during the
review

@ (not completely) up-to-date wiki page:

twiki:Atlas/CMR10WorkGroups

@ reports on the on-going work during bi-weekly SIT meetings

() December 2, 2010 3/11


http://cdsweb.cern.ch/record/1266290

Environment setting - easy/uniform/fast

@ DavidQ has been working on that with asetup
twiki:Atlas/AtlasSetup
@ latest versions of asetup pave the way towards a more integrated and
uniform development environment
» configuration of tdaqg, Gaudi and LCGCMT projects
@ in the works:

> leverage new features of CMT-v1r22 to speed-up the environment setup

» building of a single per-project requirements file to setup a whole
project (and its children) and tackle the st at-access of gazillions of
requirements files

> integrate/consolidate with already existing At 1lasXyzRunt ime packages

() December 2, 2010 4/11



Speed of Building

@ latest CMT-v1r22 version tackles a few of the issues raised during the
review
» Ensure QUICK mode can be used for from scratch build
> Introduce command cmt build constituents_configto
generate constituents Makefile
» generate/track source dependencies to minimize rebuild

@ most important issue to tackle

» reduce turnaround edit/compile cycle

» paramount to have more analysis/reco/... contributions to Athena
@ currently 2 avenues to address this problem

» improve CMT itself (G. Rybkine)
> investigate leveraging new tools to perform the build (while keeping CMT for
the environment setup)
* test version of a GAUDI * ‘+ * *LCG build using CMake (P. Mato)
* test version of At lasCore build using waf (S. Binet)

() December 2, 2010 5/11



Speed of building - 1

@ Pere’s approach:
» have a little python script executed for each CMT package
» for each package, use cmt to get the list of constituents, compilation
flags, include dirs, ...
» from these gathered informations, build the CMakeLists.txt
automatically
» then execute the usual CMake commands to build
» a few notes about CMake:
* same approach to build than CMT: generates Makefile for each platform
(windows, unices,...) and reuse the platform’s build- and toolchain

@ theoretically a smooth transition path
@ my approach is similar
> but it creates a wscript file, which is the Makefile equivalent for waf

» waf is similarto SCons and Cons: a python library to steer the build
and manage dependencies (so, no Makefile)

() December 2, 2010 6/11



Speed of building - 1l

cmt cmake
GAUDI (noop) 50 s 7s
GAUDI (full) 613 s 1485 X4
LHCB (noop) 480 s 17 s X =7
LHCB (full) 2700 s 356 s
REC (noop) 335 s 13s
REC (full) 1594 s 3325 X7
see:
http:

//indico.cern.ch/getFile.py/access?contribId=
2&resId=l&materialld=slides&confId=105778

http://www.cmake.orqg/

() December 2, 2010 7/11


http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://www.cmake.org/

Speed of building - IV

@ withwaf
» http://code.google.com/p/waf/
@ caveats:

(re)started working on this just last week

not feature complete (POOL converters, jobo installation, ...)
only tested on At 1asCore packages

didn’t test if build was fully functional (my favorite jobo worked)

vV Vv vY

@ on alocal install, with AthenaPython, Valkyrie,
AthenaBaseComps, AthenaKernel, SGComps,
PerfMonComps, SGTools, AthenaServices,
GaudiSequencer, PerfMonTests, PileUpComps

() December 2, 2010 8/11


http://code.google.com/p/waf/

Speed of building - V

o full first build:

$ cmt bro make -78
480.88s user 1113.64s system 284% cpu 9:21.21 tota:

$ waf configure clean build -78
320.77s user 267.52s system 395% cpu 2:28.58 tota:

@ modifying AthenaKernel/IThinningSvc.h:

151.16s user 347.52s system 205% cpu 4:02.85 total
24.47s user 15.70s system 325% cpu 12.329 total

@ touch AthenaKernel/IThinningSvc.h

152.03s user 347.11s system 204% cpu 4:03.90 total
1.00s user 0.35s system 82% cpu 1.65 total

() December 2, 2010 9/11



Release build streamlining

@ integration of Gaudi project into nightlies’ builds
@ still a few hiccups
» different tagging conventions
» we share the Gaudi SVN repository...
@ reduce the length of various paths
» flat-slim.py does this (creates a bunch of symlinks)
» tests have been so far very limited
@ next step would be to integrate LCGCMT
> or at least parts of LCGCMT
* ROOT, POOL, COOL, CORAL
» LCGCMT-externals in a later stage

meanwhile, in CMSSW:
@ build time: ~6-7h on a 10-core machine
» binutils+gcc+ROO0T+Geant4+...+pure-CMS-code+RPM-build
@ build time: ~2-3h on a 10-core machine
» pure-CMS-code

() December 2, 2010 10/ 11



Conclusions

@ first optimization results encouraging

@ progress has been made on various fronts

@ but we probably need somebody a pro-active shepherd to steer the
various working groups

» reports at SIT meetings have been somewhat sparse
* (I am certainly guilty of that too)

() December 2, 2010 11/11



