Laser Wakefield Acceleration of Electrons: (some) questions to be addressed by ILE

Arnd Specka

GALOP

CINIS

(specka@in2p3.fr)

Ecole Polytechnique, Palaiseau

increase the accelerating gradient: from RF to plasma waves

 \rightarrow decrease size of « accelerating structure »

klystron	→	high power laser (ultra-short pulse) E=O(150J), τ=O(15fs) ⇒P=O(10PW) x repetition rate 0.02-10Hz → 10-100 kHz x wall-plug efficiency <1 % → 5 - 10%
RF cavity	→	<pre>gas jet, gas cell, gas-filled capillary, capillary discharge (n ≈10¹⁷-10¹⁹cm⁻³) •stability : → maîtrisé ✓ (contre-propagatif) •laser guiding : beam-loading, pump-depletion •laser coupling at capillary entry</pre>
RF wave	→	 plasma wave (λ_p≈10-100μm) •régime: linear, wave-breaking, bubble (<i>blow-out</i>) •transverse emittance: focussing ✓ longitudinal emittance: energy dispersion ΔE/E, ε_T, •stability: ion movement, useful plasma wave buckets
14-Jan-2011		Bridgelab Symposium for Laser Acceleration (Paris) : Arnd Specka (LLR, Ecole Polytechnique, France)

State of Art with the I J Salle Jaune Laser (LOA/LLR/CEA-LIRM):

Electron energy control

Charge & energy spread control

14-Jan 🕴

present and future challenges for laser plasma accelerators

	LWFA	ILC	unit
 ○ increase energy ▶ increase acceleration length 	0.2–1	100–250(x2)	GeV
 increase charge high gas density? external injection? 	0.01–0.1	3	nC
 reduce bunch spacing laser rep. rate: "10Hz", multi plasma-wave buckets? 	0.1–10	370.10 ⁻⁹	S
○ reduce energy spread ("monochromaticity")	1%	0.1%	
O bunch duration «bane or blessing for colliders?»,	<1 (?)	300	μm
O reduce transverse emittance	<3 (?)	10/0.04	mm.mrad
 stability and control of charge, angle, energy (mean and spread) 			

energy frontier: increase acceleration length

- laser diffracts -> need for guiding
- **O** different approaches studied so far:
 - auto-focalisation in gas cell or jet:
 - « laser-drilled » plasma channels
 - gas-filled (passive) capillaries
 - capillary discharge (refr. index gradient)
- \bigcirc laser 40 TW, n_e=4.3×10¹⁸ cm⁻³ (LBL, 2006)
- self-injection regime
 (= plasma bubble plasma)
- capillary discharge Ø~0,3mm,L~30mm

W.P. Leemans, et al., Nature Phys. 2, 696-699 (2006)

Which plasma wave regime is most suitable ?

Non-linear regime (a0>1): large amplitude plasma waves => High electric field values

linear regime:

- O smaller laser intensities (Wm⁻²),
- Smaller plasma wave amplitudes, lower E-field suitable for positron acceleration, and at high γ (faster wave)

- non-linear regime
- wave steepining -> wave
 breaking -> e⁻ blowout)
 100x higher E-field, focussing at
 peak of E-field, electrons only

Parameters for ILE Apollon 10PW and LUIRE 0.3 PW :

W. Lu et al., PRST-AB 10, 061301 (2007)

					0 0		- -		
Blow out	n _e (cm ⁻³)	L _{acc} (cm)	τ <u>(fs</u>)	a ₀	<u>w</u> ₀(μm)	$\Delta E(GeV)$	Q(nC)	Focale(m)	
Salle Jaune : 4J									
(dans la tache focale	1.9x10 ¹⁸	0.94	34	3.9	15.34	1.22	0.27	0.9	
6 cm)									
Luire : 10 J									
(dans la tache focale,	1.28x10 ¹⁸	1.8	43.58	4.25	19.6	2	0.375	1.96	
Diamètre 10 cm)									
Apollon : 100 J									
(dans la tache focale	5.2x10 ¹⁷	9.8	81	5.2	36.6	6.9	0.77	11	
Diamètre 30 cm)									

dE/E in the few to ten 1 %

External Guiding	<u>n_e(cm⁻³)</u>	Lacc(cm)	τ <u>(fs</u>)	a_0	<u>w</u> ₀(μm)	$\Delta E(GeV)$	Focale(m)	
+ Injection								
Salle Jaune : 4J								
(dans la tache focale	4x10 ¹⁷	6.8	52	2	24.5	3	1.5	ΣV.
6 cm)								,
Luire : 10 J								
(dans la tache focale,	2.2x10 ¹⁷	17	43.58	2	33	5.5	3.3	
Diamètre 10 cm)								
Apollon : 100 J								nt
(dans la tache focale	4.8x10 ¹⁶	170	151	2	70.9	25	21	
Diamètre 30 cm)								

dE/E can be of less than 1 % but with a small charge

Conseil Scientifique ILE, Mardi 26 Novembre 2010, Ecole polytechnique, Palaiseau, France

14-Jan-2

loa

energy frontier: multiple plasma acceleration stages

- for a multi-TeV laser-wakefield collider: variation of plasma and laser parameters (i.e. density, intensity and pulse duration) over large range
- **O laser pulse energy depletion ultimately limits acceleration length**
- **O multiple plasma acceleration stages**
- **O ILE (APOLLON laser) should demonstrate 2 stage acceleration:**
 - all optical plasma injector + guided plasma wave section
 - external injector + 2 plasma wave sections
- **O technical challenges**
 - full e– bunch characterization before and after each stage
 - compact, beam quality conserving, robust electron transport
 - Iaser beam coupling into plasma wave section
 - laser pulse synchronisation
- How do we get «the best» out of a given laser pulse energy
 - sharing between stages, transverse shaping of plasma wave

charge frontier: RF-linac or all optical injection?

- **O self-injection in the blowout- (=bubble-) regime unstable and uncontrolable**
- injected charge limited by available plasma electrons
- →study beam-loading effect
- **O external injector: RF-photogun + linac O(50MeV)**
 - require good synchronisation
 - bunch length >> plasma wavelength : plasma acts as buncher
 - mature technology -> cf. Guy's talk
- O controlled injection: 2 colliding laser pulses below self-injection threshold
 - experimentally demonstrated in gas jet (100-200MeV, tunable)
 - convenient «all optical» electron gun (needs 2 laser beams)
 - presently limited to charges up to O(50pC)

∧E/E=0.9%

Can we influence (and possibly improve) the beam quality?

\bigcirc beam parameter stability and availability (Q, <E>, angle, \triangle E/E)

Can LWFA be an inherently stable physical process? (correlation of fluctations with driver parameters, validity for PWFA?)

O tuning / improving the bunch parameters

transverse emittance: relevant for luminosity

- inherently low due to limited space charge effects
- can betatron oscillations help to cool electron bunches?

bunch length: x100 smaller than conventional

- high peak current -> FEL applications
- difficult to measure, related to $\Delta \text{E/E}$
- **> energy spread:** maintaining initial ΔE possible?

○ time structure: Is it possible to accelerate in consecutive plasma wave buckets?

O Can a LWFA povide a useful electron test beam E = 5–50GeV for testing and calibrating HEP detectors? (10⁸ particles in 1.5 fs: forget triggering)

How can we measure the electron bunch properties?

parameters of beam bunch: moments in 6D phase space....

charge, (position), (angle), (energy), energy spread, transverse emittance, bunch duration

- map out the 6D phase space ->
- low bunch rates (LUIRE : 1 s⁻¹, APOLLON : 1 min⁻¹)
- **O expect strong shot-to-shot fluctations**
- **O** accomodate wide range of parameter values to be measured
- need a complete (as possible) shot-by-shot bunch characterization between each plasma acceleration stage
- statistical analysis: « from images to histograms »
- non- or less destructive diagnostics first, destructive ones later
- electron diagnostic have to be honed at satellite facilites (lower power, higher repetition rate, higher beam availability?)

Conclusion

- \bigcirc ILE lasers (LUIRE 1PW and APOLLON 10PW) opens field for systematic LWFA experiments, wide range of driver parameters (a₀, τ)
- scientific objectives for e⁻ accelerat^o to agree with requirements for HE accelerators: maximum energy and charge are not the only yardsticks.....
- identification and consolidation of stable and controlled regime is crucial
- **O** (partly) unprecedented, impressive challenges on instrumentation:
 - high intensity laser guiding over 2m x 200um (-> targetry)
 - ➤ compact, high quality e⁻ beam transport and diagnostic
 - ➤ e⁻ and laser beam alignment and synchronisation (multistage, RF linac) need for dedicated R&D programs on each
- **O** not adressed in this scope (but relevant for a NNLC)
 - Iepton polarity (positron acceleration)
 - Iepton polarisation (electron spin)