cOCO: objectives

- function testbed:
- should "reflect reality"
- mainly non-convex and non-separable
- scalable with the search space dimension
- not too easy to solve, but yet comprehensible
- provide data acquisition at the interface of solver and objective function
lean but sufficient data for quantitative analyses
- data presentation yields quantitative assessment, stratified by function properties...

BBOB in practice

BBOB in practice

bbob-2009-downloa.
$\leftarrow \rightarrow$ C \& http://coco.gforge.inria.fr/doku.php?id=bbob-2009-downloads

- Bref

[[bbob-2009-downloads]] COmparing Continuous Optimisers: COCO

Show pagesource Old revisions
Recent changes@ Index Login

This is the BBOB 2009 download page.
4BBOB 2009 (Version 3.6) (30MB) is all that you need to prepare a workshop paper and contains the following files

- CODE:
- . 2 tar code in Matlab/Octave
- Sar code in C
- Har $_{2}$ port-processing Python package + workshop paper LaTeX templates
- soon available: post-processing Python package including

- DOCS:
- Z.pdf description of experimental procedure
- Zpdf (13MB) noiseless functions documentation with figures
- Zdf noiseless functions documentation, version without figures
- 료 pdf (20MB) noisy function documentation with figures
- Zpdf noisy function documentation, version without figures
- Zpdf software user documentation
- TECHNICAL DOCS:
- Qhtml post-processing package documentation

BBOB in practice

Matlab script:

```
for dim = [2,3,5,10,20,40] % small dimensions first, for CPU reasons
    for ifun = benchmarks('FunctionIndices') % or benchmarksnoisy(...)
        for iinstance = [1:5, 1:5, 1:5] % first 5 fct instances, three times
            fgeneric('initialize', ifun, iinstance, datapath);
            MY_OPTIMIZER('fgeneric', dim, ... % necessary parameters
                    fgeneric('ftarget')); % optional termination parameter
            fgeneric('finalize');
        end
        disp([' date and time: ' num2str(clock, ' %.0f')]);
    end
    disp(sprintf('--- dimension sd-D done ----', dim));
end
```


BBOB in practice

Post-processing at the OS shell:

python codepath/bbob_pproc/run.py datapath pdflatex templateACMarticle.tex

COCO: the noiseless functions

24 functions within five sub-groups

- Separable functions
- Essential unimodal functions
- III-conditioned unimodal functions
- Multimodal structured functions
- Multimodal functions with weak or without structure
functions are not perfectly symmetric and are locally deformed

COCO: the noisy functions

three noise-"models", so-called:

- Gauss, Uniform (severe), Cauchy (outliers)
- Utility-free noise

$$
E(f(x)) \leq E(f(y)) \Rightarrow U(f(x)) \leq U(f(y)) \forall x, y, U
$$

30 functions with three sub-groups

- 2×3 functions with weak noise
- 5×3 unimodal functions
- 3×3 multimodal functions

How should we measure performance?

Evaluation of Search Algorithms

needs

- Meaningful quantitative measure on benchmark functions or real world problems
- Account for meta-parameter tuning
tuning to specific problems can be quite expensive
- Account for invariance properties
prediction of performance is based on "similarity", ideally equivalence classes of functions
- Account for algorithm internal costs
often negligible, depending on the objective function cost

A performance measure

should be

- quantitative, with a ratio scale
- well-interpretable with a meaning
- relevant in the "real world"
- simple

(recall) Black-Box Optimization

Two objectives:

- Find solution with a smallest possible function value
- With the least possible search costs (number of function evaluations)
- For measuring performance: fix one and measure the other

How should we measure performance?

fixed-cost versus fixed-target

number of function evaluations (running time)

A performance measure

should be

- quantitative, with a ratio scale
- well-interpretable with a meaning
- relevant in the "real world"
- simple

running time

- empirical distribution [Hoos \& Stützle 1998]
- expectation, median, ...

Runtime

We measure runtime in number of function evaluations

- As a distribution of runtimes
- As expected runtime ERT

For success probability $0<p<1$: (simulated) restarts until a successful run is observed.

$$
\begin{aligned}
\mathrm{RT} & =\mathrm{R} \mathrm{~T}_{\text {succ }}+\sum \mathrm{R} T_{\text {unsucc }} \\
& \approx E\left(\mathrm{R}_{\text {succ }}\right)+\frac{1-p}{p} E\left(\mathrm{RT}_{\text {unsucc }}\right)
\end{aligned}
$$

Feature/drawback: termination method for unsuccessful trials can be critical

Measuring Performance with given target values

Measuring Performance with given target values

Measuring Performance with given target values

Cumulative Distribution of Runtimes

- Given a set of functions and for each function a (weighted) set of target values, the cumulative distribution of (simulated) RTs captures all(?) aspects of the performance in a single graph
- Remark: this performance measure can aggregate over any set of functions and target values
- Here: 50 target values, log-uniform in [1e-8,100] and 15 trials per function

Example for ECDFs

Empirical cumulative distribution functions (ECDFs) of running lengths (left) and function values (right)

Example: Scaling Behaviour

- ERT on f12: linear scaling of BIPOP-CMA-ES

Example: Scaling Behaviour

- Experiments in >100-D are more often than not virtually superfluous

ERT scatter plots comparing two algorithms all dimensions \& targets

Overall Collected Data Sets

during the Black-Box Optimization Benchmarking (BBOB) workshops at the Genetic and Evolutionary Computation Conference GECCO

- 2009: 31 noiseless and 21 noisy "data sets"
- 2010: 24 noiseless and 16 noisy "data sets"
- Algorithms: RCGAs (eg plain, PCX), EDAs (eg IDEA), BFGS \& (many) other "classical" methods, ESs (eg CMA), PSO, DE, Ant-Stigmergy Alg, Bee Colony, EGS, SPSA, Meta-Strategies...

Results

Results

- Functions are not that easy to solve: the best algorithms need 10000 D function evaluations to solve 75% of the problems (function-target pairs)
- Given at most 500 D evaluations: MCS, NEWUOA and GLOBAL do well
- Given more evaluations: variants of CMA-ES and AMaLGaM-IDEA do well
- In very low dimension Nelder-Mead is superior

Results of 2010 (noisy, 20-D)

$$
1.0 \text {. }
$$

iAMaLGaM IDEA BIPOP-GMA-ES AMaLGGM IDEA VNS (G ${ }^{\text {arcia) }}$
MA-LS-Chain Cauchy EDA G3-PCX

(1)

 $\begin{array}{llllllllll}0.0 & 10^{0} & 10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5} & 10^{6} & 10^{7} & 10^{8}\end{array}$
Running length / dimension
-
10^{0}

 . Clald號 A .號

-
\qquad

1.020 －D multimodal
EDA－PSD
NELDER（Doe） NEMUOA newu A G3－PCX （1＋1）－CMA－ES LSfminthd GLOBA MCS Simpe a Rosenb ock BFGS
Cauchy EDA
 BayEDAcG

A都都

．

號

都
GLOBA4
\square
\qquad
Running length／dimension 10^{8}

\% SEPARABLE
1 Sphere
2 Ellipsoid separable with monotone x-transformation, condition 1e6
3 Rastrigin separable with both x-transformations "condition" 10
4 Skew Rastrigin-Bueche separable, "condition" 10, skew-"condition" 100
5 Linear slope, neutral extension outside the domain (not flat)
\% LOW OR MODERATE CONDITION
6 Attractive sector function
7 Step-ellipsoid, condition 100
8 Rosenbrock, original
9 Rosenbrock, rotated
\% HIGH CONDITION
10 Ellipsoid with monotone x-transformation, condition 1e6
11 Discus with monotone x-transformation, condition 1e6
12 Bent cigar with asymmetric x-transformation, condition 1e6
13 Sharp ridge, slope 1:100, condition 10
14 Sum of different powers
\% MULTI-MODAL
15 Rastrigin with both x-transformations, condition 10
16 Weierstrass with monotone x-transformation, condition 100
17 Schaffer F7 with asymmetric x-transformation, condition 10
18 Schaffer F7 with asymmetric x-transformation, condition 1000
19 F8F2 composition of 2-D Griewank-Rosenbrock
\% MULTI-MODAL WITH WEAK GLOBAL STRUCTURE
20 Schwefel $x^{\star} \sin (x)$ with tridiagonal transformation, condition 10
21 Gallagher 101 Gaussian peaks, condition up to 1000
22 Gallagher 21 Gaussian peaks, condition up to 1000, 1000 for global opt
23 Katsuuras repetitive rugged function
24 Lunacek bi-Rastrigin, condition 100

Separable functions $f_{1}-f_{5}$

Moderate functions $f_{6}-f_{9}$

Ill-conditioned functions $f_{10}-f_{14}$

Multimodal structured functions $f_{15}-f_{19}$

Multimodal weakly structured functions $f_{20}-f_{24}$

Non-smooth functions f_{7}, f_{16}, f_{23}

Single Function Table

Table 6: $20-\mathrm{D}$, running time excess $\mathrm{ERT} / \mathrm{ERT}_{\text {best }}$ on f_{6}, in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

6 Attractive sector											
$\Delta \mathrm{ftarget}$	$1 \mathrm{e}+03$	$1 \mathrm{e}+02$	$1 \mathrm{e}+01$	$1 \mathrm{e}+00$	$1 \mathrm{e}-01$	$1 \mathrm{e}-02$	$1 \mathrm{e}-03$	$1 \mathrm{e}-04$	$1 \mathrm{e}-05$	$1 \mathrm{e}-07$	$\Delta \mathrm{ftarget}$
$\mathrm{ERT}_{\text {best }} / \mathrm{D}$	4.03	26	64.7	87.2	123	152	184	219	248	309	$\mathrm{ERT}_{\text {best }} / \mathrm{D}$
ALPS	59	25	34	54	64	78	100	150	370	14e-7/2e5	ALPS [17]
AMaLGaM IDEA	26	22	19	22	21	22	22	21	22	22	AMaLGaM IDEA [4]
avg NEWUOA	2.3	1.1	1	1	1	1	1	1	1	1	avg NEWUOA [31]
BayEDAcG	46	41	$60 e+0 / 2 e 3$								BayEDAcG [10]
BFGS	2.2	2.7	3.6	4.7	4.7	4.9	5	4.8	4.9	61	BFGS [30]
Cauchy EDA	6200	1500	1 e 3	1700	17e-1/5e4						Cauchy EDA [24]
BIPOP-CMA-ES	2.9	2.2	1.5	1.7	1.6	1.6	1.6	1.5	1.6	1.6	BIPOP-CMA-ES [15]
(1+1)-CMA - ES	1.9	4.5	13	180	1200	13e-1/1e4					(1+1)-CMA-ES [2]
DASA	12	6.8	9.9	19	25	33	49	58	63	74	DASA [19]
DEPSO	11	7.5	12	64	13e-1/2e3	DEPSO [12]
DIRECT	18	31	$40 e+0 / 5 e .3$	-	-		DIRECT [25]
EDA-PSO	27	46	40	45	44	44	44	44	44	44	EDA-PSO [6]
full NEWUOA	5	1.9	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4	full NEWUOA [31]
G3-PCX	4.1	1.4	1.4	2	2.1	2.1	2.2	2.2	2.3	2.4	G3-PCX [26]
simple GA	320	130	2 e 3	11e+0/1e5	.	-	.	.	.		simple GA [22]
GLOBAL	5	2.9	3.6	4.9	8.5	42e-3/2e3	.	.	.		GLOBAL [23]
iAMaLGaM IDEA	5.1	5.6	5.4	6.8	7.1	7.7	7.8	7.7	8	8.3	iAMaLGaM IDEA [4]
LSfminbnd	9	31	160	760	1100	960	72e-1/1e4	.	.	.	LSfminbnd [28]
LSstep	140	260	2300	$59 e+0 / 1 e 4$	LSstep [28]
MA-LS-Chain	11	4.9	7.5	8.9	8	7.7	7.2	6.7	6.5	6	MA-LS-Chain [21]
MCS (Neum)	1.8	33	$42 e+0 / 4 \mathrm{eS}$.	.	MCS (Neum) [18]
NELDER (Han)	2.2	2.4	2.7	3.3	3.2	3.5	3.5	3.5	4	7.4	NELDER (Han) [16]
NELDER (Doe)	1.5	2.3	9.1	20	28	65	110	430	46e-5/2e4		NELDER (Doe) [5]
NEWUOA	1	1	1	1.3	1.4	1.5	1.6	1.6	1.7	1.7	NEWUOA [31]
($1+1$)-ES	2	2.2	2.1	2.8	3.9	5.2	6.1	6.5	6.4	6.7	(1+1)-ES [1]
POEMS	89	26	31	37	36	36	36	35	36	37	POEMS [20]
PSO	6.4	280	1100	1400	980	820	710	620	570	790	PSO [7]
PSO_Bounds	9.5	45	120	150	140	140	140	130	160	220	PSO_Bounds [8]
Monte Carlo	$2.4{ }^{5} 5$	$48 e+1 / 1 e 6$.	.	Monte Carlo [3]
Rosenbrock	2.1	3.9	31	76	210	230	810	21e-2/1e4	.	.	Rosenbrock [27]
IPOP-SEP-CMA-ES	3.2	2.1	1.7	1.9	1.9	1.9	1.9	1.9	2	2	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	5	2.8	1.9	1.9	1.7	1.7	1.7	1.6	1.6	1.6	VNS (Garcia) [11]

Overview of best algorithms (20-D)

Functions separable moderate ill-conditioned non-smooth (2009) multimodal weak structure noisy
short runtime
NEWUOA (BFGS), LS-fminbnd NEWUOA (BFGS, GLOBAL)
(NEWUOA) BFGS, GLOBAL
IDEA (CMA-ES)
(MCS, DIRECT, CMA-ES, IDEA)
(NEWUOA) GLOBAL
(MCS, CMA-ES)
long runtime
LS-step
IPOP-aCMA-ES
IPOP-aCMA-ES
CMA-ES, IDEA
IPOP-CMA-ES (IL
(BIPOP-CMA-ES)
IPOP-aCMA-ES

(more) questions?

Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius, and a lot of courage, to move in the opposite direction.

Albert Einstein

