

AMISSA

Développement d'une plate-forme d'imagerie multimodale dédiée au petit animal

David Brasse

Institut Pluridisciplinaire Hubert-Curien UMR 7178, Strasbourg I, CNRS-IN₂P₃

Nous sommes curieux de savoir comment nous sommes à l'intérieur...

...mais nous n'aimons pas être meurtris!

Nous sommes également curieux de comment...

...nos organes fonctionnent

Outil fabuleux pour la recherche médicale

L'imagerie in vivo du petit animal: un défi certain

Souris

15-30 g

0,5 cm³

70-80 kg

1450 cm³

100-500 g

kg

1,2 cm³

Aire sensorimotrice
Aire visuelle
Aire auditive

Homme / Souris -- FDG ECAT HR+ - 45 minutes

Imagerie Moléculaire

Manchester institute

Tomodensitomètre X

Système IRM

Julich Research center

Système TEMP

Autoradiographie

Système Ultrason

Systèmes optiques Bioluminescence fluorescence

Imagerie par transmission

Principe du tomographe

Paramètres importants

Quelques images

Imagerie d'émission: principe

Acte I

Traceur caractéristique d'une fonction métabolique ou physiologique

radiotraceur

Marquage de la molécule

Acte III

Injection et étude de la répartition de la molécule marquée

Exemple du FDG

Isotopes couramment utilisés

Période Energie Isotope

Emetteurs y

Technétium 99m 140 keV (89%) 6,02 heures Iode 123 27 (71%) 159 keV (83%) 13,2 heures Thallium 201 71 keV (47%)

73 heures

Emetteurs B+

Oxygène 15 Carbone 11 Fluor 18 Brome 76

1738 keV 960 keV 634 keV 3980 keV

2,1 minutes 20,4 minutes 109,8 minutes 972 minutes

Technique d'imagerie associée

Emetteurs γ

Emetteurs β+

Tomographie par émission monophotonique (TEMP) Tomographie par émission de positons (TEP)

Principe de la TEMP

NanoSPECT @ Bioscan

Exemple de microTEP: microPET II @ UCLA

80 mm 49 mm (3D) 90 modules (3 couronnes) de 14 x 14 cristaux LSO MA-PMT 0,975 x 0,975 x 12,5 mm³ 2,26 % (> 250 keV) 0,83 mm 1,25 mm

160 mm

Crump institute

P. Brueghel

Anatomie

Fonction

A Multimodality Imaging System for Small Animal

Physiologie de l'animal

Micro Tomodensitomètre X

Composants du microCT: Source X

Micro foyer X $(7\mu m)$ Voltage: 20 à 90 kV Intensité: 0 à 250 μ A P_{max}: 10 W Ouverture: 39° Fonctionne en continu Anode: Tungstène

Hamamatsu, L8601-01

Travaux effectués en collaboration avec le groupe RAMSES (IReS, Strasbourg)

Composants du microCT: Détecteur

Hamamatsu, C7942

Csl / photodiode 120 x 120 mm² 2400 x 2400 pixels Pixel de 50µm 470ms/projection Mode binning: 2x2 (4 images/s) 4x4 (9 images/s)

Aiguille de Csl

Plein flux (40kV, 250µA, 0,5mm Al, 470ms)

Bruit électronique

Exemple de binning

2048x2048, 50µm, 470ms

1024x1024, 100µm, 250ms

512x512, 200µm, 110ms

Acquisition et Reconstruction en ligne

brevet français FR 05 02564, PCT

Taille du voxel de l'image

40kVp, 250µA, 0,5 mm Al, 470 ms

Taille du pixel de projection

Modèle murin du cancer du sein

11 Juillet 2005

Modèle murin du cancer du sein

07/04 (†22): RAS 13/04 (†28): RAS 19/04 (†34):

Produit de contraste

Étude de l'angiogénèse

Ligature de l'artère fémorale chez le rat Injection d'un produit de contraste

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne)

micro Tomographie d'Emission MonoPhotonique

Anatomie d'un module de détection

Collimateur sténopé

Tungsten material Keel edge shape Aperture ranging from 0.5 mm to 1.5 mm Magnification of 2.1

Anatomie d'un module de détection

Matrice de cristaux

8 x 8 array of YAP:Ce crystals Crytur, Turnov, CZ Crystal size: 2.3 x 2.3 x 28 mm³ Optically glued to the PMT

Anatomie d'un module de détection

Tube photomultiplicateur

multi anodes (H8804, Hamamatsu Corp.) 64 anodes Anode size: 2.3 x 2.3 mm²

Solution retenue

Analyse des données

Performances intrinsèques

$$\overline{cell}/cluster \cong 7$$

Résolution intrinsèque $R_i = 2,3 \text{ mm}$

Résolution image R = 1,3 mm (pinhole 0,5mm)

Efficacité de détection $E_{ff} = 35 cps/MBq / caméra$

Couplage Fonction / Anatomie

Protocole d'acquisition

◊ Injection de 2.5 mCi de ^{99m}TcO₄⁻

Acquisition microCT
 768 projections sur 360°, binning 2x2, 4 projections/s
 3 minutes acquisition/reconstruction

Acquisition microSPECT (1 caméra)
 128 projections sur 360°, 15s/projection

Troisième modalité: R&D TEP

Cahier des charges:

- Efficacité de détection élevée (>10%)
- Résolution spatiale élevée (1mm³)

Problème de parallaxe:

- ↑ Efficacité de détection = ↓ Résolution spatiale

Objectifs:

Résolution spatiale:1 mmEfficacité de détection:> 10 %Résolution en temps:< 1 ns</td>

Solution:

- Mesurer la profondeur d'interaction
- Cristaux orientés axialement

Nouvelle géométrie

$$C = \frac{S_R - S_L}{S_R + S_L} = f(z)$$

Résolution axiale

	YAP:Ce	LaBr ₃ :Ce	LYSO	
Density (g.cm ⁻³)	5.35	5.29	7.11	
Light yield (ph/MeV)	18000	61000	33800	
λ _{max} (nm)	370	380	420	
Refractive index	1.93	1.9	1.81	
Absorption length (cm)	2→14	14	14	

Efficacité de détection

Remerciements

<u>Jean-Louis Guyonnet</u> Daniel Huss Virgile Bekaert Khadija Leroux Samuel Salvador

Patrick Bard David Bonnet Hubert Friedmann Christian Fuchs Jean-Michel Gallone Bernard Humbert Richard Igersheim Bruno Jessel Marc Krauth Ali Ouadi Damien Vintache Jacques Wurtz

Jean Daniel Berst Claude Colledani Yann Hu Christine Hu-Guo Ndeye awa Mbow Nicolas Ollivier-Henry

Institut Pluridisciplinaire Hubert CURIEN

STRASBOURG

Nelly Etienne (UMR 7034) Carole Mathelin (HUS) Marie-Christine Rio (IGBMC) Jérôme Steibel (IPB)