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...don't hesitate with asking questions, expressing 
disbelief, giving comments...
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Natural Evolution Strategies

...a natural (canonical) view point based on
● Wierstra et al, Natural Evolution Strategies, 

IEEE WCCI 2008. 
● Glasmachers et al, Exponential Natural 

Evolution Strategies, GECCO 2009. 
● Akimoto et al, Bidirectional Relation between 

CMA Evolution Strategies and Natural Evolution 
Strategies, PPSN 2010.

{randomized, stochastic} {optimization, search} 



Nikolaus Hansen  INRIA TAO LRI

The Problem
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Black-Box Optimization (Search)
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On-line registration of spline images
Intraoperative ultrasound image      CT image

from [Winter et al 2008]
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Distribution of final misalignment

from [Winter et al 2008]
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More selected applications
● Swimming fish simulation [Kern et al 2007]

computational flow simulation, 
motion control

● Crystal structure prediction [Glass et al 2006]
specialized algorithm: encoding, operators etc.

new structure of CaCO3 above 137GPa predicted
and subsequently confirmed in experiment

● Modelling of volcanic magma [Halter et al 2006]
bilevel energy optimization

● Space launcher design to maximize the 
payload per EUR [Collange et al 2010]

for Ariane in collaboration with EADS Astrium
● Combustion control [Hansen et al 2009]

real-time laboratory experiment    
in collaboration with Alstom    



Nikolaus Hansen  INRIA TAO LRI

Difficulties in black-box optimization

in any case the objective function must be highly regular
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Rugged landscape 
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The Methods
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Incomplete taxonomy of search methods

Gradient-based methods (Taylor, smooth)
local search

● Conjugate gradient methods [Fletcher & Reeves 1964]
● Quasi-Newton methods (BFGS) [Broyden et al 1970]

Derivative-free optimization (DFO)
● Trust-region methods (NEWUOA) [Powell 2006]
● Simplex downhill [Nelder & Mead 1965]
● Pattern search [Hooke & Jeeves 1961] [Audet & Dennis 2006]

Stochastic search methods
● Evolution strategies [Rechenberg 1965]
● Simulated annealing (SA) [Kirkpatrick et al 1983]
● Simultaneous perturbation stochastic approximation (SPSA) 
[Spall 2000]
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A Reminder: the Classical Approach
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...a randomized view point of search...

● higher order Taylor approximation
● (proper) choice of a variable metric or 

inner product
in order to define the gradient

● is invariant under affine coordinate 
transformations

View points of the second order approach
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Rank-based stochastic optimization template

Remark: Everything depends on the definition of P and Update
(deterministic algorithms are covered as well)

Andrieu & Thoms 2008
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A new search problem
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...let's start from zero...
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Steepest Descent

Q1: does that make sense? Q2: can we implement this? 
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Curvature
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A Rephrasing
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MC-Approximation
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Finally: Some Practical Details
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A Natural Evolution Strategy
Natural Evolution Strategy = CMA-ES with                    

[Akimoto et al, PPSN 2010, Bidirectional Relation between CMA Evolution...] 
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Covariance Matrix Adaptation Evolution Strategy
CMA-ES = natural gradient descent + cumulation + step-size control



Nikolaus Hansen  INRIA TAO LRI 25

Evolution Strategies on the Sphere Function

● Evolution Window for the step-size

● One-fifth success rule (single parent,           )

● Optimal truncation ratio for          -ES

● Known optimal recombination weights

● Convergence proofs (linear convergence)

● Optimal progress rates

[Auger TCS 2005, Jägersküpper TCS 2006]

[Arnold TEC 2006]

[Rechenberg 1973]

[Schumer&Steiglitz TAC 1968, Rechenberg 1973]

[Beyer 2001]
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Experimentum crucis
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Experimentum crucis
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Quantifying the enhancement

[Hansen & Ostermeier 2001]



Nikolaus Hansen  INRIA TAO LRI

Unimodal test functions
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Runtime versus condition number

condition number
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Runtime versus condition number

non-separable & quadratic
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[Auger et al 2009]
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Runtime versus condition number

non-separable & non-convex
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[Auger et al 2009]



Nikolaus Hansen  INRIA TAO LRI

CMA-ES in a nutshell
1) Sample maximum entropy distribution

multivariate normal distribution

 2) Ranking solutions according to their fitness
invariance to order-preserving transformations

 3) Update mean and covariance matrix by
     natural gradient descend, increasing the
     expected fitness and likelihood of good steps 

natural gradient descend,
PCA → variable metric, new problem representation,

 invariant under changes of the coordinate system 

 4) Update step-size based on non-local
     information

exploit correlations in the history of steps
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CMA-ES is widely recognized
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Questions?
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COCO/BBOB
● Is an environment for COmparing Continuous 

Optimizers 

● under development with contributions from

● Raymond Ros
● Steffen Finck
● Anne Auger
● Marc Schoenauer
● Petr Poŝík
● Mike Preuss
● Dimo Brockhoff
● …

http://coco.gforge.inria.fr
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COCO: objectives

● function testbed:
– should “reflect reality”
– mainly non-convex and non-separable
– scalable with the search space dimension 
– not too easy to solve, but yet comprehensible

● provide data acquisition at the interface of solver 
and objective function

lean but sufficient data for quantitative analyses

● data presentation yields quantitative 
assessment, stratified by function properties...
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BBOB in practice
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BBOB in practice



Nikolaus Hansen  INRIA TAO LRI

BBOB in practice

Matlab script: 
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BBOB in practice

Post-processing at the OS shell: 
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COCO: the noiseless functions
24 functions within five sub-groups
● Separable functions
● Essential unimodal functions
● Ill-conditioned unimodal functions
● Multimodal structured functions
● Multimodal functions with weak or without 

structure

functions are not perfectly symmetric 
and are locally deformed 
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COCO: the noisy functions

three noise-”models”, so-called:
● Gauss, Uniform (severe), Cauchy (outliers)
● Utility-free noise

30 functions with three sub-groups
● 2x3 functions with weak noise
● 5x3 unimodal functions
● 3x3 multimodal functions



Nikolaus Hansen  INRIA TAO LRI

How should we measure performance? 
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Evaluation of Search Algorithms

needs
● Meaningful quantitative measure on benchmark 

functions or real world problems
● Account for meta-parameter tuning

tuning to specific problems can be quite expensive

● Account for invariance properties
prediction of performance is based on “similarity”, 

ideally equivalence classes of functions

● Account for algorithm internal costs
often negligible, depending on 

the objective function cost
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A performance measure

should be
● quantitative, with a ratio scale
● well-interpretable with a meaning
● relevant in the “real world”
● simple
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 (recall) Black-Box Optimization

Two objectives: 

● Find solution with a smallest possible function 
value

● With the least possible search costs (number of 
function evaluations)

● For measuring performance: fix one and 
measure the other
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How should we measure performance?
fixed-cost versus fixed-target

number of function evaluations (running time)

fixed target
fix
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A performance measure

should be
● quantitative, with a ratio scale
● well-interpretable with a meaning
● relevant in the “real world”
● simple

       running time
● empirical distribution [Hoos & Stützle 1998]

● expectation, median, ...



Nikolaus Hansen  INRIA TAO LRI

Runtime
We measure runtime in number of function evaluations

● As a distribution of runtimes

● As expected runtime ERT

For success probability 0 < p < 1: (simulated) restarts 
until a successful run is observed. 

Feature/drawback: termination method for unsuccessful 
trials can be critical



Measuring Performance 
with given target values

fixed target

number of function evaluations (running time)
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Measuring Performance 
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fixed targets
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Cumulative Distribution of Runtimes

● Given a set of functions and for each function a 
(weighted) set of target values, the cumulative 
distribution of (simulated) RTs captures all(?) 
aspects of the performance in a single graph

● Remark: this performance measure can 
aggregate over any set of functions and target 
values 

● Here: 50 target values, log-uniform in 
[1e-8,100] and 15 trials per function
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Example for ECDFs

 Empirical cumulative distribution functions (ECDFs) of running lengths (left) 
and function values (right)



Nikolaus Hansen  INRIA TAO LRI

Example: Scaling Behaviour

● ERT on f12: linear scaling of BIPOP-CMA-ES
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Example: Scaling Behaviour

Experiments in >100-D are more often than not 
virtually superfluous
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ERT scatter plots comparing two algorithms
 all dimensions & targets
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Overall Collected Data Sets

during the Black-Box Optimization Benchmarking 
(BBOB) workshops at the Genetic and Evolutionary 
Computation Conference GECCO
● 2009: 31 noiseless and 21 noisy “data sets”
● 2010: 24 noiseless and 16 noisy “data sets”

● Algorithms: RCGAs (eg plain, PCX), EDAs (eg 
IDEA), BFGS & (many) other “classical” methods, 
ESs (eg CMA), PSO, DE, Ant-Stigmergy Alg, Bee 
Colony, EGS, SPSA, Meta-Strategies...
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Results



Nikolaus Hansen  INRIA TAO LRI

Results of 2009 (noisefree, 20-D) 
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Results of 2010 (noisefree, 20-D) 
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 Results

● Functions are not that easy to solve: the best 
algorithms need 10000 D function evaluations 
to solve 75% of the problems (function-target 
pairs)

● Given at most 500 D evaluations: MCS, 
NEWUOA and GLOBAL do well

● Given more evaluations: variants of CMA-ES 
and AMaLGaM-IDEA do well

● In very low dimension Nelder-Mead is superior



all functions
2-D



all functions
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Results of 2009 (noisy,  f
101

-f
130

, 20-D) 
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Results of 2010 (noisy, 20-D) 











% SEPARABLE
1 Sphere
2 Ellipsoid separable with monotone x-transformation, condition 1e6
3 Rastrigin separable with both x-transformations "condition" 10
4 Skew Rastrigin-Bueche separable, "condition" 10, skew-"condition" 100
5 Linear slope, neutral extension outside the domain (not flat)

% LOW OR MODERATE CONDITION
6 Attractive sector function
7 Step-ellipsoid, condition 100
8 Rosenbrock, original
9 Rosenbrock, rotated

% HIGH CONDITION
10 Ellipsoid with monotone x-transformation, condition 1e6
11 Discus with monotone x-transformation, condition 1e6
12 Bent cigar with asymmetric x-transformation, condition 1e6
13 Sharp ridge, slope 1:100, condition 10
14 Sum of different powers

% MULTI-MODAL
15 Rastrigin with both x-transformations, condition 10
16 Weierstrass with monotone x-transformation, condition 100
17 Schaffer F7 with asymmetric x-transformation, condition 10
18 Schaffer F7 with asymmetric x-transformation, condition 1000
19 F8F2 composition of 2-D Griewank-Rosenbrock

% MULTI-MODAL WITH WEAK GLOBAL STRUCTURE
20 Schwefel x*sin(x) with tridiagonal transformation, condition 10
21 Gallagher 101 Gaussian peaks, condition up to 1000
22 Gallagher 21 Gaussian peaks, condition up to 1000, 1000 for global opt
23 Katsuuras repetitive rugged function
24 Lunacek bi-Rastrigin, condition 100
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Single Function Table
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Overview of best algorithms (20-D)

Functions short runtime long runtime
separable LS-step
moderate NEWUOA (BFGS, GLOBAL)
ill-conditioned (NEWUOA) BFGS, GLOBAL
non-smooth (2009) IDEA (CMA-ES) CMA-ES, IDEA

(MCS, DIRECT, CMA-ES, IDEA) IPOP-CMA-ES (IDEA)
weak structure (NEWUOA) GLOBAL (BIPOP-CMA-ES)
noisy (MCS, CMA-ES)

NEWUOA (BFGS), LS-fminbnd
IPOP-aCMA-ES
IPOP-aCMA-ES

multimodal

IPOP-aCMA-ES
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(more) questions?

Any intelligent fool can make things bigger, more 
complex, and more violent. It takes a touch of 
genius, and a lot of courage, to move in the 
opposite direction.

                                           Albert Einstein


