

Outline

* LHC, the new high energy frontier

* The energy scale of new physics

* How to reach it?

The study of elementary particles and fields and their interactions

Elements of the Standard Model

Compostella, 20/11/09

LHC: First collisions at 7 TeV on 30 march 2010

Luminosity: 3 running periods

Heavy Ion (lead) collisions

A total of 15 physics papers and 100 conference notes!

A fantastic year for ATLAS!

The ATLAS detector has performed exceptionally well.

A huge thanks to the LHC team for delivering such beautiful data to the experiments!

A huge thanks to the collaborating institutes and funding

Preliminary Long Term Predictions

New studies under way (HL-LHC)

- *High Gradient/Large Aperture Quads, with B_{peak} 13-15 T. (Nb₃Sn)
- -Higher field quadrupoles translate in higher gradient/shorter length or larger aperture/same length or a mix.
- US-LARP engaged to produce proof by 2013.
- $-\beta^*$ as small as 22 cm are possible with a factor ~2.5 in luminosity by itself, if coupled with a mechanism to compensate the geometrical reduction
- *Crab Cavities: this is the best candidate for exploiting small β^*
- -However it should be underlined that today Crab Cavities are not validated for LHC, not even conceptually: the issue of machine protection will be addressed with priority

New studies under way (HL-LHC)

- * SC links to replace at the surface electronic equipment today in the tunnel and exposed to high radiation
- * New Cryoplants in IP1 & IP5: for power AND to make independent Arc- IR:
- Upgrades in the injector chain (LINAC4, PS Booster, PS, SPS)

32 TeV HE-LHC!!! – main issues and R&D

- high-field 20-T dipole magnets based on Nb₃Sn, Nb₃Al, and HTS
- high-gradient quadrupole magnets for arc and IR
- fast cycling SC magnets for 1-TeV injector
- emittance control in regime of strong SR damping and IBS
- cryogenic handling of SR heat load (first analysis; looks manageable)
- dynamic vacuum

What does this means in practice?

Fit of Mh

Figure 3. Left: Scan of the lightest Higgs boson mass versus $\Delta\chi^2 = \chi^2 - \chi^2_{\rm min}$. The curve is the result of a CMSSM fit using all of the available constraints listed in Table 1 except the limit on $m_{\rm h}$. The red (dark gray) band represents the total theoretical uncertainty from unknown higher-order corrections, and the dark shaded area on the right above 127 GeV/ c^2 is theoretically inaccessible (see text). Right: Scan of the Higgs boson mass versus $\Delta\chi^2$ for the SM (blue/light gray), as determined by 45 using all available electroweak constraints, and for comparison, with the CMSSM scan superimposed (red/dark gray). The blue band represents the total theoretical uncertainty on the SM fit from unknown higher-order corrections.

Approaching the moment of truth

 $\Delta \sigma$ th?

Mh versus Cut-off

At 99% new physics needed below 10 TeV

Figure 2: Plot in the m_h – Λ plane showing the canonical constraints from Figure [1] as well as the tuning contours. The darkly hatched region marked "1%" represents tunings of greater than 1 part in 100; the "10%" region means greater than 1 part in 10. The empty region is consistent with all constraints and has less than 1 part in 10 finetuning.

Evolution of Gauge Couplings

Standard Model

Supersymmetry

Why New Acceleration Techniques?

- Accelerator have been primary tool to advance HEP frontiers
 - But accelerators have continued to increase in size and cost and appear to be approaching the limit that can be supported

- Need new technologies that are aimed at cost effective solutions
- Accelerator research very broad from materials to rf to nonlinear dynamics
 - Advances come from both fundamental research and directed R&D aimed at applications

eleration Techniques

The Fermi Scale [1985-2012]

Vision for next machine (2030?): 3 avenues

High Energy LHC ≥ 30 TeV
Still a concept

ep Linac-Ring configuration

Further in time...

Linear → **High Gradient Acceleration**

- High gradient acceleration requires high peak power and structures that can sustain high fields
 - Beams and lasers can be generated with high peak power
 - Dielectrics and plasmas can withstand high fields
- Many paths towards high gradient acceleration
 - − RF source driven metallic structures
 − ≈30 (ILC) to100 (CLIC) MV/m
 - Beam-driven metallic structures
 - Laser-driven dielectric structures
 ~1 GV/m
 - Beam-driven dielectric structures
 - Laser-driven plasmas
 - Beam-driven plasmas

Physics -> Beam Brightness Challenge

- Beam brightness most tightly tied to 'beam physics'
 - Some of the hot topics over the years:

Rf guns, final focus systems, emittance preservation, electron cloud,

long-range wakefields, emittance exchange, ...

 New e- guns 1000 x brighter than best storage/damping rings

- Development pushed by FEL community
- How can HEP benefit?

High luminosity B-factories

focusing solenoid

athode flange

dual rf power feed

World-Wide Interest in Plasma Acc.

Concept of Laser-Driven Plasma Linac

Concept of Beam-Driven Plasma Linac

- Concept for a 1 TeV plasma wakefield-based linear collider
 - Use conventional Linear Collider concepts for main beam and drive beam generation and focusing and PWFA for acceleration
 - Makes good use of PWFA R&D and 30 years of conventional rf R&D
 - Concept illustrates focus of PWFAR&D program
 - High efficiency
 - Emittance pres.
 - Positrons
 - Allows study
 of cost-scales
 for further
 optimization of R&D

Laser Plasma Research & Development

- Timescales for accelerator development will be long
 - Need to maintain pipeline of new ideas
 - Test facilities and infrastructure are critical to enable R&D (Bridgelab)
 - Requires support for both fundamental and directed (project) R&D
- Important to connect to other projects: CLIC and CERN most natural
- Large-scale projects tend to be conservative
 - Likely will require many systems-level demonstrations (100 GeV?)
 - Important to understand timescales and costs both for the R&D as well as the demonstrations
- Important to consider early applications (e LHC?)

T. Raubenheimer

