

Architecture de détection supraconductrice pour la détection de la polarisation du rayonnement fossile

Michel Piat Laboratoire AstroParticule et Cosmologie Université Paris Diderot

Le fond diffus cosmologique ou CMB (Cosmic Microwave Background)

Polarisation du CMB

- Modes E et B: $\xrightarrow{E < 0}$ $\xrightarrow{E < 0}$ $\xrightarrow{E < 0}$ $\xrightarrow{B < 0}$ $\xrightarrow{B > 0}$
- Modes scalaires: fluctuations de densité
 - 🄄 TT, EE, TE
 - 🄄 Aujourd'hui bien connus
- Modes tensoriels: ondes gravitationnelles issues de l'inflation
 - ₲ TT, EE, TE <u>et BB</u>
 - BB = signature des OG primordiales (hors lensing)
 - Amplitude reliée à l'échelle d'énergie de l'inflation
 - \triangleleft Rapport tenseur sur scalaire r = T/S

$$V = 1.06 \times 10^{16} \text{GeV} \left(\frac{r}{0.01}\right)^{1/4}$$

Polarisation du CMB: connaissances actuelles

- Mode E détecté
 - ♦ DASI, WMAP, Boomerang...
- Mode B jamais détecté jusqu'à présent
 - ∿ r < 0.21 à 95%

(SPT+WMAP7, Keisler et al. 2011 arXiv:1105.3182v1)

- **L'un des défis de la cosmologie observationnelle**
- Planck: détection envisageable si r > 0.05 (Efstathiou et Gratton, 2009)
 - Srandes échelles angulaires (pic de la ré-ionisation)
 - ✤ Première contrainte spatiale des modes B

Vers un instrument spatial dédié: l'exemple de COrE

- Cosmic Origins Explorer
 - Serviron 30 fois plus sensible que Planck
 - Avec la même résolution angulaire que Planck,
 - 4 et un contrôle draconien des effets systématiques
- Proposition soumise à l'ESA Cosmic Vision 2
 - Arrivée juste en dessous du seuil de sélection
 - Points faibles: coûts, modulateur optique, plan focal

De Planck à COrE

Paramètre	Planck-HFI	COrE
λ	300µm-3mm	1mm-10mm
$\lambda/\Delta\lambda$	3	3
Résolution angulaire	5'-10'	1'-23'
Détecteurs	Bolo. semicond. 100mK	Bolo. supracond. 100mK
Nombre de détecteurs	4-12 par canal 52 total	64-2000 par canal 6384 total
NEP	1-10.10 ⁻¹⁷ W.Hz ^{-0.5}	2-3.10 ⁻¹⁸ W.Hz ^{-0.5}
Constante de temps	5-8ms	0.5-10ms
Efficacité quantique	>37%	>50%
Architecture de détection	Polarisation Sensitive Bolometers	Lame ¹ / ₂ onde + duplexer de polarisation

Planck-HFI

Plan focal COrE

P2I - 8 juin 2011

395mm

Contraintes instrumentales pour un futur instrument spatial dédié

- 1. Sensibilité: matrices de bolomètres supraconducteurs
 - ✤ Collaboration **DCMB**
 - IN, APC, CSNSM, IAS, IEF, LPSC, LPN, L2E
 - Centrale de technologie IEF Minerve
 - Financements CNRS, universités, CNES (→ 2010)
- 2. Immunité aux effets parasites instrumentaux:

composants micro-ondes supraconducteurs

- ✤ Collaboration BSD
 - APC, CSNSM, IAS, IEF, IN, LERMA, LPSC, L2E
 - Financements ANR JC, GIS P2I, CNES

1. Bolomètres: état de l'art Spider web (Caltech-JPL)

Performances:

- 𝔅 300mK: τ=11ms, NEP=1.5 10⁻¹⁷ W.Hz^{-0.5}
- 𝔅 100mK: τ=1.5ms, NEP=2.5 10⁻¹⁸ W.Hz^{-0.5}

BLIP pour les observations CMB!

Amélioration de la sensibilité → augmentation du nombre de détecteurs: Matrices de bolomètres

P2I - 8 juin 2011

DCMB (→2010)

- "Développement Concerté de Matrices de Bolomètres"
 - Sollaboration pluridisciplinaire
 - ✤ PI: Alain Benoit (IN)
- Objectif: développer par microfabrication des matrices de bolomètres fonctionnant aux très basses températures pour les observations astrophysiques
- Alliage NbSi:
 - 4 Haute impédance
 - Supraconducteurs (TES)
- Financements:
 - Score (programme Astroparticule)
 - ♦ CNES
 - **&** Universités

Labo	Main task	
IN/LAOG	Multiplexage haute impédance, cryogénie, MPI	
LPSC	Antennes, MPI	
LPN	HEMTs	
CSNSM	Films minces NbSi (semiconducteurs, supraconducteurs)	
IEF	Architecture bolométrique, microfrabrications	
IAS	Tests supraconducteurs	
APC	Tests supraconducteurs, ASIC SiGe, multiplexage à SQUIDs	
L2E	ASIC SiGe, multiplexage à SQUIDs	
CESR	Etude des CEB, électronique de lecture	

Filières semiconducteurs / supraconducteurs

Points forts

- NbSi (CSNSM)
 - state original states and states
 - supra ou semi-conducteur
- Mux HEMTs à 100mK (IN)
 - Solomètres semiconducteurs
- ASIC SiGe à 4K (APC)
 - 5 Microélectronique cryogénique
 - ✤ Mux SQUIDs
 - Autres applications
 - P2I: CDD D. Prêle
 (32% du financement P2I)

P2I - 8 juin 2011

Contraintes pour la réalisation de matrices de bolomètres

Procédé de fabrication collectif

✤ Micro et nanotechnologies

Homogénéité des différents détecteurs

Sontre réaction électro-thermique

Multiplexage

- ✤ Nécessaire au delà d'une centaine de pixels
- ✤ Difficile avec les bolomètres semi-conducteur
 - Composants fonctionnant à T>100K (FET) ou bruyants aux BF (CMOS)
 - HEMT + JFET: limitation du facteur de multiplexage
- Plus « aisé » avec les bolomètres supraconducteur
 - Les SQUIDs fonctionnent aux très basses températures

➔ Matrice de bolomètres supraconducteurs

Electronique de lecture des TES: ASIC SiGe à 4K (F. Voisin, D. Prêle)

Cryogenic IC : new design (3rd generation)

- readout of 4 columns of 32 SQUID in series;
 Readout of 128 detectors
- fully **configurable** matrix addressing (offset, depth and direction) ;
- replace resistor addressing by capacitor to reduce power dissipation SQUID AC biasing setup ;
- dynamic offset compensation (calibration and memorization);
- reduce ASIC power consumption : Vsupply=5 V to 3.3V ;
- serial protocol to address each ASIC reconfigurable parts (voltage and current references...) reducing of the number of required wiring.

Status: design frozen, layout being done

P2I - 8 juin 2011

Matrice de 23 bolomètres supraconducteurs

- 1ère réalisation IEF-IAS (thèse Y. Atik, B. Belier)
 - ♦ Membranes pleines (type Olimpo): NEP~10⁻¹⁶W.Hz^{-0.5}

■ Lecture via ASIC B2B et une architecture thermo-mécanique

P2I - 8 juin 2011

SQUIDs

TES: Courbes I-V et P-V (Joseph Martino)

🌭 Membrane pleine

 Passage de la saturation au régime contre-réactionné

P2I - 8 juin 2011

Bruit

(Joseph Martino)

Etape suivante: Membranes ouvertes

■ Gravure XeF₂

■ NEP=10⁻¹⁷W.Hz^{-0.5}

Base pour les détecteurs **QUBIC**

Architecture complète

 Intégration de l'électronique et des détecteurs dans une architecture mécanique et thermique

2. Vers de nouvelles architectures de détection

- Méthode de mesure actuelle: soustraction du signal de 2 détecteurs mesurant des polarisations perpendiculaires
 - Paramètres de Stokes :

$$I = \left\langle E_x^2 \right\rangle + \left\langle E_y^2 \right\rangle$$
$$Q = \left\langle E_x^2 \right\rangle - \left\langle E_y^2 \right\rangle$$
$$U = 2\left\langle E_x E_y \cos \delta \right\rangle$$
$$V = 2\left\langle E_x E_y \sin \delta \right\rangle$$

- Méthode Planck, Bicep...
 - Polarisation Sensitive Bolometer (Caltech-JPL)
 - Modulation du signal : stratégie d'observation

Effets parasites instrumentaux

- Imperfections instrumentales
 - Susceptible de masquer le signal cosmologique

Améliorations requises:

- Couplage optique, pureté de polarisation: antennes
- Filtrage optique: filtre sur ligne de transmission
- Qualité de la mesure: architecture évoluée
- ✤ Intégration: technologie planaire

Radiomètre complet (Polar Bear UCB)

Lignes de transmission supraconductrices

Lignes supraconductrices

Architectures évoluées

- Mesure directe des paramètres de Stokes
 - Architecture intégrée planaire
 - ✤ Pas de systèmes rotatifs
- Pseudo-correlator scheme (ClOVER)
 - 🤟 Equivalent à un polariseur tournant
- Interférométrie bolométrique (QUBIC)
 - Coefficients de Fourier des paramètres de Stokes à une échelle spatiale donnée (ligne de base

BSD: B-mode Superconducting Detectors

- Initié en septembre 2007
 - ✤ Premiers financements (GIS P2I, ANR JC, CNRS P&U)

- Principal objectif: Réalisation de composants micro-onde supraconducteurs pour la mesure de la polarisation du CMB
 - 🄄 Technologie Nb
 - ✤ 70GHz-350GHz
 - Composants: antennes, lignes de transmission, filtres, déphaseurs, switch, coupleur/diviseur de puissance
- 2010: financement CNES
 - Extension au pôle grenoblois (IN) et toulousain (IRAP)
- Réalisation de démonstrateurs
 - ♦ QUBIC

Ortho-Mode Transducer (OMT) planaire

(A. Ghribi, BSD collaboration)

- Séparation planaire des polarisations perpendiculaires
- En cours de caractérisation à Milan Bicocca

BSD: Module d'étalonnage

Système nécessaire à la mesure de l'OMT

Mesure transmission structure d'étalonnage

Superconducting switch design

 Use of temperature or current to switch a superconducting bridge to normal

 Performances depends on normal resistivity

Nb	$20\mu\Omega.cm$
NbN(1)	$200\mu\Omega.cm$
NbN(2)	$1000\mu\Omega.cm$
NbSiN	$1000\mu\Omega.cm$
NbAlN	$20000\mu\Omega.cm$

(Thèse A. Ghribi)

Kinetic inductance phase (A. Ghribi PhD)

Système de pulvérisation cathodique ultravide multi chambres

- Dépôts de Nb, Nb/Al/Al2O3 et NbSi sur des wafer de 8'
- Livraison en décembre 2010, en cours de tests
- 150k€/458k€ financé par P2I (42% du financement de P2I pour BSD)

Conclusions

Besoin instrumentaux pour la mesure des modes B **Technologie supraconductrice: R&D BSD** Originalités de la communauté française NbSi ASIC SiGe @ 4K **Composants RF supraconducteurs**

P2I a permis de développer nos points forts