Imperial College London

Tevatron Combination

Gavin Davies
On behalf of the CDF and DØ Collaborations

Outline

- Introduction
- Inputs
 - See previous talks
- Techniques
- Results
- Conclusions
- Future prospects
 - See Ben's talk

[Thanks to all Tevatron colleagues]

Introduction

- Higgs Hunting a huge, worldwide enterprise
- Still ongoing after decades

- Leave no stone unturned
 - Improve existing analyses
 - Include new channels
- Combine across channels & experiments

Previous Limits

Summer 2010

Tevatron Run II Preliminary, $\langle L \rangle = 5.9 \text{ fb}^{-1}$

Spring 2011

Tevatron Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$

SM excluded:

$$158 < m_H < 175 \text{ GeV obs}$$

$$156 < m_H < 173 \text{ GeV exp}$$

SM excluded:

160

170

180

150

140

$$158 < m_H < 173 \text{ GeV obs}$$

$$153 < m_H < 179 \text{ GeV exp}$$

March 7, 2011

 $0 190 \overline{200}$ $m_{H} (GeV/c^{2})$

130

Inputs - I

- Total: 165 mutually exclusive 'sub-channels'
 - 71 from CDF, 94 from DØ

Channel	Luminosity (fb^{-1})	m_H range (GeV/c^2)
$WH \rightarrow \ell\nu bb$ 2-jet channels $4\times (TDT,LDT,ST,LDTX)$	7.5	100-150
$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $2 \times (\text{TDT,LDT,ST})$	5.6	100-150
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (TDT,LDT,ST)	7.8	100-150
$ZH \to \ell^+\ell^-b\bar{b}$ 2×(TDT,LDT,ST)	7.7	100-150
$H \to W^+W^-$ 2×(0 jets,1 jet)+(2 or more jets)+(low- $m_{\ell\ell}$)+(e- τ_{had})+(μ - τ_h	nad) 8.2	110-200
$WH \to WW^+W^-$ (same-sign leptons)+(tri-leptons)	8.2	110-200
$ZH \to ZW^+W^-$ (tri-leptons with 1 jet)+(tri-leptons with 2 or more jets)	8.2	110-200
	8.2	110-200
$H + X \rightarrow \tau^+ \tau^-$ (1 jet)+(2 jets)	6.0	100-150
$WH \rightarrow \ell \nu \tau^+ \tau^- / ZH \rightarrow \ell^+ \ell^- \tau^+ \tau^- (\ell - \ell - \tau_{had}) + (e - \mu - \tau_{had}) + (\ell - \tau_{had} - \tau_{had})$	6.2	110-150
$WH + ZH \rightarrow jjb\bar{b}$ (GF,VBF)×(TDT,LDT)	4.0	100-150
$H \to \gamma \gamma$ (CC,CP,CC-Conv,CP-Conv)	7.0	100-150
$t\bar{t}H \to WWb\bar{b}b\bar{b}$ (lepton) (4jet,5jet)×(TTT,TTL,TLL,TDT,LDT)	6.3	100-150
$t\bar{t}H \to WWb\bar{b}b\bar{b}$ (no lepton) (low met,high met)×(2 tags,3 or more tags)	5.7	100-150

Inputs - II

Channel	Luminosity (fb^{-1})	m_H range $({ m GeV}/c^2)$
$WH \rightarrow \ell \nu bb$ (LST,LDT,2,3 jet)	8.5	100-150
$ZH \to \nu \bar{\nu} b \bar{b}$ (LST,LDT)	8.4	100-150
$ZH \to \ell^+\ell^-b\bar{b}$ (TST,TLDT,ee, $\mu\mu$,ee _{ICR} , $\mu\mu_{trk}$)	8.6	100-150
$\begin{array}{l} H + X \to \ell^{\pm} \tau_{had}^{\mp} jj \\ VH \to \ell^{\pm} \ell^{\pm} + X \end{array}$	4.3	105-200
	5.3	115-200
$H \to W^+W^- \to \ell^{\pm}\nu\ell^{\mp}\nu$ (0,1,2+ jet)	8.1	115-200
$H \to W^+W^- \to \mu\nu\tau_{had}\nu$	7.3	115-200
$H \to W^+W^- \to \ell \bar{\nu} jj$	5.4	130-200
$H \to \gamma \gamma$	8.2	100-150

Techniques

- Two statistical approaches used
 - Better than 10% agreement over whole mass range (~2% on average)
- Bayesian
 - Flat signal prior, credibility intervals
- Modified frequentist
 - Log-likelihood test statistic, $CL_s = CL_{s+b}/CL_b$
- Operate on binned, final discriminants
 - Poisson statistics assumed for each bin
- Systematics introduced as nuisance parameters
 - Impact of these mitigated with constraints from data

Systematics

- Unconstrained uncertainties can be as large as signal
- Included using a Bayesian formalism
 - Gaussian prior
- Consider both rate and shape errors
- Correlations included where appropriate
 - e.g. Across experiments
 - Mainly theoretical uncertainties, component of luminosity uncertainty
 - e.g. Across channels
 - Theoretical & experimental e.g. Within an experiment: Lepton / jet efficiencies, b-tagging, jet energy scale
 - Included in constraints from data

Theoretical Uncertainties - I

- Focus here on gg → H process
 - Cross-section: NNLO with soft resummation to NNLL (& EW corrections)
 - D. de Florian and M. Grazzini, arXiv:0901.2427 [hep-ph]
 - C. Anastasiou, R. Boughezal and F. Petriello, arXiv:0811.3458 [hep-ph]
 - Use MSTW08 PDF set as recommended by PDF4LHC
- Have included different errors for different jet bins for a while, but some changes this time
- Channels that don't split by number of jets
 - PDF+ α_s : Use PDF4LHC prescription
 - Scale: Vary factorisation + renormalization errors by factor of 2 together
 - PDF+ α_s and scale treated as uncorrelated

Theoretical Uncertainties - II

- Channels that split by number of jets
 - Different PDF+ α_s and scale errors for each bin as before but
 - Treat scale uncertainty of NNLO+NNLL inclusive, NLO-1-or-more & NLO-2-or-more-jets as uncorrelated a la BNL
 - Berger et al., arXiv:1012.4480 [hep-ph]
 - Stewart and Tackmann, arXiv:1107.2217 [hep-ph]

- From these calculate exclusive H+0jet, H+1jet, H+2jet-or-more scale uncertainties

Jet bin	s0	s1	s2
0 jet	13.4%	-23.0%	0
1 jet	0	35%	-12.7%
>= 2 jets	0	0	33%

- PDF errors from Anastasiou et al., JHEP 0908, 099 (2009) as before

Results

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$

With background subtraction

Agreement between background model and data very good

Log-likelihood ratio (LLR)

LLR = $-2\ln Q$ where Q = L_{s+b}/L_b

Exclusion

Tevatron Run II Preliminary, L ≤ 8.6 fb⁻¹

SM Higgs excluded @ 95% C.L.

$$156 < m_H < 177 \text{ GeV obs } (148 < m_H < 180 \text{ GeV exp})$$

 $100 < m_H < 108 \text{ GeV obs } (100 < m_H < 109 \text{ GeV exp})$

Exclusion: CLs

$$CL_s = CL_{s+b}/CL_b$$

Other Combinations

Look at associated production & H → bb decay

• Expected and observed in good agreement

Other Combinations

Channels targeting H → WW decay

Other combinations

• Look at H $\rightarrow \gamma \gamma$

Ratio to SM production

Cross section x BR

- Fermiophobic combination soon
 - Eg CDF alone m_{hf} < 114.8GeV

Fourth Generation

- Include only gg → H production
 - Enhanced by a factor 9
- Look at H → WW/ZZ decays
- Set limits on cross section x Br

- Set limits on 4G model
 - Exclude
 124 < m_H < 286 GeV obs
 (120 < m_H < 267 GeV exp)

Conclusions

- New combination of SM Higgs boson searches at Tevatron
- High mass:
 - Observed exclusion: 156 < m_H < 177 GeV
 - Expected exclusion: 148 < m_H < 180 GeV
- Elsewhere:
 - Expected sensitivity: within 1.4 of SM prediction from 100-185 GeV
 - Exclusion for $100 < m_H < 108 \text{ GeV}$
 - Slight excess over range 125-155 GeV
- Expect well over 10fb⁻¹ by end of Run
- More analysis improvements in the pipeline
- Exciting times ahead
 - See http://tevnphwg.fnal.gov/ for further details

Backup slides

Updated Global EW Fit

M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott, and J. Stelzer, arXiv:1107.0975v1

London

New njet dependent scale error

- 3 scales Tackmann et al., arXiv:1107.2217 [hep-ph] \rightarrow 3 nuisance parameters
 - SO scale uncertainty on x0, S1 scale uncertainty on x1, S2 scale uncertainty on x2
- X0: Inclusive cross section: Florian & Grazzini, Phys. Lett. B 674, 291 (2009)
- X1: H+1-or-more-jets: MCFM
- x2: H+2-or-more-jets: Campbell, Ellis & Williams, arXiv:1001.4495 [hep-ph]

Signal Category	SO	S1	S2
0-jet	S0x(x0/(x0-x1))	-S1x(x1/(x0-x1))	0
1-jet	0	S1x(x1/(x1-x2))	-S2x(x2/x1-x2)
2-jet	0	0	S2
Signal Category	S0	S 1	S2
0-jet	0.13	-0.23	0
1-jet	0	0.35	-0.13
2-jet	0	0	0.33
Imperial College	Higgs Hu	ating _ 2011	

Results - 140GeV

Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$

With background subtraction

Integrated s/b distributions

Start integrating from high s/b side

CL_{s+b}

An alternate approach - similar to power constrained limit from ATLAS

By experiment

By channel

CDF Fermiophobic

Expected Exclusion: $m_H < 114.4 \text{ GeV}$ Observed Exclusion: $m_H < 114.8 \text{ GeV}$

Comparison with ATLAS result

Tevatron Run II Preliminary, L ≤ 8.6 fb⁻¹

CLS

Need to define test statistic & treatment of nuisance parameters

Table 10: Comparison of CL_s definitions as used at LEP, Tevatron, and adopted for summer 2011 Higgs combination at LHC.

	Test statistic	Profiled?	Test statistic sampling
LEP	$q_{\mu} = -2 \ln \frac{\mathcal{L}(data \mu,\tilde{\theta})}{\mathcal{L}(data 0,\tilde{\theta})}$	no	Bayesian-frequentist hybrid
Tevatron	$q_{\mu} = -2 \ln \frac{\mathcal{L}(data \mu, \hat{\theta}_{\mu})}{\mathcal{L}(data 0, \hat{\theta}_{0})}$	yes	Bayesian-frequentist hybrid
LHC	$q_{\mu} = -2 \ln \frac{\mathcal{L}(data \mu, \hat{\theta}_{\mu})}{\mathcal{L}(data \hat{\mu}, \hat{\theta})}$	$yes (0 \le \hat{\mu} \le \mu)$	frequentist

From: ATLAS Collaboration, CMS Collaboration, and LHC Higgs Combination Group, "Procedure for the LHC Higgs boson search combination in summer 2011", (July, 2011)