
Color test

I just want to be

sure

that all my favourite colors

are

being displayed correctly on this

new

device. If not I’ll modify them.

1/10



Topics at the interface MCMC/ES
ANR Siminole Meeting
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First attempts at getting the best of both worlds

I In discrete sampling, several authors (see Strens 2003) include
random flips and different types of cross-over moves.

I Liang & Wong (2000) ’s Evolutionary MC runs parallel chains
at different temperatures and proposes cross-over moves.

I Ter Braak (2006) ’s differential evolution MC approximates
AM by

xt+1 = xt + γ(xu − xv ) + ε, u, v ∼ U{1,...,t},

I Müller & Sbalzarini (2010) present Gaussian Adaptation as a
“unifying framework” between (1+1) CMA-ES and the AM
algorithm of Haario et al. (2001).
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Adaptive MCMC and CMA-ES unified ?

I In the original GaA,

C(g+1) = (1− γC )C(g) + γC (x(g+1) − x(g))(x(g+1) − x(g))T .

I Differences with CMA-ES include
I step size adaptation,
I same covariance update only because λ = µ = 1,
I prior setting of the probability of success.

I When using an MH acceptation rule and a SG-type update for
the step size, GaA is very close to Adaptive MCMC.

I Metropolis GaA experimentally behaves comparably to AM.
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My 2 cents

I GaA does not satisfy diminishing adaptation.

I Neither does CMA, and it is not desirable, so what is the
fundamental difference with sampling ?

I Counterexample by Roberts & Rosenthal is similar to AM, but
does not imply that optimization fails.

I What is the role of the learning rate in SGD ?

I Existing SGD with constant learning rate !

I Could mean field-based stochastic approximation be a better
common framework ?

5/10



A SMC framework for the CEM 1/3 (Zhou et al. 09)

I Goal is to maximize M1 ≤ H ≤ M2 over X .
I Assume maximizer x? is unique.
I Consider the state space model

x0 = x∗,

xt+1 = xt

yt = H(xt)− vt , vt ∼ ϕ.

I Denote πt(xt) = p(xt |y0:t). Then

π̂t(xt) ∝ ϕ(H(xt)− yt)π̂t−1(xt)
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A SMC framework for the CEM 2/3

I Recall
π̂t(xt) ∝ ϕ(H(xt)− yt)π̂t−1(xt),

I If π̂t−1(x) =
∑

i w
(i)δ(x − x

(i)
t−1), then

π̂t(xt) ∝
∑

i

w (i)ϕ(H(x
(i)
t−1)− yt))δ(xt = x

(i)
t−1).

I Let yt be the γ-quantile of the ordered fitnesses of the (x
(i)
t−1)i .

Assume p(yt |xt) = U(0,M2 −M1), then the filtering update is

π̂t(xt) =

∑
i 1H(x

(i)
t−1)≥yt

δ(xt − x
(i)
t−1)∑

i 1H(x
(i)
t−1)≥yt

.
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A SMC framework for the CEM 3/3

I Recall

π̂t(xt) =

∑
i 1H(x

(i)
t−1)≥yt

δ(xt − x
(i)
t−1)∑

i 1H(x
(i)
t−1)≥yt

.

I Then project π̂t(xt) onto the space of Gaussians by
minimizing the KL divergence, giving you π̃t(xt).

I π̃t(xt) is a Gaussian with mean the selected sample mean and
covariance the selected sample covariance.

I Finally resample N points from π̃t(xt).

Remarks

I A CMA update would require another projection.

I The definition of p(yt |xt) is not very natural.
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Natural Gradients & Langevin Diffusion

I Natural gradients also appeared recently in the MCMC
literature (Girolami & Calderhead, 2010).

I Take e.g. Metropolis-adjusted Langevin algorithms of the form

θt+1 = θt +
ε2

2
∇θ log π(θt) + εz t

followed by an MH acceptation step.

I On a flat manifold with metric tensor G , it becomes:

θt+1 = θt +
ε2

2
G−1(θt)∇θ log π(θt) + ε

√
G−1(θt)z t .

I However, no evolution gradient here !

I Atchadé (2006) ’s adaptive drift algorithms might be
interesting for optimization problems.
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Conclusion

Take-home message

I Surprisingly similar parallel discoveries in Simulation and
Optimization.

I New connections are surely waiting to be drawn.

Thanks for your attention !
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