Beyond Standard Model Higgs Searches at the Tevatron

presented by

Abid Patwa Brookhaven National Laboratory, USA

on behalf of the CDF and DØ Collaborations

2nd Higgs Hunting Workshop July 28 – 30, 2011 Orsay, France

BSM Higgs: Outline

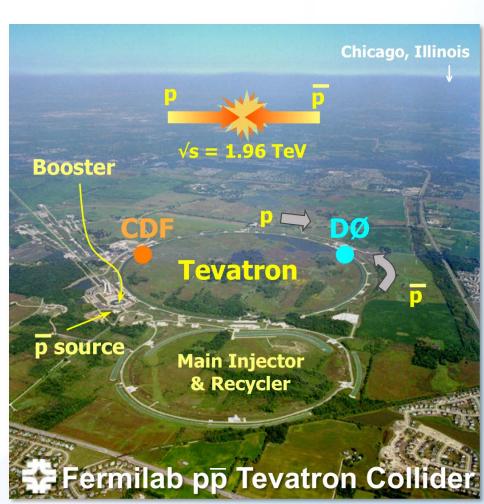
Several extensions to SM predict additional Higgs bosons

- behave similar to SM Higgs, but exhibit different couplings
- branching ratio (BR) of various Higgs decays can be enhanced significantly

I. MSSM Higgs Search

- 5 physical Higgs bosons
 - ϕ (= h⁰, H⁰, A⁰) and H[±]
- main searches
 - ϕ $\phi b \rightarrow b \bar{b} b$, $\phi \rightarrow \tau \tau$, $\phi b \rightarrow \tau \tau b$
 - charged Higgs in top decays

II. next-to-MSSM Higgs (NMSSM)

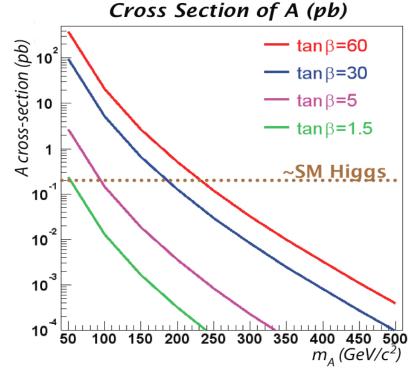

- neutral CP-even Higgs boson (h_{1,2,3})
- neutral CP-odd Higgs boson (a_{1.2})
- charged Higgs pair (h[±])

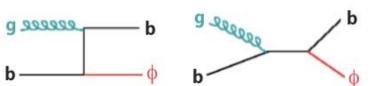
III. Extended Higgs sector models

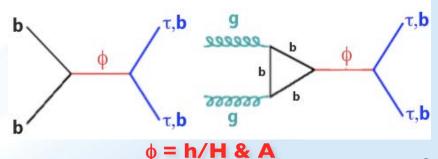
- doubly charged Higgs (H^{±±})
- Hidden Valley particles

IV. Fermiophobic Higgs Search

Higgs primarily couples to bosons,
 BR to fermions suppressed

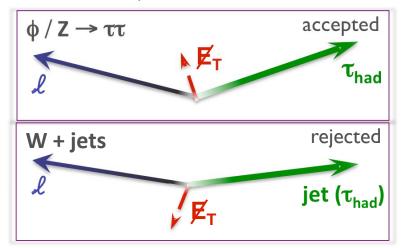


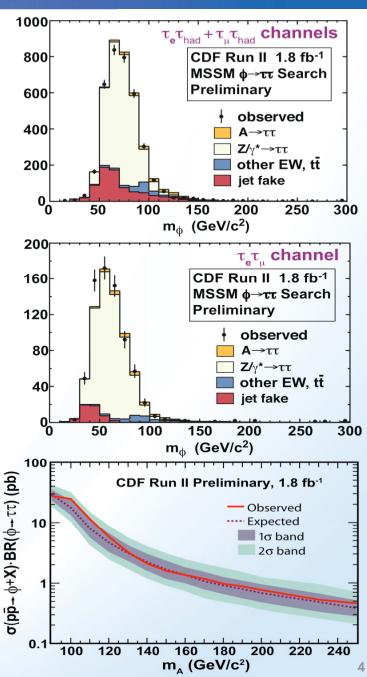

Higgs bosons in the MSSM



- MSSM Higgs requires 2 doublets
 - yields: ϕ (= h^0 , H^0 , A^0) and H^{\pm}
- At tree-level, MSSM Higgs fully specified by two free parameters
 - m_A
 - $tan\beta = \langle H_u \rangle / \langle H_d \rangle$ (ratio of v.e.v. of 2 Higgs doublets)
- Radiative corrections introduce dependence on additional SUSY parameters
- * Inclusive production cross section $\sigma(p\bar{p} \rightarrow h/H/A)$ is enhanced
 - enhancement depends on tanβ
- h/H/A decays, in most parameter space:

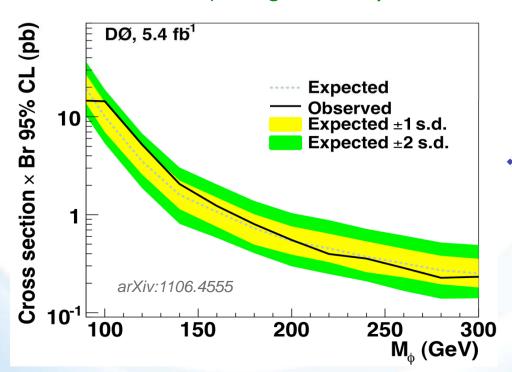
 - - smaller BR but cleaner signature
 (vs. large QCD background in b mode)

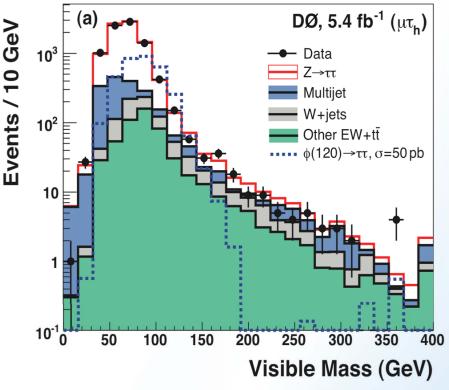



CDF: $\phi \rightarrow \tau \tau$ **Search**

- * CDF considers $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, and $\tau_{e}\tau_{\mu}$ channels with 1.8 fb⁻¹ data, selected by:
 - isolated e or μ : opposite-sign (OS) from hadronic τ
 - τ 's selected using variable-size cone algorithm
 - suppress W+jets background by requirement on relative direction of visible τ decay products and ∉_T

- Data agrees with backgrounds for visible mass
 - set $\sigma \times BR$ limits for 90 GeV < m_A < 250 GeV


CDF: PRL 103, 201801 (2009)

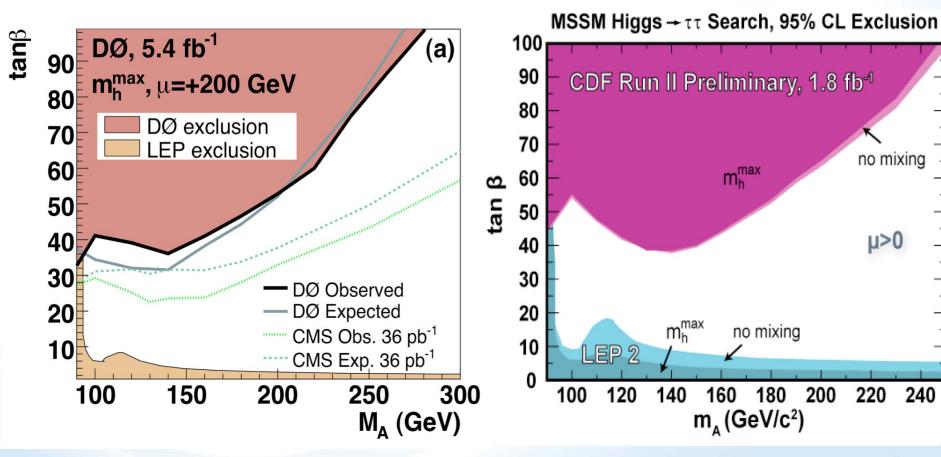


DØ: Inclusive ττ Search

- * [New: submitted to PLB] result using 5.4 fb⁻¹ data for $\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{\mu}$
 - 5 × more data than earlier 1.0 fb⁻¹
 published result: PRL 101, 071804 (2008)
- Search for two high-p_T isolated leptons, opposite sign
 - τ_{had} discriminated from jets via τ -ID NN
 - $M_T < 50 \text{ GeV} \Rightarrow \text{reject W+jets}$
 - estimate multijet bkgnd directly from data

- No excess in data across visible mass spectrum
 - upper limits on $\sigma \times BR$ as function of ϕ mass
 - extended search range up to 300 GeV

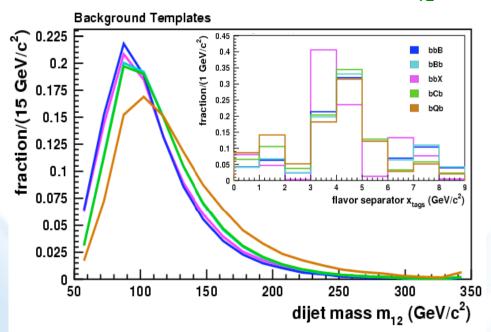
$\phi \rightarrow \tau \tau$: Results

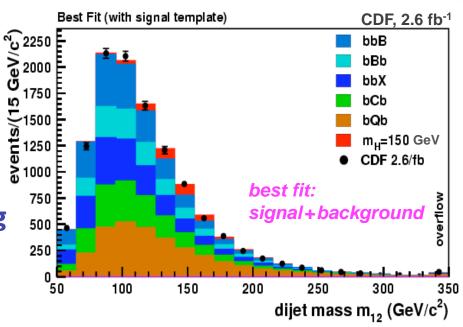


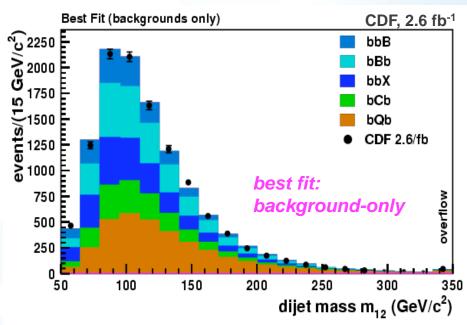
Translate limits in representative MSSM scenarios

- m_h^{max} and no-mixing for $\mu = \pm 200$ GeV
- DØ 5.4 fb⁻¹ result: FeynHiggs v2.8.1
 - ♦ includes updated bbH PDFs at NNLO (MSTW2008)

Reach expected sensitivity of tan $\beta \sim 30$ at low M_A ~ 140 GeV

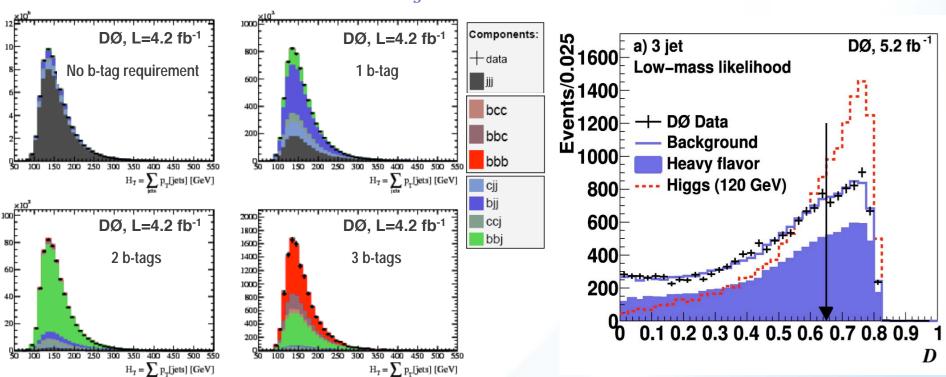

• comparable to recent limits from ATLAS and CMS using \mathcal{L} = 36 pb⁻¹





CDF: ϕ **b** \rightarrow **b** $\bar{\mathbf{b}}$ **b** Search

- - consider φ produced in association with one b-jet
- [New: submitted to PRD] 2.6 fb⁻¹
 data with 3 b-tagged jets
- Model multijet backgrounds using dijet mass of 2 lead jets (m₁₂) & flavor separator (x_{tags})
 - search for enhancements in m₁₂



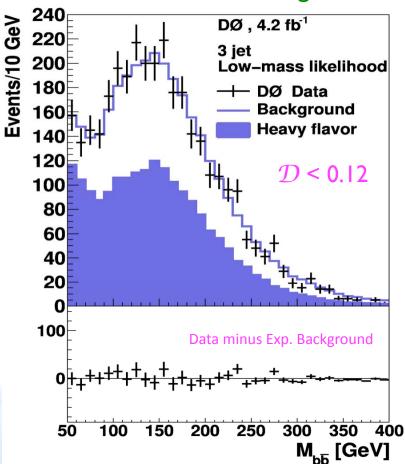
DØ: **\phi b** → **b** bb Search

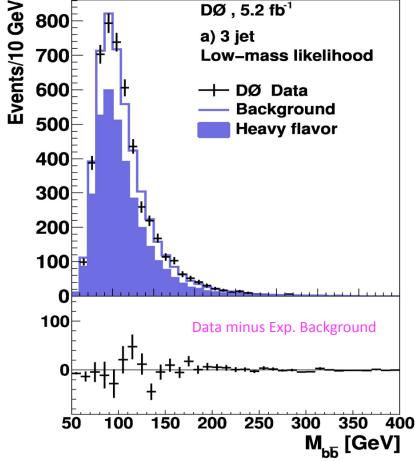
5.2 fb⁻¹ search requires 3 b-tagged jets via NN b-tagger

- background composition from global fit over several b-tagging points
- predict triple b-tagged background shape from double b-tagged data

$$S_{3tag}^{exp}(M_{bb}, \mathcal{D}) = \frac{S_{3tag}^{MC}(M_{bb}, \mathcal{D})}{S_{2tag}^{MC}(M_{bb}, \mathcal{D})} \times S_{2tag}^{DATA}(M_{bb}, \mathcal{D})$$

Improve sensitivity by separating into 3- and 4-jet channels

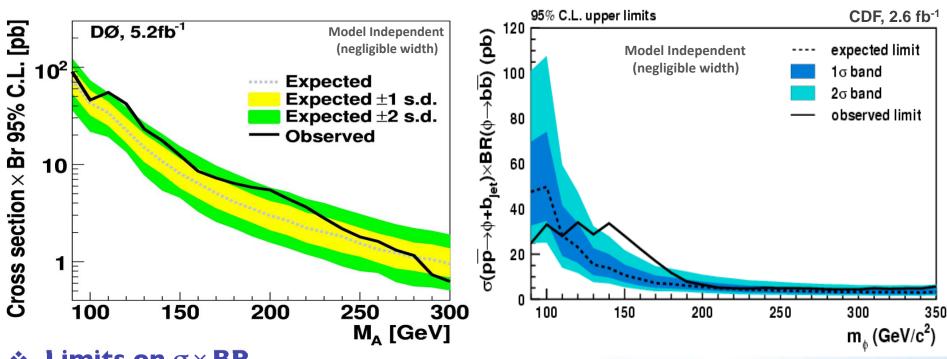

- likelihood discriminates b-jet pair via Higgs signal from multijet backgrounds
 - ⇒ separate low-mass (<130 GeV) and high-mass (>130 GeV) likelihoods



DØ: $\phi \mathbf{b} \rightarrow \mathbf{b}\bar{\mathbf{b}}\mathbf{b}$ Search (cont.)

Background model verified in a signal-depleted region

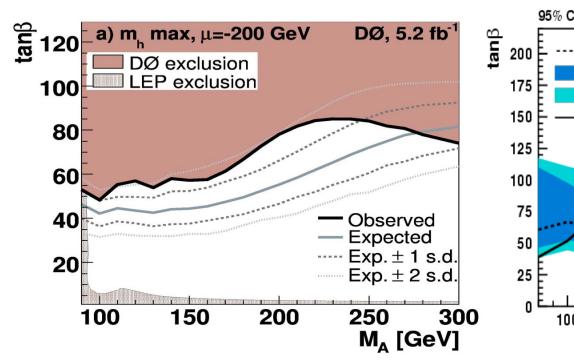
- pick lower likelihood jet-pairing and select \mathcal{D} < 0.12
- observe agreement (χ^2 /n.d.f. = 0.86) between data and background model

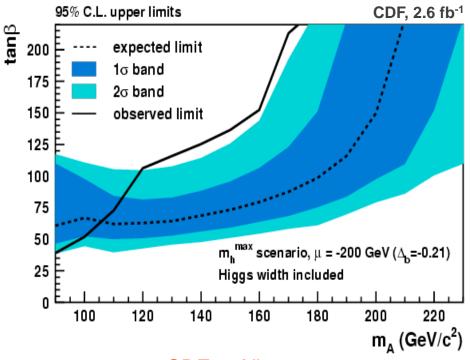

- Dijet invariant mass of two leading jets used as input to σ×BR limit
 - limit calculated using only the shape difference between signal and background

b → **b** bb Results: Limits

95% C.L. Mass-Dependent Cross Section Limits

- Limits on $\sigma \times BR$
 - DØ: observe $\sim 2.5\sigma$ deviation at ~120 GeV for narrow-width case [after trial factors, significance of $\sim 2.0\sigma$]


- CDF: deviation at ~150 GeV, with *p*-value = 0.23% (~2.8 σ) [trial factors, 1.9σ significance to observe such an excess at any masses]
- General limits applicable to any narrow scalar with bb final states produced in association with b-jet

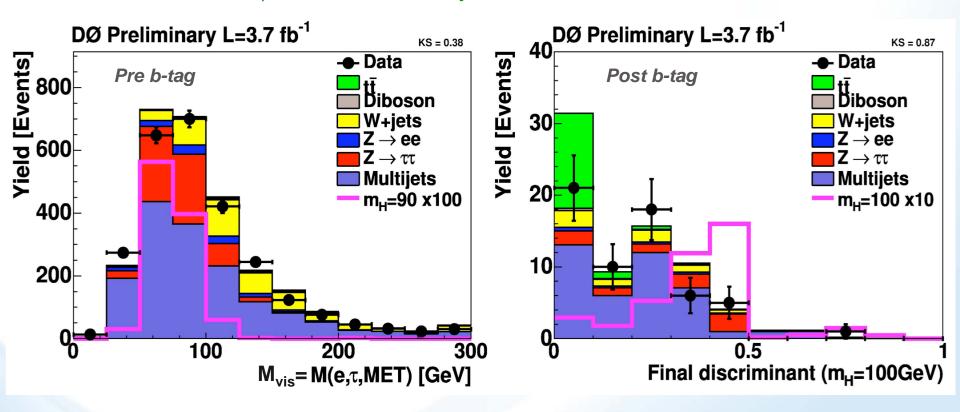


φb → **bbb**: MSSM interpretation

MSSM Exclusions in $(M_A, \tan\beta)$ Parameter Space

DØ: PLB 698, 97 (2011)

CDF: arXiv:1106.4782 (submitted to PRD)


* Translate limits in MSSM benchmark scenarios in $(M_A, \tan\beta)$ parameter space

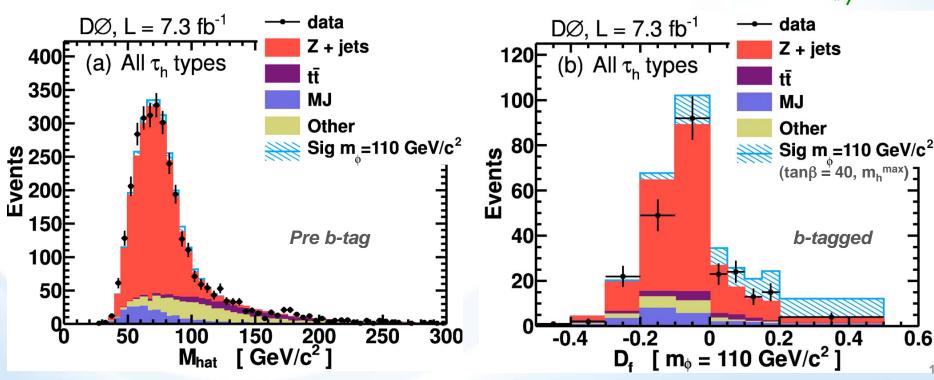
- Higgs mass term, $\mu < 0 \Rightarrow$ enhanced production for 3b
- at large $tan\beta$
 - enhances the bbH coupling as well as increases width of the Higgs

φb → τ_eτ_{had}b Search

- [New] 3.7 fb⁻¹ search considers $\phi b \rightarrow \tau_e \tau_{had} b$
 - use developed techniques from both $\phi \rightarrow \tau \tau$ and $\phi b \rightarrow b\bar{b}b$ searches
 - complimentary to $\phi \rightarrow \tau \tau$ channel as it does not suffer from $Z \rightarrow \tau \tau$ backgrounds
- Discriminate against different backgrounds via MVA techniques
 - suppress $Z \rightarrow \tau\tau$ (Z+jets) \Rightarrow require one b-tag jet via NN b-tagger
 - construct $t\bar{t}$ (D_{tob}) and multijet (D_{MI}) discriminants per Higgs mass point

Combine for final discriminant: $[(D_{MI} + 10)/20] \times D_{tob}$

$\phi b \rightarrow \tau_{\mu} \tau_{had} b$ Search

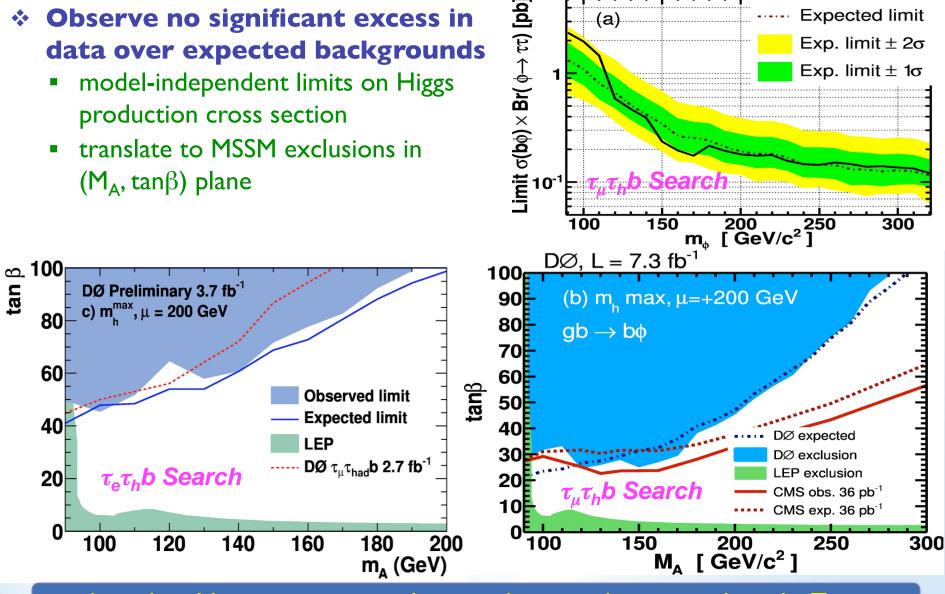

♦ [New: submitted to PRL] 7.3 fb⁻¹ search considers $\phi b \rightarrow \tau_{\mu} \tau_{had} b$

- supersedes earlier 2.7 fb⁻¹ published result: PRL 104, 151801 (2010)
- improved sensitivity
 - ♦ inclusive trigger approach
 - high-performance signal-to-background discriminants

* Form likelihood for final discriminant: D_{MJ} , D_{top} , NN_b , M_{hat}

$$ullet M_{
m hat} \equiv \sqrt{ig(E^{\mu au_h} - p_z^{\mu au_h} + {\rlap/E}_Tig)^2 - |ec p_T^{\, au_h} + ec p_T^{\,\mu} + {\rlap/E}_T|^2}$$

• minimal center-of-mass energy consistent with resonance: $R \to \tau \tau \to \mu \tau_{had} E_T$


$\phi \mathbf{b} \rightarrow \tau_{\mathbf{e},\mu} \tau_{\mathsf{had}} \mathbf{b}$ Results

 $D\emptyset$, L = 7.3 fb⁻¹

(a)

Observe no significant excess in data over expected backgrounds

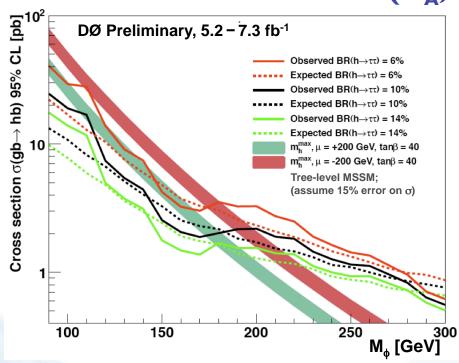
model-independent limits on Higgs production cross section

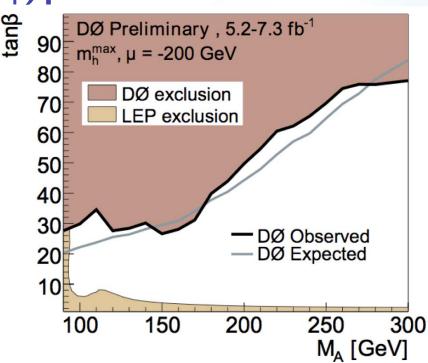
 $\tau_{\mu}\tau_{h}$ b: at low M_{A} , most stringent limit to-date in a direct search at the Tevatron

Observed limit

Expected limit

Exp. limit $\pm 2\sigma$

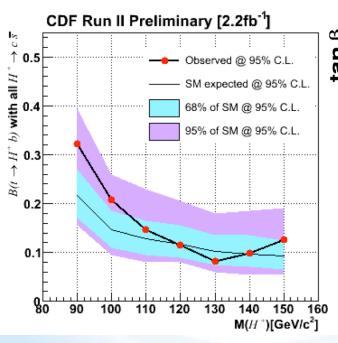

Exp. limit $\pm 1\sigma$

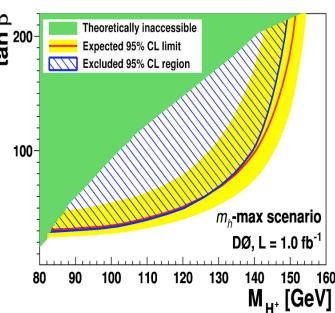


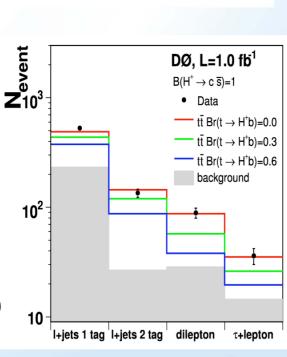
DØ Combined Limits: $\phi b \rightarrow \tau \tau b$, $\phi b \rightarrow 3b$

- ❖ [New for Summer 2011] DØ MSSM Higgs combination
- * Inputs to limits: 5.2 fb⁻¹ ϕ b \rightarrow bbb and 7.3 fb⁻¹ ϕ b \rightarrow $\tau_{\mu}\tau_{had}$ b
 - assume narrow Higgs and sum rule: $BR(\phi \rightarrow b\bar{b}) + BR(\phi \rightarrow \tau\tau) = 1$ \Leftrightarrow for $BR(\phi \rightarrow \tau\tau) = 0.06$, 0.10, and 0.14
 - correlate b-tag efficiency and jet modeling systematics between channels
 - up to $M_{\phi} \simeq 180$ GeV: $\phi b \rightarrow \tau \tau b$ dominates limits; $\phi b \rightarrow 3b$ at higher mass as dependencies on the limit from tau BR decreases

* Translate to exclusions in $(M_A, \tan \beta)$ plane






MSSM Charged Higgs Search

- ♦ If $m_{H^{\pm}} < m_{top}$: search in top pair sample for decay to H^{\pm}
- **Consider two search modes based on H**[±] decays
 - Tauonic model: $H^{\pm} \rightarrow \tau v$ (high tanβ)
 - Leptophobic model: $H^{\pm} \rightarrow c\bar{s}$ (low tan β)
- **Search dilepton,** ℓ +jets, ℓ + τ top channels
- ♦ Select high- p_T leptons, E_T , and b-tag
- ♦ 95% CL limits on BR(t→H+b)
 - DØ I.0 fb⁻¹: PLB 682, 278 (2009)
 - CDF 2.2 fb⁻¹: PRL 103, 101803 (2009)

DØ: NMSSM h→aa Search

❖ next-to-MSSM Higgs decay search, 4.2 fb⁻¹ data

■ h \rightarrow bb branching ratio greatly reduced and dominantly decays to pair of pseudo-scalar Higgs "a": h \rightarrow aa

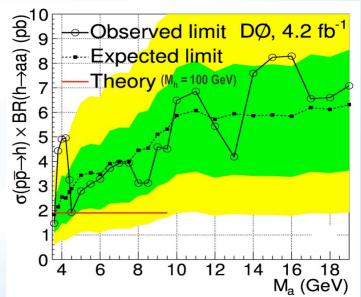
■ general LEP search sets limit: M_h > 82 GeV

For masses: $2m_u < M_a < \sim 2m_\tau$ (~3.6 GeV)

*** dominant decay: aa** → μμμμ

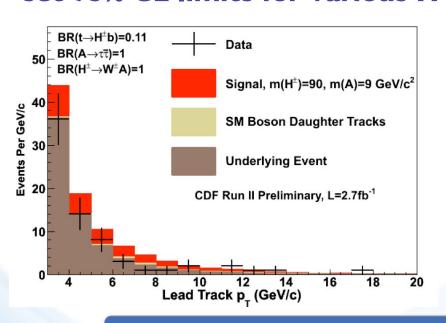
- signature: two pairs of extremely collinear muons due to low M_a
- $\sigma \times BR$ limits < 5–10 fb (for $M_h = 100$ GeV)
- BR($a \rightarrow \mu\mu$) < 7%, assuming BR($h \rightarrow aa$) ~1

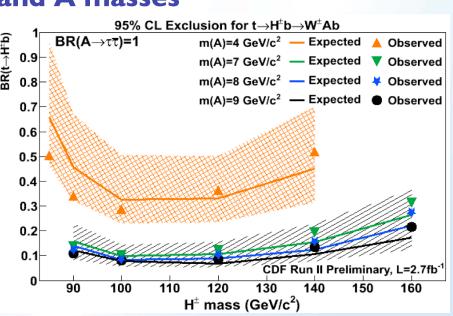
For masses: $2m_{\tau} < M_a < 2m_b (\sim 9 \text{ GeV})$


♦ dominant decay: $aa \rightarrow 2\mu 2\tau$

- signature: one pair of collinear muons and large $\not\!\!E_T$ from a $\rightarrow \tau\tau$ decay
- $\sigma \times BR$ limits: currently are factor of $\approx I-4$ larger than expected Higgs production

PRL, 103 061801 (2009)


μμ-pair



CDF: Charged Higgs Search in NMSSM

- * next-to-MSSM Higgs decay search, 2.7 fb⁻¹ data
 - search in top quark decays: $t \rightarrow H^{\pm}b \rightarrow W^{\pm}Ab \rightarrow W^{\pm}\tau\tau b$
 - if charged Higgs ~ 100 GeV exists \Rightarrow BR(t \rightarrow H[±]b) ~ 10-40%
- Search assumes mass of light pseudo-scalar Higgs (A) < 2m_b
 - region not experimentally excluded
 - select low- p_T isolated tracks created by τ decay
- Data in signal region agrees with expectations, set 95% CL limits for various H[±] and A masses

CP-odd neutral Higgs

 $m_A < 2m_h$

SM W-boson

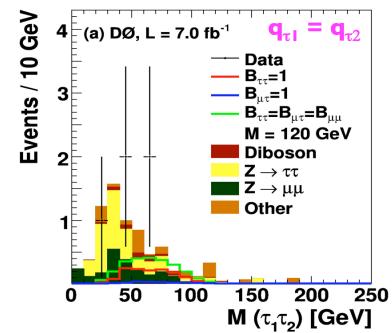
Higgs

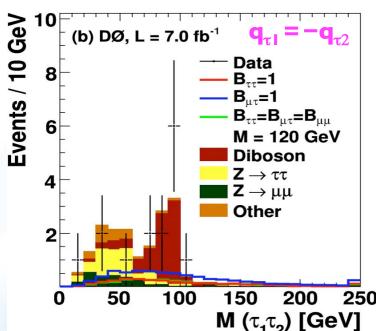
~I00 GeV

b

SM top

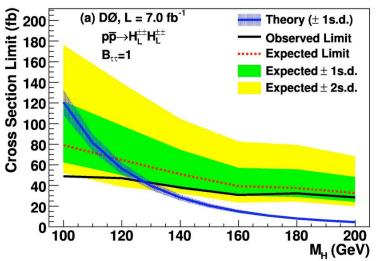
First such limits in the parameter space of top quark decays

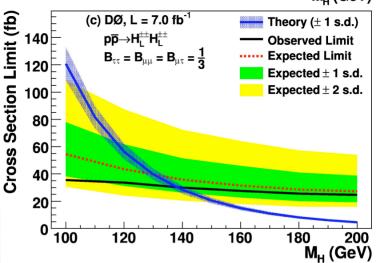

Doubly Charged Higgs Search

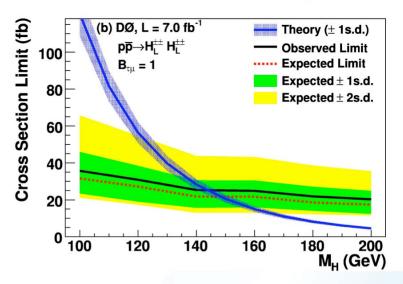

Models with extended Higgs sector predict H^{±±}

- $H^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}$ dominate in $SU(3)_c \times SU(3)_L \times U(1)_Y$ (3-3-1) gauge symmetric models
- Higgs triplet model based on seesaw neutrino mechanism
 - \Rightarrow hierarchy of neutrino masses yields equal BR for H^{±±} \rightarrow ττ, μτ, μμ (if mass of lightest neutrino < 10 meV)

- select events with at least one μ & two τ_{had}
- increase sensitivity to signal by categorizing samples with different backgrounds
 - ϕ q_{τ1} = q_{τ2} with N_μ=1, N_τ=2: Z→ττ + jets, where jet mimics same-sign lepton
 - ϕ q_{τ1} = -q_{τ2} with N_μ= I, N_τ=2: WZ→ μνe⁺e⁻, where electrons misidentified as τ (→ ρν_τ)

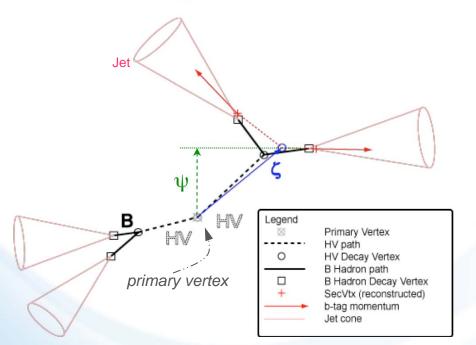


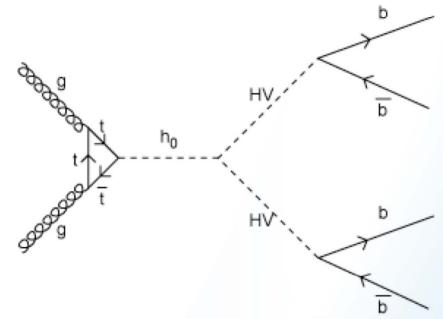



Doubly Charged Higgs: Results

❖ Set 95% C.L. observed (expected) lower limits of M[H^{±±}]

- BR($H_{\perp}^{\pm\pm} \to \tau^{\pm}\tau^{\pm}$) = I: M[$H_{\perp}^{\pm\pm}$] > I28 (II6) GeV
- BR($H_L^{\pm\pm} \to \mu^{\pm}\tau^{\pm}$) = I: M[$H_L^{\pm\pm}$] > I44 (I49) GeV
- BR($H_{L}^{\pm\pm} \to \tau^{\pm}\tau^{\pm}$) = BR($H_{L}^{\pm\pm} \to \mu^{\pm}\tau^{\pm}$) = BR($H_{L}^{\pm\pm} \to \mu^{\pm}\mu^{\pm}$) = ½: M[$H_{L}^{\pm\pm}$] > 138 (130) GeV

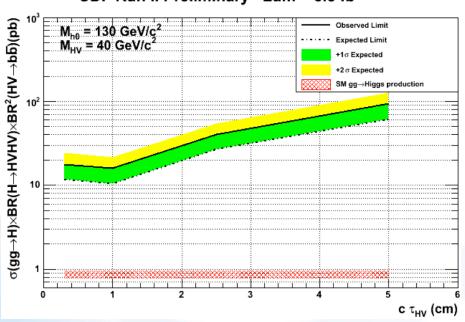

Most stringent limits on $H^{\pm\pm}$ masses in the hadronic $\tau\tau$ final states


arXiv:1106.4250 (Submitted to PRL)

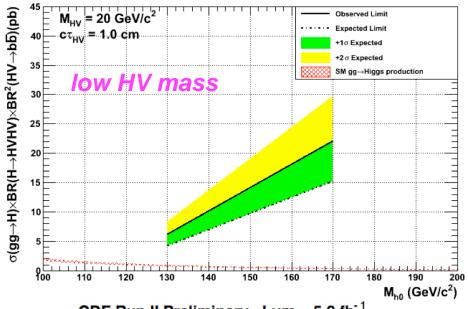
CDF: Hidden Valley (HV)

- 5.8 fb⁻¹ search: heavy particles with displaced secondary vertex (SV)
 - Hidden Valley (HV) model
 - each HV decays into two b-quarks, with 4b final states
- Signature
 - 3+ jets with modified vertexing: large HV decay length $[\mathcal{O}(\sim 1 \text{ cm})]$
- * Model backgrounds from data

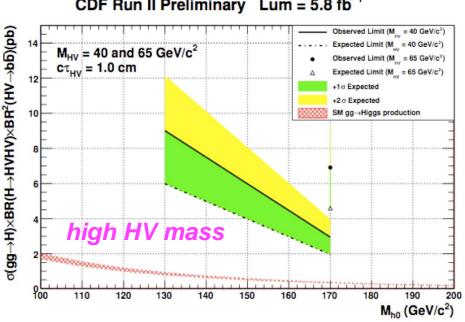
- Optimize signal vs.
 background with variables
 based on reconstructed vertex
 - ψ : Jet impact parameter
 - ζ: Decay vertex of HV particle
- \Leftrightarrow Signal: $\psi, \zeta > 0$
- * multijet background: ψ , ζ uniformly distributed ~ 0



Hidden Valley (HV): Results

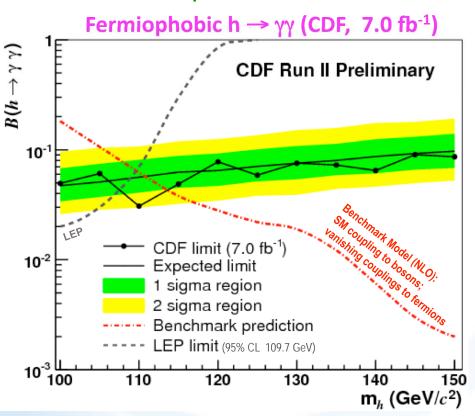

Split into low- and high-HV mass search

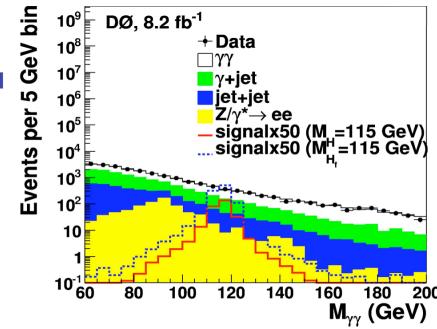
- observe I event, 0.3 0.6 expected background events
- \diamond set $\sigma \times BR$ limits in each HV mass search
 - for various Higgs masses
 - for various HV particle lifetimes


CDF Run II Preliminary Lum = 5.8 fb⁻¹

CDF Run II Preliminary Lum = 5.8 fb⁻¹

CDF Run II Preliminary Lum = 5.8 fb⁻¹





Fermiophobic $h_f \rightarrow \gamma \gamma$ Search

- CDF: 7.0 fb⁻¹ search
 DØ: 8.2 fb⁻¹ [submitted to PRL]
- Distinguish photons with misidentified jet backgrounds using NN
 - CDF: NN enhances central photon-ID as well as central + end-plug photons
 - DØ: implement energy-weighted width of central preshower clusters

- * Search for excess of events in γγ mass spectrum
- DØ, for Fermiophobic couplings, exclude at 95% CL: m_{hf} < 112.9 GeV</p>
- CDF exclude: m_{hf} < 114 GeV</p>
- Tevatron results: sensitivity beyond that of combined LEP experiments
 - currently best limits on Fermiophobic
 Higgs mass

Summary

❖ CDF and DØ actively searching for Higgs in models beyond SM

- results with up to 8.2 fb-1 of data reported here
- probing theoretically very interesting regions

MSSM Higgs

- $(M_A, \tan\beta)$ exclusions from $(b)\phi \rightarrow (b)\tau\tau$ searches comparable to Moriond 2011 limits from CMS and ATLAS
- forthcoming searches with larger datasets should provide further insight into deviations from expectation in 3b search at low M_{Δ}
- updated Tevatron combination expected soon

Models with Extended Higgs sector

- DØ: first search for $H^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}$ decays at hadron collider
- CDF's Hidden Valley results can be used to constrain other models

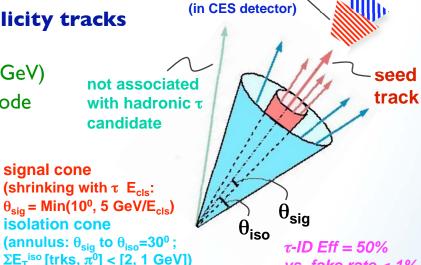
Fermiophobic Higgs

most stringent limits on Fermiophobic Higgs mass

Tevatron delivered > 11.5 fb-1 of data; Stay tuned for updates and combinations expected soon!

Reference Slides

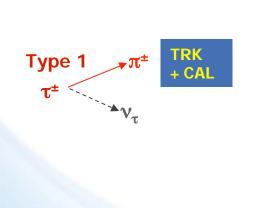
τ-Identification

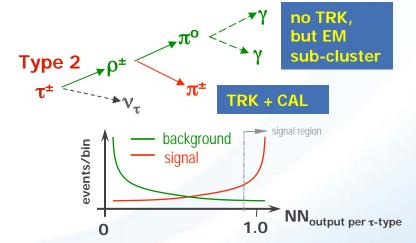


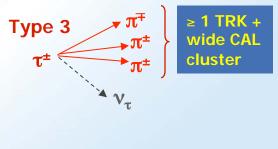
vs. fake rate < 1%

narrow cal clusters matched to low multiplicity tracks

- define [shrinking] signal and isolation cones around seed track's axis (\equiv highest p_{τ} track; > 6 GeV)
- # of tracks inside signal cone defines τ decay mode
- add π° info to track-cal cluster \Rightarrow consistent with τ mass
- τ-ID based on "cuts" to key variables (e.g., sum of isolation E_T , p_T tracks inside cone)




cal cluster

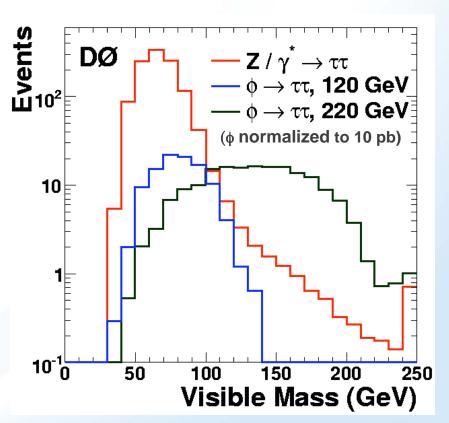


narrow cal energy clusters matched to tracks, with or without EM subclusters \Rightarrow separate τ 's into 3 categories, defined by their decay mode

- πv -like [type I], ρv -like [type 2], and 3-prongs [type 3]
- implement Neural Nets (NN) per τ -type to discriminate τ signal from multijet background

 τ -ID Eff = 65%

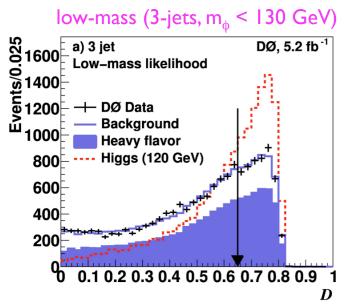
vs. fake rate ~ 2.5%

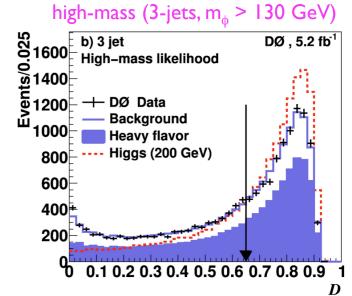

Visible Mass

- * After final event selections for $\phi \rightarrow \tau \tau$, irreducible background from $Z \rightarrow \tau \tau$
 - smaller contribution from EW and QCD multijet processes
- Distinguish Higgs boson by its mass
 - presence of neutrinos in final states \Rightarrow not possible to reconstruct $\tau\tau$ mass
 - use visible mass: the invariant mass of the sum of the τ decay plus missing transverse energies
 - * exploit fact that signal appears as an enhancement above $Z \rightarrow \tau \tau$

$$M_{VIS} = \sqrt{(P^{\tau 1} + P^{\tau 2} + P_T)^2} \quad = \frac{\sqrt{P^{\tau 1} + P^{\tau 2} + P_T}}{\sqrt{P^{\tau 1} + P^{\tau 2} + P_T}}$$

- Use 4-vectors of:
 - $P^{\tau I}$, $P^{\tau 2}$ of visible tau decay products
 - $\mathcal{P}_T = (\mathcal{E}_T, \mathcal{E}_x, \mathcal{E}_y, 0)$, where \mathcal{E}_x and \mathcal{E}_y indicate components of \mathcal{E}_T
- * M_{vis} used as input to $\sigma \times BR$ limit calculation in inclusive $\tau\tau$ search




DØ: **b** → **b** bbb Analysis Overview

❖ 5.2 fb⁻¹ search requires

- separate into 3- and 4-jet channels: $p_T^{\text{jet}} > 20 \text{ GeV}$, $|\eta| < 2.5$
- 3 b-tagged jets with NN based b-tagger, with 2 jets in pair: $p_T^{\text{jet I},2} > 25 \text{ GeV}$

* 6-variable likelihood discriminant $[\mathcal{D}]$

Background Composition			
(3 b-tag Sample)			
bb̄b	~50%		
bbj	~30%		
bbc+bcc	~17%		
ccj	~2%		

❖ Background composition determined from 3-jet sample

fit MC simulated events to data over b-tagging points: 0-, I-, 2-, and 3-tag

Background modeling

- irreducible $b\bar{b}b$ background \Rightarrow indistinguishable from any possible signal
- no control regions to normalize to data
 - * model background shape using combination of data and simulation
 - * predict 3 b-tag bkgnd shape from 2 b-tag data, scaled by simulated 3/2-tag ratio

Multivariate Methods: Variables

h_f → γγ Search

5-variable γ-Neural Network (NN)

 $\Sigma_{trks} p_T(trks)$

 N_{cells} in CAL Layer I within $\Delta R < 0.2$

 N_{cells} in CAL Layer I within $0.2 < \Delta R < 0.4$ number of assoc. CPS clusters with EM_{CAL} energy-weighted width of CPS clusters

φb → bb̄b Search

6-variable Likelihood Discriminant

(for jet pair with 1^{st} and 2^{nd} leading jets)

 $\Delta \eta$ of 2-jets in the pair

 $\Delta \phi$ of 2-jets in the pair

angle: $\phi = a\cos(\text{lead jet}, \text{total } p_T \text{ of jet pair})$

momentum balance: $|p_{bI}-p_{b2}|/|p_{bI}+p_{b2}|$

combined rapidity of jet pair

event sphericity

$\phi b \rightarrow \tau_{\mu} \tau_{had} b$ Search

anti-top NN Discriminant (D _{top})	anti-multijet NN Discriminant (D _{MJ})			
$D_{final} = Likelihood [D_{top}, D_{MJ}, NN_{b-tag}, M_{hat}]$				
$N_{ m jets}$	Muon p_T			
$H_T = \Sigma_{jets} p_T[jets]$	Tau p _T			
$E_{T} = p_{T}^{T} + p_{T}^{u} + H_{T}$	$ \Delta \phi[\mu, \tau] $			
$ \Delta \phi[\mu, au] $	$H_T = \sum_{j \in S} p_T[j \in S]$			
$ \Delta \phi [\mu, MET] $	MET			
$\mathcal{N}_{T} = [p_{T}^{\mu} - p_{T}^{\tau}]/p_{T}^{\tau}$	$m_T[\mu, \tau, MET, jet]$			
MET	M _{collinear}			
$m_T[\mu, MET]$	M_{hat}			
$m_T[\mu, \tau, MET, jet]$	-			
$M_{collinear}$	-			
M_{hat}	-			

N-object m_T defined by: $m_T[O_1,...,O_k,...,O_N] = \sqrt{\sum_{i=1}^{j \le N} \sum_{i=1}^{j \le N} p_T[O_i] \times p_T[O_j] \times \left(1 - \cos\Delta\varphi[O_i;O_k]\right)}$

MSSM Benchmark Scenarios

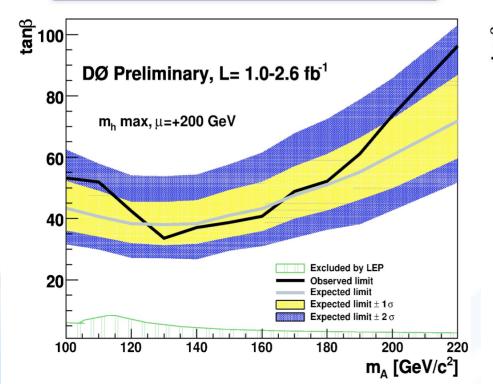
- ***** For neutral Higgs searches: $\sigma \times BR$ limits \Rightarrow interpreted in MSSM
- * Tree-level: Higgs sector of MSSM described by m_A & tanβ
 - radiative corrections introduce dependence on additional SUSY parameters
- Five additional, relevant parameters
 - M_{SUSY} Common Scalar mass: parameterizes squark, gaugino masses
 - X_t Mixing Parameter: related to the trilinear coupling $a_t \rightarrow$ stop mixing
 - M₂ SU(2) gaugino mass term
 - Higgs sector bilinear coupling (mass parameter, where $\Delta_b \propto \mu \times \tan \beta$)
 - m_e gluino mass: comes in via loops

Two common benchmarks

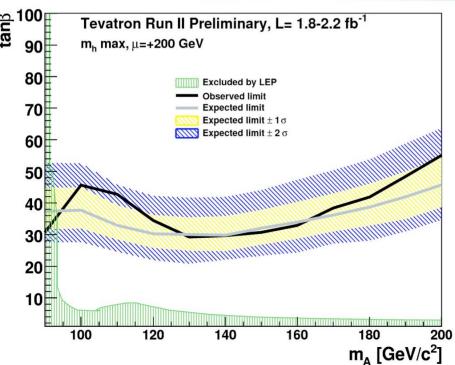
- m_h^{max} (max-mixing): Higgs boson mass, m_h, close to maximum possible value for a given tanβ
- no-mixing: vanishing mixing in stop sector ⇒ small Higgs
 boson mass, m_h

Canatasinad Madal	Unification of CLL	(2) and $11(1)$	sousine messes
Constrained Model:	Offication of 30	(Z) and $O(1)$	gaugino masses

	m _h ^{max}	no-mixing
M_{SUSY}	I TeV	2 TeV
X_{t}	2 TeV	0
M_2	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
$m_{\widetilde{g}}$	800 GeV	1600 GeV



MSSM: Tevatron & DØ Combined Limits



- **DØ** combination across search channels \Rightarrow tan β vs. m_A exclusions
 - $\phi \rightarrow \tau\tau$ (I.0-2.2 fb⁻¹), $\phi b \rightarrow \tau\tau b$ (I.2 fb⁻¹), and $\phi b \rightarrow b\bar{b}b$ (2.6 fb⁻¹)
 - does not include recent 7.3 fb⁻¹ ϕ b $\rightarrow \tau \tau$ b, 5.4 fb⁻¹ $\phi \rightarrow \tau \tau$, 5.2 fb⁻¹ ϕ b \rightarrow 3b search
- * Reach similar sensitivity as Tevatron combination
 - inputs: CDF's $\phi \rightarrow \tau \tau$ (I.8 fb⁻¹) and DØ's $\phi \rightarrow \tau \tau$ (2.2 fb⁻¹) searches
 - sensitivity at low m_A: $\tan \beta \sim 30 \ [\mathcal{O}(m_{top}/m_b)]$

DØ MSSM Combination

Tevatron MSSM Combination

