
Configuration Management review status

Author: Sebastien Binet
Institute: LAL/IN2P3

Date: 2010-12-02

() December 2, 2010 1 / 11

Mandate

Review, collect feedback and then improve usage/performances of:

Release building

Release distribution

Release managing

Simple analysis running

Single package development

Power-user development

Usage at CERN

Usage outside CERN

() December 2, 2010 2 / 11

Status / organization

Current report is available on CDS with reference
ATL-COM-SOFT-2010-014

I http://cdsweb.cern.ch/record/1266290

created work groups to work on each of the areas recognized during the
review

(not completely) up-to-date wiki page:

twiki:Atlas/CMR10WorkGroups

reports on the on-going work during bi-weekly SIT meetings

() December 2, 2010 3 / 11

http://cdsweb.cern.ch/record/1266290

Environment setting - easy/uniform/fast

DavidQ has been working on that with asetup
twiki:Atlas/AtlasSetup

latest versions of asetup pave the way towards a more integrated and
uniform development environment

I configuration of tdaq, Gaudi and LCGCMT projects

in the works:
I leverage new features of CMT-v1r22 to speed-up the environment setup
I building of a single per-project requirements file to setup a whole

project (and its children) and tackle the stat-access of gazillions of
requirements files

I integrate/consolidate with already existing AtlasXyzRuntime packages

() December 2, 2010 4 / 11

Speed of Building

latest CMT-v1r22 version tackles a few of the issues raised during the
review

I Ensure QUICK mode can be used for from scratch build
I Introduce command cmt build constituents_config to

generate constituents Makefile
I generate/track source dependencies to minimize rebuild

most important issue to tackle
I reduce turnaround edit/compile cycle
I paramount to have more analysis/reco/... contributions to Athena

currently 2 avenues to address this problem
I improve CMT itself (G. Rybkine)
I investigate leveraging new tools to perform the build (while keeping CMT for

the environment setup)
F test version of a GAUDI‘‘+‘‘LCG build using CMake (P. Mato)
F test version of AtlasCore build using waf (S. Binet)

() December 2, 2010 5 / 11

Speed of building - II

Pere’s approach:
I have a little python script executed for each CMT package
I for each package, use cmt to get the list of constituents, compilation

flags, include dirs, ...
I from these gathered informations, build the CMakeLists.txt

automatically
I then execute the usual CMake commands to build
I a few notes about CMake:

F same approach to build than CMT: generates Makefile for each platform
(windows, unices,...) and reuse the platform’s build- and toolchain

theoretically a smooth transition path
my approach is similar

I but it creates a wscript file, which is the Makefile equivalent for waf
I waf is similar to SCons and Cons: a python library to steer the build

and manage dependencies (so, no Makefile)

() December 2, 2010 6 / 11

Speed of building - III

!"#$%&'(")*+,-.,,)*/#-*%)0*/#%1,
2%#,*/"0,*3,&('")4*("#,*#%/5'),

(*
67!8*5%(*9*:;;*$%/1%<,(4*=>!*9*?;*$%/1%<,(

/#- /#%1,
@ABCD*E)""$F ?;*(G*(
@ABCD*EHIJJF K:L*(:MN*(
67!8*E)""$F MN;*(:G*(
67!8*EHIJJF OG;;*(L?K*(
=>!*E)""$F LL?*(:L*(
=>!*EHIJJF :?PM*(LLO*(

Q*9M

Q*9G

Q*9?

B(')<*!R%1,*')*@ABCD*+%(,0*S&"T,/-(*U SV*R%-"W!>=X G

see:
http:
//indico.cern.ch/getFile.py/access?contribId=
2&resId=1&materialId=slides&confId=105778

http://www.cmake.org/
() December 2, 2010 7 / 11

http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=105778
http://www.cmake.org/

Speed of building - IV

with waf
I http://code.google.com/p/waf/

caveats:
I (re)started working on this just last week
I not feature complete (POOL converters, jobo installation, ...)
I only tested on AtlasCore packages
I didn’t test if build was fully functional (my favorite jobo worked)

on a local install, with AthenaPython, Valkyrie,
AthenaBaseComps, AthenaKernel, SGComps,
PerfMonComps, SGTools, AthenaServices,
GaudiSequencer, PerfMonTests, PileUpComps

() December 2, 2010 8 / 11

http://code.google.com/p/waf/

Speed of building - V

full first build:

$ cmt bro make -j8
480.88s user 1113.64s system 284% cpu 9:21.21 total

$ waf configure clean build -j8
320.77s user 267.52s system 395% cpu 2:28.58 total

modifying AthenaKernel/IThinningSvc.h:

151.16s user 347.52s system 205% cpu 4:02.85 total
24.47s user 15.70s system 325% cpu 12.329 total

touch AthenaKernel/IThinningSvc.h

152.03s user 347.11s system 204% cpu 4:03.90 total
1.00s user 0.35s system 82% cpu 1.65 total

() December 2, 2010 9 / 11

Release build streamlining

integration of Gaudi project into nightlies’ builds
still a few hiccups

I different tagging conventions
I we share the Gaudi SVN repository...

reduce the length of various paths
I flat-slim.py does this (creates a bunch of symlinks)
I tests have been so far very limited

next step would be to integrate LCGCMT
I or at least parts of LCGCMT

F ROOT, POOL, COOL, CORAL
I LCGCMT-externals in a later stage

meanwhile, in CMSSW:
build time: ~6-7h on a 10-core machine

I binutils+gcc+ROOT+Geant4+...+pure-CMS-code+RPM-build
build time: ~2-3h on a 10-core machine

I pure-CMS-code
() December 2, 2010 10 / 11

Conclusions

first optimization results encouraging

progress has been made on various fronts

but we probably need somebody a pro-active shepherd to steer the
various working groups

I reports at SIT meetings have been somewhat sparse
F (I am certainly guilty of that too)

() December 2, 2010 11 / 11

