Developments on SM Higgs-boson cross sections and branching ratios

Laura Reina

Higgs Hunting 2011, Orsay, France

Outline

- Living through the most exciting time for Higgs physics: crucial to have access to the best theoretical predictions for SM Higgs-boson cross sections and branching ratios.
 - \hookrightarrow foundation of the Tevatron exclusion limits;
 - → spirit of the LHC Higgs Cross Section Working Group (https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections).
- State of the art of inclusive results for a SM Higgs boson
 (→ see Grazzini's talk for in depth analysis of main channels).
- Towards exclusive results:
 - \hookrightarrow goals,
 - \hookrightarrow challenges,
 - \hookrightarrow highlights from existing studies.
- Results on branching ratios.

Motivation: with $\sqrt{s} = 7$ TeV and a few fb⁻¹...

Combining mainly $H \to W^+W^-$, $H \to ZZ$, $H \to \gamma\gamma$, ATLAS and CMS indicate that,

- if no signal, the SM Higgs can be excluded up to 500 GeV;
- a 5σ significance for a SM Higgs in the 140 170 GeV mass range.
- gain by adding new channels and optimizing cuts (\rightarrow see Metha's talk).

Need adequate theoretical input and careful matching between th. and exp.

Inclusive SM Higgs-boson production cross sections (LHC Higgs Cross Section WG, 2010) (arXiv:1101.0593 → CERN Yellow Report)

Implemented a coherent Higgs precision program:

- \hookrightarrow all orders of calculated higher orders corrections included (tested with all existing calculations);
- \hookrightarrow common recipe for renormalization+factorization scale dependence;
- \hookrightarrow PDF and α_s errors following PDF4LHC prescription (\rightarrow see de Florian's talk);
- \hookrightarrow all other parametric errors included;
- \hookrightarrow theory errors combined according to common recipe.

For $\sqrt{s} = 7$ TeV (from S. Dittmaier's talk, BNL, May 2011)

		Uncertainties		NLO/NNLO/NNLO+	
	M_H	scale	PDF4LHC	QCD	\mathbf{EW}
ggF	$< 500 { m ~GeV}$	6-10%	8-10%	> 100%	5%
VBF	$< 500 { m ~GeV}$	1%	2-7%	5%	5%
WH	$< 300 { m ~GeV}$	1%	3-4%	30%	5 - 10%
ZH	$< 300 { m ~GeV}$	1-2%	3-4%	40%	5%
$t\bar{t}H$	$< 300 { m ~GeV}$	10%	9%	5%	?

For $\sqrt{s} = 14$ TeV

		Uncertainties		NLO/NNLO/NNLO-	
	M_H	scale	PDF4LHC	QCD	\mathbf{EW}
ggF	$< 500 { m ~GeV}$	6-14%	7%	> 100%	5%
VBF	$< 500 { m ~GeV}$	1%	3-4%	5%	5%
WH	$< 300 { m ~GeV}$	1%	3-4%	30%	5 - 10%
ZH	$< 300 { m ~GeV}$	2-4%	3-4%	45%	5%
$t\bar{t}H$	$< 300 { m ~GeV}$	10%	9%	15- $20%$?

Based on several contributions:

Higgs process	$\sigma_{NLO,NNLO,NNLL,EW}$
gg ightarrow H	 S.Dawson, NPB 359 (1991), A.Djouadi, M.Spira, P.Zerwas, PLB 264 (1991) C.J.Glosser et al., JHEP (2002); V.Ravindran et al., NPB 634 (2002) D. de Florian et al., PRL 82 (1999) R.Harlander, W.Kilgore, PRL 88 (2002) (NNLO) C.Anastasiou, K.Melnikov, NPB 646 (2002) (NNLO) V.Ravindran et al., NPB 665 (2003) (NNLO) S.Catani et al. JHEP 0307 (2003) (NNLL) G.Bozzi et al., PLB 564 (2003), NPB 737 (2006) (NNLL) C.Anastasiou, R.Boughezal, F.Petriello, JHEP (2008) (QCD+EW)
$q\bar{q} \rightarrow (W,Z)H$	T.Han, S.Willenbrock, PLB 273 (1991) M.L.Ciccolini, S.Dittmaier, and M.Krämer (2003) (EW) O.Brien, A.Djouadi, R.Harlander, PLB 579 (2004) (NNLO)
$q\bar{q} \rightarrow q\bar{q}H$	T.Han, G.Valencia, S.Willenbrock, PRL 69 (1992) T.Figy, C.Oleari, D.Zeppenfeld, PRD 68 (2003) M.L.Ciccolini, A.Denner,S.Dittmaier (2008) (QCD+EW) P.Bolzoni, F.Maltoni, S.O.Moch, and M.Zaro (2010) (NNLO)
q ar q, gg o t ar t H	W.Beenakker <i>et al.</i> , PRL 87 (2001), NPB 653 (2003) S.Dawson <i>et al.</i> , PRL 87 (2001), PRD 65 (2002), PRD 67,68 (2003)

Towards exclusive studies: including decays, cuts, jet vetos, backgrounds, ...

- Provide distributions from NLO/NNLO/NNLL calculations.
- Study the impact of higher order corrections in the presence of cuts, jet vetos, etc.
- If cuts imposed on decay products, need to include decays and estimate higher order corrections to the new process
 - high multiplicity of final state makes calculation more involved (more and more NLO calculations coming on-line)
 - narrow width approximations often excellent approximation (top, light Higgs) (Ex.: Melnikov, Schulze, arXiv:1006.0910, arXiv:1102.1967)
- Interface with NLO Monte Carlo programs should be implemented and results compared: MC@NLO, POWHEG.
- ▶ Backgrounds need to be calculated with comparable accuracy.
- ▷ Signal-background interference needs to be carefully adressed.
- More channel-specific issues . . .

Magnitude of higher order corrections varies significantly with signal selection cuts and vetoes.

<u>Ex</u>.: $(gg \rightarrow)H \rightarrow W^+W^- \rightarrow l^+\nu l^-\bar{\nu}$

 $\begin{array}{l} [\text{Anastasiou,Dissertori,Stöckli} \ (07)] \\ (\rightarrow \text{see also Grazzini's talk}) \end{array}$

Main issues:

- Inclusive studies not indicative for exclusive predictions.
- Logarithmic dependence from extra scales (cuts/vetos) interferes with usual μ_R and μ_F -dependence: difficult to estimate overall theoretical uncertainty (very cut/veto-dependent).
- Need to question stability of perturbative prediction
- Need dedicated studies, for all channels/analyses: availability of NLO (and NNLO if needed) codes becomes mandatory.

 \Downarrow

The exercise we are now completing for SM Higgs searches is a glorious application of the incredible progress in NLO calculations over the past few years.

NLO: challenges have largely been faced and enormous progress has been made (\rightarrow see also Maltoni's talk)

- several independent codes based on traditional FD's approach
- several NLO processes collected and viable in MFCM [Campbell, Ellis]
- Enormous progress towards automation:
 - $\rightarrow\,$ Virtual corrections: new techniques based on unitarity methods and recursion relations
 - BlackHat [Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre]
 - ▷ Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi]
 - HELAC+CutTools,Samurai [Bevilacqua, Czakon, van Harmeren, Papadopoulos, Pittau,Worek; Mastrolia, Ossola, Reiter, Tramontano]
 - $\rightarrow\,$ Real corrections: based on Catani-Seymour Dipole subtraction or FKS subtraction
 - ▷ Sherpa [Gleisberg, Krauss]
 - ▷ Madgraph (AutoDipole) [Hasegawa, Moch, Uwer]
 - Madgraph (MadDipole) [Frederix, Gehrmann, Greiner]
 - Madgraph (MadFKS) [Frederix, Frixione, Maltoni, Stelzer]

• virtual+real:

▷ MadLoop+MadFKS [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]

- interface to parton shower well advanced:
 - ▷ POWHEG [Nason, Oleari, Alioli, Re]
 - ▷ MC@NLO [Frixione, Webber, Nason, Frederix, Maltoni, Stelzer]
 - ▷ aMC@NLO [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli]

 \Downarrow

Tools that we can now use for signal and (high multiplicity) background.

A choice of examples to follow ...

W+jets

Blackhat+Sherpa: W+3j, W+4j at NLO

W + b-jets: crucial background for WH production

Two interesting signatures:

- W + 2b jets $(m_b \neq 0)$:
 - Febres Cordero, L. R., Wackeroth, arXiv:hep-ph/0606102, arXiv:0906.1923
 - Badger, Campbell, Ellis, arXiv:1011.6647
 - Oleari, L. R., arXiv.1105.4488 \longrightarrow POWHEG
 - [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli] $\longrightarrow aMC@NLO$
- W + 2 jets with at least one b jet:
 - Campbell, Ellis, Febres Cordero, Maltoni, L. R., Wackeroth, Willenbrock, arXiv:0809.3003
 - the CDF collaboration, arXiv:0909.1505,
 Campbell, Febres Cordero, L. R., arXiv:1001.3362, arXiv:1001.2954
 - the ATLAS collaboration, A. Messina's talk at EPS 2011,
 Caola, Campbell, Febres Cordero, L. R., Wackeroth, arXiv:1107.3714

In a nutshell:

One or two LO processes, depending on choice of 4FNS vs 5FNS:

 $O(\alpha_s)$ corrections

Correspondently, at NLO:

- 1. $q\bar{q}' \rightarrow Wb\bar{b}$ at tree level and one loop $(m_b \neq 0)$
- 2. $q\bar{q}' \to W b\bar{b}g$ at tree level $(m_b \neq 0)$
- 3. $bq \to Wbq'$ at tree level and one loop $(m_b = 0)$
- 4. $bq \to Wbq'g$ and $bg \to Wbq'\bar{q}$ at tree level $(m_b = 0)$
- 5. $gq \to Wb\bar{b}q'$ at tree level $(m_b \neq 0) \to$ avoiding double counting:

- \triangleright W + 2b jets: processes 1 + 2 + 5
- \triangleright W + 2 jets with at least one b jet: processes $1 + \cdots + 5$.

Comparison with CDF measurement: a puzzle?

CDF Note 9321 (arXiv:0909.1505):

 $\sigma_{b-jet}(W + b jets) \cdot Br(W \rightarrow l\nu) = 2.74 \pm 0.27(stat) \pm 0.42(syst) pb$

[Neu, Thomson, Heinrich]

From our W + 1b calculation:

[Campbell, Febres Cordero, L.R.]

 $\sigma_{\rm b-jet}(W + b\,{\rm jets}) \cdot Br(W \rightarrow l\nu) = 1.22 \pm 0.14 \text{ pb}$

For comparison:

ALPGEN prediction: 0.78 pb PYTHIA prediction: 1.10 pb

Comparison with ATLAS

[Gollig, Messina, et al.]

Further development: $Wb\overline{b}$ implemented in POWHEG and MC@NLO, including $W \to l\nu_l$ decay.

Distribution sample:

- used to estimate showering and hadronization uncertainties;
- $bq \rightarrow bq'W$ process being implemented.

$t\bar{t}b\bar{b}$ at NLO: background for $t\bar{t}H, H \to b\bar{b}$.

[Bredenstein, Denner, Dittmaier, Pozzorini, arXiv:0905.0110, arXiv:1001.4006] [Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, arXiv:0907.4723]

best central scale choice:

$$\mu_0^2 = m_t \sqrt{p_T^b p_T^{\bar{b}}}$$

hard b jet often from initial state gluons

different from $t\bar{t}H$

(Bredenstein, et al.)

Important to observe that:

• effect of jet veto on extra light jet:

• regime of *boosted Higgs*:

$t\bar{t}b\bar{b}$ distributions: signal vs background, at NLO

(Bevilacqua, Czakon, Garzelli, van Hameren, Papadopoulos, Pittau, Worek, arXiv:1003.1241, Les Houches 09)

- \triangleright $t\bar{t}b\bar{b}$ background: LO and NLO;
- \triangleright $t\bar{t}H$ with $H \rightarrow b\bar{b}$: LO and NLO, calculated in NWA (valid for small M_H);
- \triangleright to be revisited within the Higgs Cross Section WG (exclusive studies);
- \triangleright signal now available in aMC@NLO (\rightarrow see also Maltoni's talk)

SM Branching Ratios

uncertainties:

- theoretical (QCD, EW)
- parametric (m_c, m_b, \ldots)

linearly combined.

Tools:

- HDECAY [Djouadi, Kalinowski, Müllheitner, Spira]
- Prophecy4f [Bredenstein, Denner, Dittmaier, Mück, Weber]
- EW-NLO corrections to $H \rightarrow \gamma \gamma$ and $H \rightarrow gg$ [Actis, Passarino, Sturm, Uccirati]

Strategy (from D. Rebuzzi's talk, BNL, May 2011)

- \hookrightarrow Calculate decay partial width as accurate as possible for each decay mode.
- \hookrightarrow Calculate branching ratio from full set of partial width.
- \hookrightarrow Define Higgs total width as

$$\Gamma_{H} = \Gamma^{\text{HDECAY}} - \Gamma^{\text{HDECAY}}_{ZZ} - \Gamma^{\text{HDECAY}}_{WW} + \Gamma^{\text{Profecy4f}}_{4f}$$

where

$$\Gamma_{4f}^{\text{Profecy4f}} = \Gamma_{H \to WW^* \to 4f} + \Gamma_{H \to ZZ^* \to 4f} + \Gamma_{WW/ZZ-int}$$

Results (preliminary, to be compared with [Baglio, Djouadi, arXiv:1012.0530])

Process	QCD	${ m EW}$	Total
$H o b \bar{b}$	$\sim 0.1 - 0.2\%$	$1 - 2\% \ (M_H \le 135 \text{ GeV})$	$\sim 3-4\%$
$H \to c \bar{c}$	$\sim 0.1 - 0.2\%$	$1 - 2\% \ (M_H \le 135 \text{ GeV})$	$\sim 10 - 13\%$
$H \to \tau \tau$		$1 - 2\% \ (M_H \le 135 \text{ GeV})$	$\sim 3-6\%$
$H \to t \bar{t}$	$\sim 5\%$	$2 - 5\% \ (M_H \le 500 \ { m GeV})$	$\sim 5-10\%$
$H \to WW/ZZ \to 4f$	< 1%	$0.5\%~(M_H \le 500~{ m GeV})$	$\leq 2\%$
H ightarrow gg	$\sim 10\%$	$\sim 1\%$	$\sim 15-17\%$
$H \to \gamma \gamma$	< 0.5%	< 1%	$\sim 1\%$

Conclusions and Outlook

- We are living through a new era in Higgs-boson physics: looking for direct evidence.
- Higgs-boson precision physics has given a first coherent set of predictions for inclusive observables: Higgs-boson production cross sections and branching ratios.
- Short term: study exclusive observables, including decays, background processes, and experimental cuts.
- Long term: carry through a precision program that also include measurements of Higgs-boson properties, to identify possible candidates:
 - the LHC will play an important role but need very high luminosity;
 - LHC measurements will be important indications but are intrinsically model dependent;
 - a high energy Linear Collider could be the best if not the only environment to complete and conclude the investigation of EWSB.