

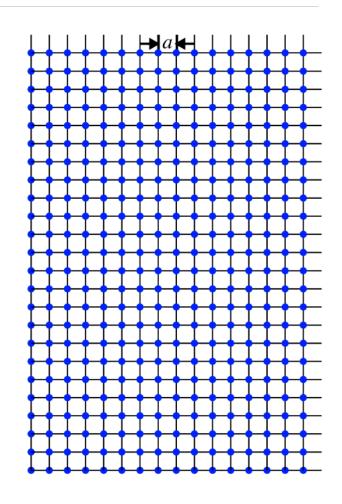
2015 Standard Model Finale: Theory vs. Experiment

KONSTANTIN PETROV (IRFU/SPhN)

2015 Standard Model Finale: Theory vs. Experiment

KONSTANTIN PETROV (IRFU/SPhN)

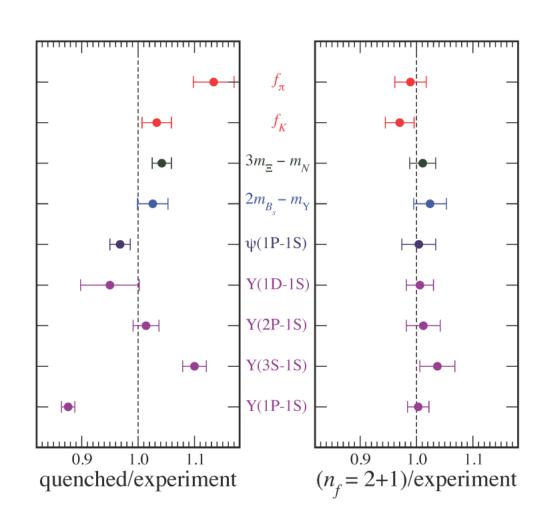
Brief History of Euclidian Time

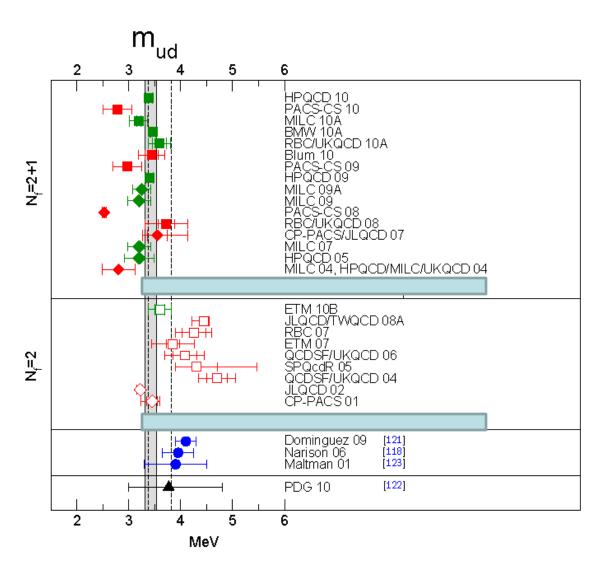

- Lattice started in the 70s
- became a promising child of pure theory
- and never had a hope to grow up
- and do anything quantitative
- but it has proved the asymptotic freedom
- and demonstrated confinement
- basically proven that QCD is the theory of strong interactions
- but in '83 K.Wilson suggested that we would need lattices of 256x512
- before it is quantitative
- while we still run 48x96
- So, how are we doing?

Brief History of Euclidian Time

 $L_4 = N_4 a$

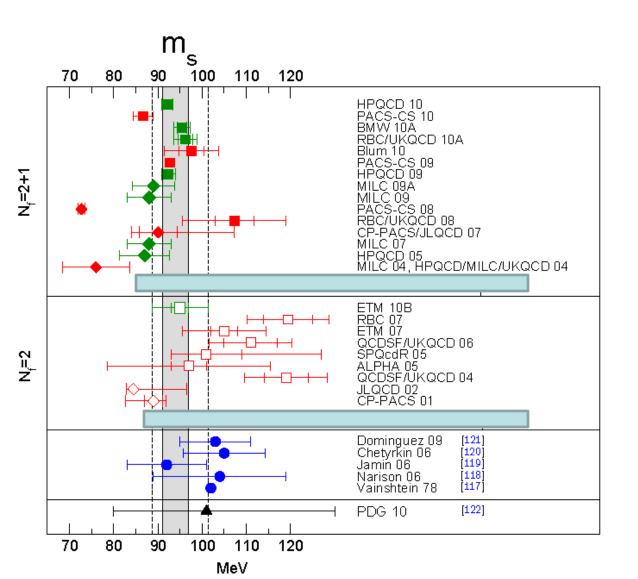
$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \ \mathcal{D}\Psi \ \mathcal{D}\bar{\Psi} \ \exp(-S) [\bullet]$$
$$= \frac{1}{Z} \int \mathcal{D}U \det(\mathcal{D}+m) \exp(-S) [\bullet']$$


- start from a random system
- formulate rules for the evolution
- based on the physics you want to study
- go drink coffee for a month [or a year][or two]
- you will have hundreds of independent snapshots
- of what you think is a real world


$$L = N_S a$$

Brief History of Euclidian Time

- and if you have a GigaFlops
- you get the left plot
- in about 5 years
- and if you have a TeraFlops
- you get the right plot
- in about the same amount of time



Sweet smell of success

- picture from the FLAG
- where I removedFLAG averages
- because it is not a statistical ensemble
- so we are winning this round
- but is there something strange?

Sweet smell of success

- no, with the strange
 it is even better
- even in the case when
 we ignored loops
 involving it

so I guess we can all go home?

Road to Success

- Free Lunch, also known as Moore's Law
- Exponential growth of computer power
- Which we also helped with custom-build computers
- APE100 to APEMille to APENext to QPACE to AuroraSCI
- QCDSP to QCDOC to BlueGene (yes, bluegene)
- GigaScale to TeraScale to PetaScale
- ...and using every available piece of hardware

Road to Success

- But even that cannot compensate cruelty of Nature
- The "Berlin Wall" in 2001 was a demo of exponential growth of effort while reaching continuum and physical masses
- So the algorithmic work intensified and made it linear
- while shaving off a factor of 100
- and the "wall" crumbled, as walls tend to do
- but how much of a success is it?

The Battle for Unitarity the first row

$$egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

$$V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1$$

the highest precision attained

studied from Kaon decay

and the lattice gives the $f_{\scriptscriptstyle K}/f_{\scriptscriptstyle \pi}$ and $f_{\scriptscriptstyle +}(0)$

the first row

$$egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \ \end{bmatrix}$$

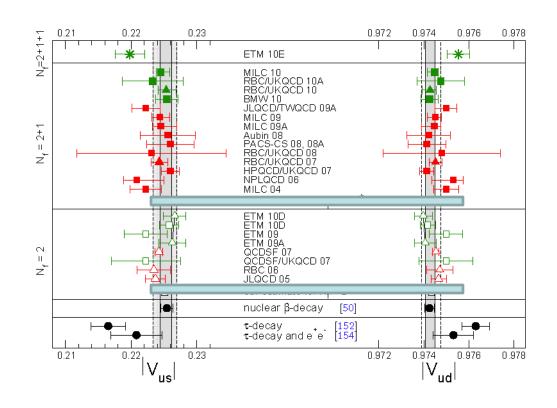
$$V_{ud}/V_{us}$$
 from $K \! o \! l \mu/\pi \! o \! l \mu$

$$\begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \qquad V_{ud} / V_{us} \quad \text{from} \quad K \to l\mu/\pi \to l\mu$$

$$\frac{\Gamma(K \to \mu)}{\Gamma(K \to \pi)} \sim \frac{|V_{us}|^2}{|V_{ud}|^2} \left(\frac{f_K}{f_\pi}\right)^2$$

$$V_{us} \quad \text{from} \quad K \to \pi l$$

$$V_{us}$$
 from $K o \pi l$

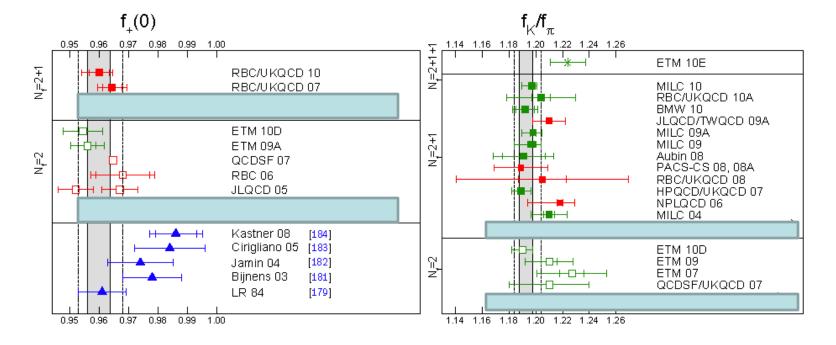

$$\Gamma(K \to \pi) \sim |V_{us}|^2 |f_+|^2$$

the first row

$oldsymbol{V}_{ud}$	V_{us}	V_{ub}
V_{cd}	V_{cs}	V_{cb}
$oxed{V_{td}}$	V_{ts}	$V_{\scriptscriptstyle tb}$ ot

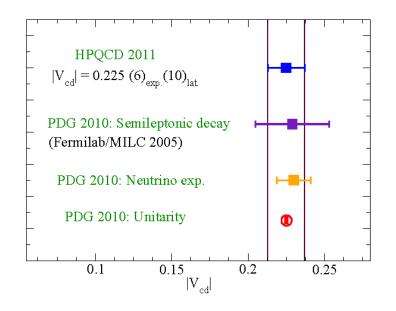
$$|V_{ud}| = 0.9743(6)$$

 $|V_{us}| = 0.2254(18)$

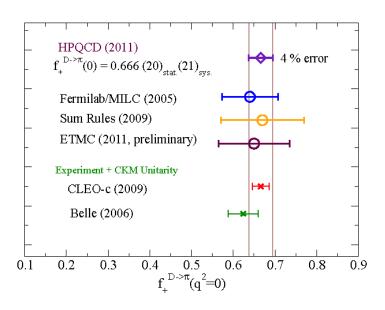

$$|V_{us}| = 0.2254(18)$$

the first row

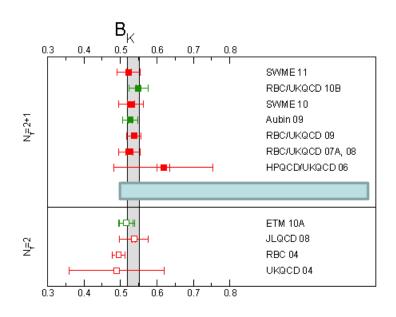
V_{ud}	V_{us}	V_{ub}^{-}
V_{cd}	V_{cs}	V_{cb}
$\lfloor V_{td} floor$	V_{ts}	V_{tb} _

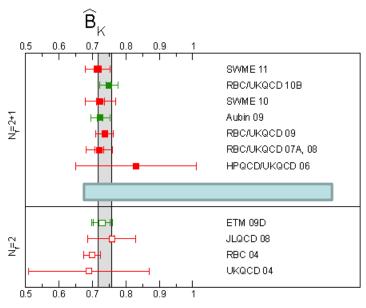

$$|f_{+}(0)| = 0.96(1)$$

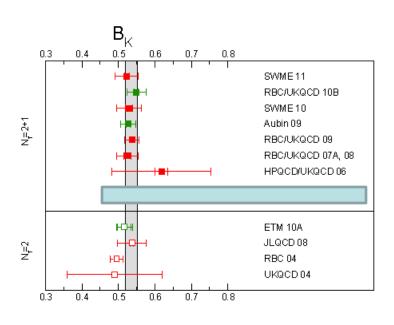
 $|f_{K}/f_{\pi}| = 1.20(2)$

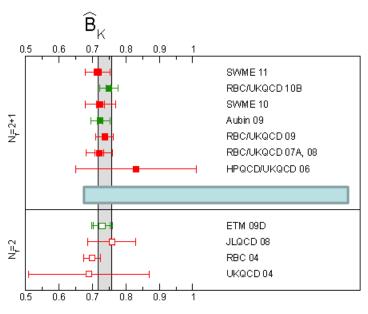


second row

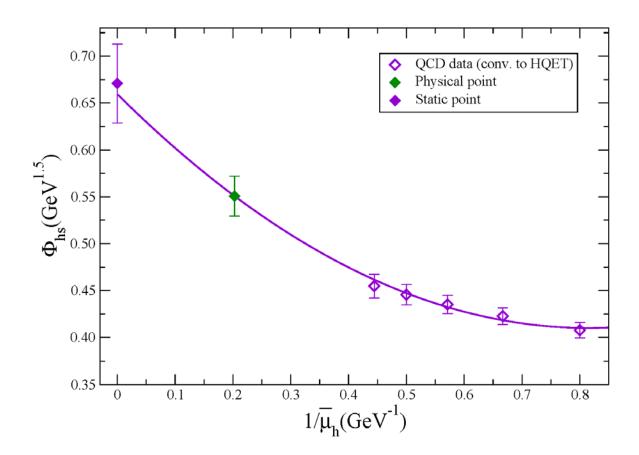

$$egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$


$$V_{cd}^2 + V_{cs}^2 + V_{cb}^2 = 0.976(50)$$

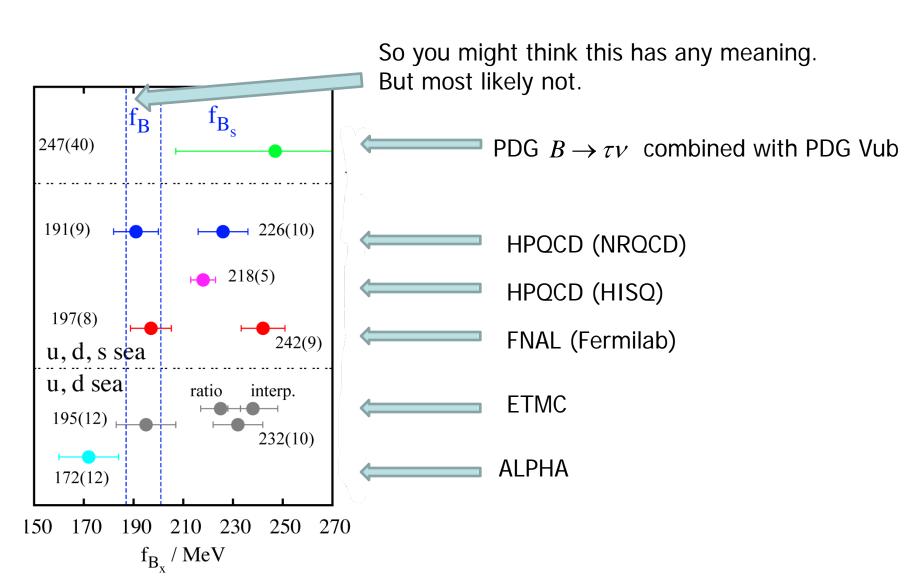

- We cannot simulate B-quarks directly
- Because they literally fall thru the cracks in the lattice
- that is m_b ~1/a



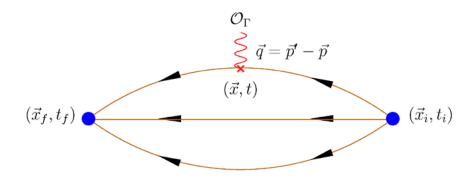
- So how did all these fine results happen?
- Fermilab way: formulated for charmonium
- Break space-time symmetry, do a RG analysis
- Expand in a small parameter
- Works like magic for the c-quarks
- But when you try to do it for bottomonium...
- you will find out, if you check ...
- ... that the expansion parameter is not so small


- Most other people: pretend that b-quark is infinitely heavy
- so that is cannot move at all
- which is called HQET, the heavy quark effective theory

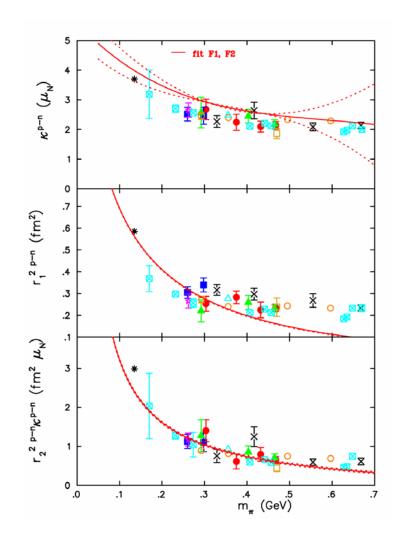
- The problem with HQET, Fermilab, NRQCD etc
- is that they are not controllable approximations
- we can neither predict the systematic error from them
- nor gradually improve them
- so it makes lattice QCD look a bit like a ... model
- while we take pride in being a theory.


so let us do it differently (ETMC)

Apples and Oranges


Why we really cannot average over results from different groups

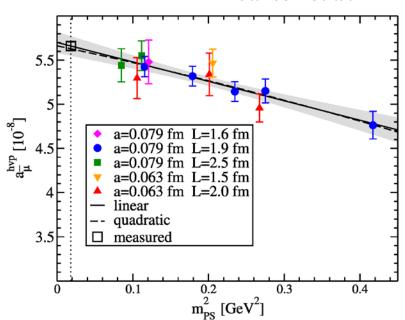
source	HPQCD	FermiMilc
Statistical	0.7	3.4
Scale	1.1	1.4
Chiral	0.3	2.8
Heavy mass	0.2	2.6+3.9
Light mass	-	2.1
Operator matching	4.0	-
Relativistic corrections	1.0	-
Renormalization	-	3.1
Total	4.4	8.8



Triplets from Protonville

short look at baryon physics

- requires large statistics in 3pt functions
 it is mandatory to vary all ti
- so we are looking at 15k inversions or so
- and for many quantities we need "disconnected diagrams"... thousands of inversions more
- also, we are obviously in the region of way too high
 light quark mass



Searching for New Physics

g-2: Vacuum polarization

Jansen et al/ETMC

- sometimes miracles happen and we can find RG argument to approach continuum/physical point faster
- so the muon contribution to vacuum polarization is easy and stable
- same applies to the electron and tau
- and the main contribution to the g-2,
 vacuum polarization we have already

- But the next contribution, the Light-by-Light, requires 3pt functions
- and on top of this, the disconnected diagrams
- so situation is as dire as for previous slide

Into the future

Cans and Can'ts

Improvement:	Verdict
Statistics	Yes, we can do that with current CPU power
Physical Quark Masses	Can (Clover-Smeared) Cannot (Twisted Mass, Clover, Wilson)
Closer to continuum limit	Can (give us petaflops) Cannot (Idris-Cines-Curie)
B-Quarks physical	Can (give us 10 petaflops) Cannot (not in europe)
Disconnected Diagrams	Can (GPUs will save us) Cannot (See following slides)
Better Renormalization constants	Can (currently done at LPT/Orsay) Using hardware at CEA/IRFU

Into the future end of free lunch

- Moore's Law is over. Quantum mechanics is cruel.
- Now we have amended law, that computer power per watt doubles
- which is great for the environment, but a slow death for lattice
- as if it was not enough, other sciences learned to use our computers
- so from 50% on Idris, Cines etc
- we are down to 10%
- which is great for the other sciences as then can finally become actual sciences
- but not so great for particle physics
- and this happens in many places. So how do they solve this problem?

Into the future

Regional Cuisine

Area	Activity
USA	\$24.000.000 investment in the machines for LQCD till 2015 Already access to BlueGene/Q At IBM TJ Watson Centre, soon BG/Q in Brookhaven, Argonne, Livermore GPU clusters in JLAB Fermilab Livermore NCSA
UK	800 Tflops (200 Sustained) of BG/Q in Edinbourgh, for lattice and astrophysics
Japan	10% of World's fastest K-computer is for lattice QCD
Allemagne	Munich CC upgrading to 100k cores GSI, Frankfurt, DESY, Bonn have big GPU Farms
France	Umh we got new CC building in Lyon CURIE is pointless, Curie-Hybride is not so bad
Others	Who are the others?

Into the future

Gastronomie Francaise: Preparation

- Major assumption is that new architectures will arrive
- And once it happens, there is usually a gap of 2-4 years before astro-bio people learn to use it
- So we need to streamline the upgrade of the code from old to new
- but how can one do it with so many Lagrangians and so many algorithms?
- and so few PhD students?
- USA has SciDAC, France has PetaQCD
- which wants to make PhD students to do physics,

and not assembly programming

High Level Description

- Natural to do in LaTeX. Because we do everything in LaTeX.
- Requires some care, pre-defined syntax
- But can be immediately compiled into readable form using LaTeX
- Definitions: provides a set of identities or definitions to matrices, later used
- Templates: define methods for computation of expressions matching a template
- Goal: defines the starting code (in high level) we want to transform,
- and the list of methods to transform it.

High Level Description

Constant: $Dirac, P_e, P_o, \gamma_5, iQ \in M$, Preconditioner1(,)Preconditioner2(\in)M->

 $M, \gamma, \sigma, g_a \in Index -> M, U \in Index -> Index -> M, \kappa, \mu, \epsilon \in \mathbb{C}, D \in \mathbb{C}$

 $Indexset, dx, dy, dz, dt \in Index$

Input : $c \in \mathbb{C}$, $d1 \in Index$, $s1 \in Index$

 $\mathbf{Var} \qquad : s \in Index, d \in Index$

$$Dirac = I_{L \otimes C \otimes S}$$

$$+ ((2 * i * \kappa * \mu) * (I_L \otimes I_C \otimes \gamma_5))$$

$$+ \sum_{d \in D} (J_L^d \otimes I_{C \otimes S}) * \bigoplus_{s \in L} U(d, s) \otimes (I_S + \gamma(d)) + \sum_{d \in D} (J_L^{-d} \otimes I_{C \otimes S}) * \bigoplus_{s \in L} U(-d, s) \otimes (I_S - \gamma(d))$$

$$P_e = P_{even,L} \otimes I_{C \otimes S}$$

$$P_o = P_{!even,L} \otimes I_{C \otimes S}$$

High Level Description

$$U(-d1,s1) = U(d1,s1-d1)^{\dagger}$$
 Preconditioner1($Dirac$) = Pe Preconditioner2($Dirac$) = Po
$$\gamma(d1)^{\dagger} = -\gamma(d1)$$

$$\sigma(-d1) = -\sigma(d1)$$

$$g_a(d1) = i * \gamma_5 * \gamma(d1)$$
 invertible($I_S + c * \gamma_5$) = $true$ invertible($I_S - c * \gamma_5$) = $true$
$$type(\gamma(d1)) = S \times S$$

$$type(\sigma(d1)) = HalfS \times HalfS$$

$$type(U(d1,s1)) = C \times C$$

$$type(\gamma_5) = S \times S$$

$$\gamma_5^{\dagger} = \gamma_5$$

$$D = \{dx, dy, dz, dt\}$$

Input : $A \in M, b \in V$

Output $: x \in V$

Match : $x = A^{-1} * b$

Require : $A^{\dagger} = A$

Var : $r, r_1, Ap, p \in V, \alpha, \beta, n_r, n_{r_1} \in \mathbb{C}$

Algorithm:

r=b;

p=r;

 $n_r = (r \mid r) \; ;$

while $(n_r > \epsilon)$ do

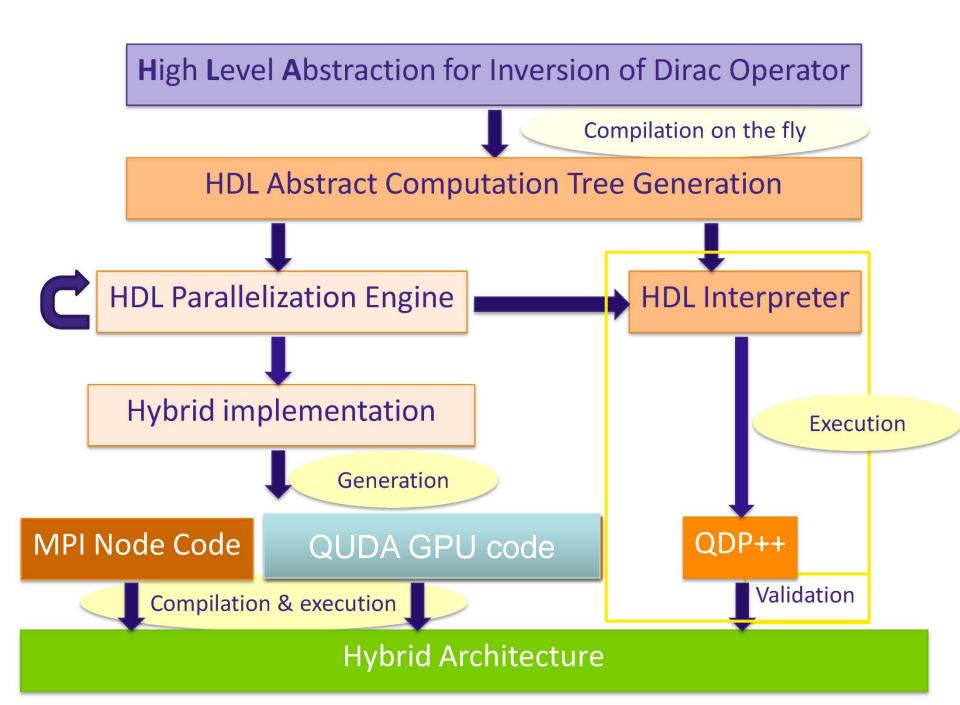
Conjugate Gradient

Ap = A * p ;

 $n_r = (r \mid r) ;$

 $\alpha = n_r/(p \mid Ap) \; ;$

 $x = x + \alpha * p ;$

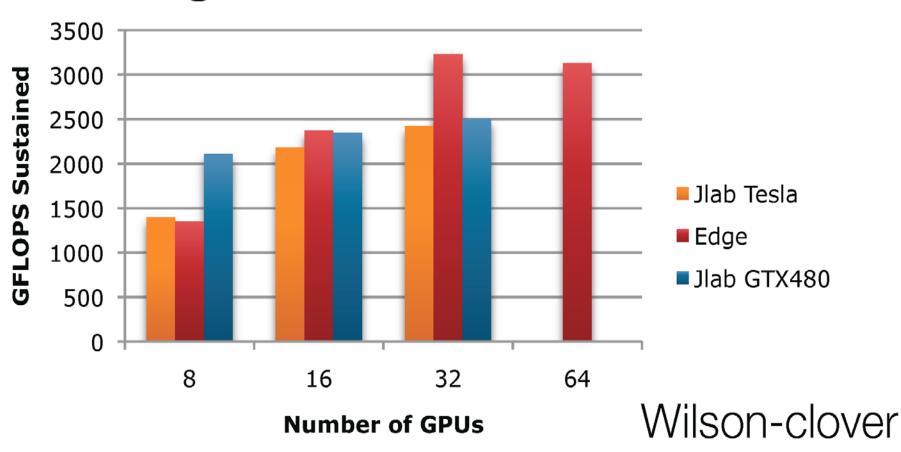

 $r = r - \alpha * Ap ;$

 $n_{r1} = (r | r) ;$

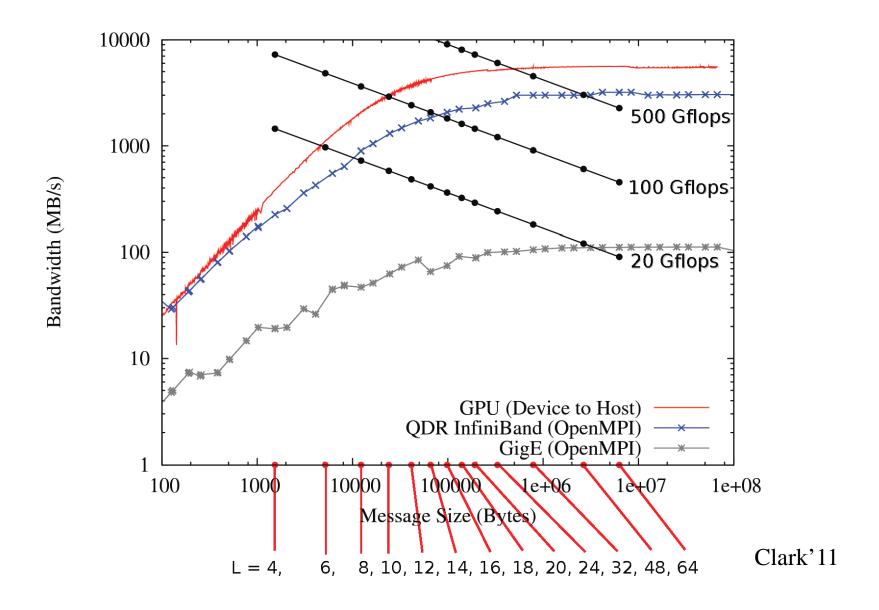
 $\beta = n_{r1}/n_r$;

 $p = r + \beta * p$;

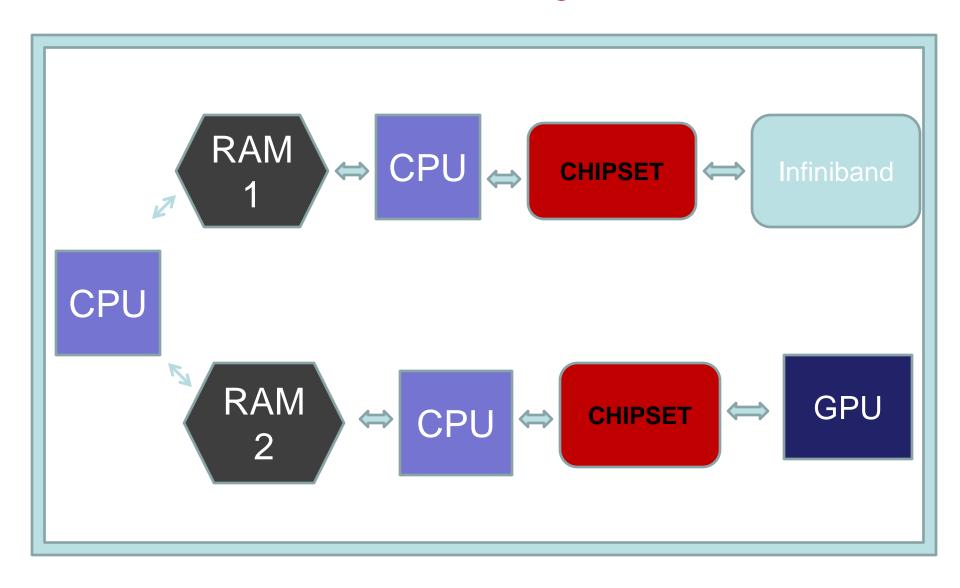
 $n_r = n_{r1}$;

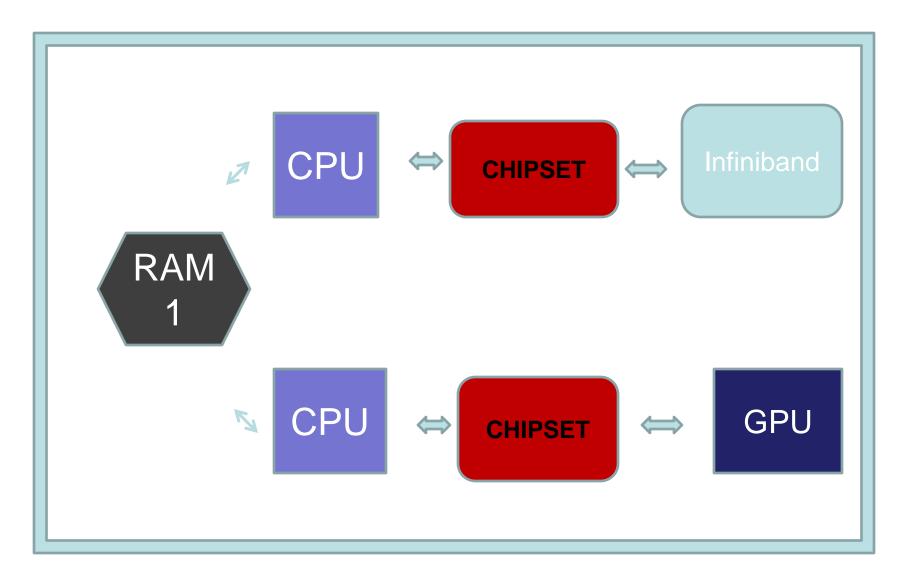


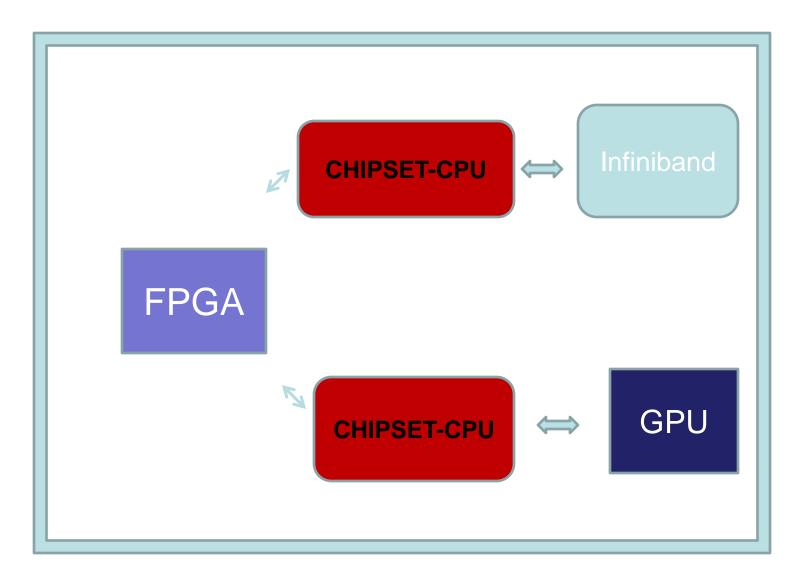
It takes two to Tango


- the advances in software are pointless without hardware to run it on
- currently the architectures of Intel stagnate for any memory-bound applications
- that is on CURIE in CCRT/CEA we can shut off half of the cores and have the same performance
- because ultra-multi-core technology only benefits LINPACK
- Same applies to GPU clusters
- Each GPU is a genius, but they now cannot do any team work
- So typical closely-coupled problem will spend about 80% in waiting
- and all the quoted teraflops have no relation to real-world applications
- so let us improve hardware

State of Things: Scaling of the Inverter


Single Half: 32x32x32x128


Modelling MultiGPU Performance


Old way

Current way

New way

Implications

- Both development and production of the prototype/supercomputer cost both money and manpower
- If neither this, nor substantial BlueGene/Q happens
- There won't be any significant improvements on this side of Atlantic
- UK/US/Japan will be the only ones with light u/d masses, heavy b-masses (if Republicans still loose the election)
- So questionable HISQ (Staggered! Fourth root?) and
 Domain Wall (5th Dimensions shorter than Space?)
 Will prevail in the computations of mesons and baryons
- and depending on how you trust calculations from one or two groups
 Obelix may find himself alone on the arena of 2015.