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Saclay Weak Lensing Team: J.-L. Starck, S. Paulin-Henriksson,  S. Pires,  A. 
Leonard , M. Kilbinger, S. Beckouche
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Weak Lensing 

Observer Gravitational lens Background galaxies

gravitational lens
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simulated mass map

1
2

�
∂2
1 + ∂2

2

�
ψ = κ

simulated Shear map

γ1, γ2 κψγ1 =
1
2

�
∂2
1 − ∂2

2

�
ψ

γ2= ∂1∂2ψ

lensing potential

Weak Lensing

�
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Weak Lensing 

Massey et al, “The dark matter of gravitational lensing”,Reports on Progress in Physics, 73, 8, 2010. 



Kilbinger et al, Dark-energy constraints and correlations with systematics 
from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5, AA, 497, 
3, 2009.
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Tomographic Weak Lensing
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 Euclid Red Book 
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 Detection  + Classification stars/galaxies

Galaxies Stars



The shear map (γ1, γ2)       
γ2

γ1

 γ1 = deformation along the x-axis,
and γ2  at 45 degrees from it.

Where the modulus represents the
amount of shear and the phase represents 
its direction.

€ 

γ = γ1 + iγ 2 = γ e2iθ

Shape Parameters

PB 1: We need accurate measurements from noisy data
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Motivation for spatial observations

Convolution with an isotropic PSF circularises galaxies. 
Convolution with an anisotropic PSF also changes their shapes... coherently!
Worst from ground (large PSF, with unpredictable spatial / temporal variation).

Massey, MGA
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Point Spead Function

 Galaxies are convolved by an asymetric PSF

PB 2: Shape measurements must be deconvolved



Space Variant PSF

PB 3: We need to interpolate the PSF shape !  
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Intrinsic Ellipticities

PB 4: We need to correct the measurements from the intrinsic 
ellipticity

✓ Galaxies have an intrinsic ellipticipty 



 From Shear Measurements 
to Shear Map   

PSF 
Deconvolution



We need to solve a triple inverse problem !!!

Determine the PSF at any position from the measured PSF.

Correct the galaxy shear from the PSF shear.

Correct the shear from intrinsic ellipticities

+ noise and missing data!!!

Missing data



~3 more challenges should be 
organised before 2020

In GREAT10, there were 3 sub-challenges:
1.the main (galaxy) challenge: to measure the ellipticity of galaxies, assuming the PSF is 
known
2.a star challenge: to estimate the PSF and interpolate it at the position of galaxies
3.a 'light' challenge (named 'kaggle') to attract more people

Shape measurement techniques: 
chronology of challenges



Need to measure the shear (which is of ~10-2) with an accuracy of 10-2

Need an absolute accuracy of ~10-4 in the measure of the shear
Need an absolute accuracy of ~sqrt(Ngal)*10-4 in the measure of the  
ellipticity for individual galaxies



Star Challenge
Estimate the PSF and interpolate it at the position of galaxies

Drawbacks:
1.unrealistically simple PSF (could be easily 
modeled with a profile).
2.the SNR of stars was high and the noise 
unrealistically simple.
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Berge et al, + 2011  

around 40000 stars



Winner: EPFL(Lausanne) ==> PSF model (moffat, 8 parameters: position, amplitude 
and  5 shape parameters) + interpolation (spline, kriging, etc).
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Galaxy challenge: to measure the ellipticity of 
galaxies, assuming the PSF is known

volume : 104 galaxies x 103 images ~ 1 TB



GREAT10 Challenge
Winner: DeepZot (KSB + galaxy model fitting + bias correction from MC using Neural Network)

EPFL
(Lausanne)

GREAT08 winner



Cosmological Parameters Constraints and 
High Order Statistics

Model3 (σ8=0.8, Ωm=0.36) Model5 (σ8=0.6, Ωm=0.64)Model4 (σ8=0.7, Ωm=0.47)

Model2 (σ8=0.9, Ωm=0.3)Model1 (σ8=1, Ωm=0.23)



wavelet peak counting On MRLENS Filtred MAPS (At scale OF about 1 arcmin)

Cosmological Parameters Constraints and 
High Order Statistics

model 1 model 2 model 3 model 4 model 5

- S. Pires,  J.-L. Starck, A. Amara, A. Refregier,  R. Teyssier, "Cosmological models discrimination with Weak Lensing",  505, 
A&A, pp  969-979, 2009.
- S. Pires, J.-L. Starck and A. Refregier, "Light on Dark Matter with Weak Gravitational Lensing", IEEE Signal Processing 

Magazine, 27, 1, pp 76--85, 2010.
- S. Pires, J.-L. Starck, A. Amara, A., R. Teyssier, A. Refregier and J. Fadili, "FASTLens (FAst STatistics for weak Lensing) : Fast 
method for Weak Lensing Statistics and map making", MNRAS , 395, 3, pp. 1265-1279, 2009.
- S. Pires, A. Leonard, J.-L. Starck, "Cosmological Parameters Constraint from Weak Lensing Data", MNRAS, submitted, 2011.
- A. Leonard, S. Pires, J.-L. Starck, "Fast Calculation of the Weak Lensing Aperture Mass Statistic", MNRAS, submitted, 2011.
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Mass Map Reconstruction and High Order Statistics
J.-L. Starck, S. Pires and A. Réfrégier, Astronomy and Astrophysics, 451, 3,  2006, pp.1139-1150 , 2006
S. Pires,  J.-L. Starck, A. Amara, R. Teyssier, A. Refregier and J. Fadili,  MNRAS, Volume 395, Issue 3, pp. 1265-1279, 2009.
R. Massey et al, Maps of the Universe’s Dark matter scaffolding,, Nature, Vol. 445, pp. 286-290, 2007
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Pseudo-3D Weak Lensing
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3D Weak Lensing 
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3D Weak Lensing
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(w)fK(w)

a(w)
,

δ(r) ≡ ρ(r)/ρ− 1κ = Qδ +N

where H0 is the hubble parameter, ΩM is the matter density parameter, c is
the speed of light, a(w) is the scale parameter evaluated at comoving distance
w, and

fK(w) =



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K
−1/2 sin(K1/2

w), K > 0

w, K = 0

(−K)−1/2sinh([−K]1/2w) K < 0

,

gives the comoving angular diameter distance as a function of the comoving
distance and the curvature, K, of the Universe.
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The convergence κ, as seen in sources of a given redshift bin, is the linear
transformation of the matter density contrast, δ, along the line-of-sight (Simon
et al 2009):
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3D Weak Lensing

=

κ δQ

M  measurements:

number of bins in the source plane

M x N  (M > N)

N  redshift bin for the density contrast

+

N

δ is sparse.
Q spreads out the information in    along      bins.
More unkown than measurements

δ κ



Compressed  Sensing
* E. Candès and T. Tao, “Near Optimal Signal Recovery From Random Projections: Universal 
Encoding Strategies? “,  IEEE Trans. on Information Theory, 52, pp 5406-5425, 2006.
* D. Donoho, “Compressed Sensing”, IEEE Trans. on Information Theory, 52(4), pp. 1289-1306, April 2006.
* E. Candès, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction 
from Highly Incomplete Frequency Information”,  IEEE Trans. on Information Theory, 52(2) pp. 489 - 509, Feb. 2006.

“Signals with exactly K components different from zero can be recovered 
perfectly from ~ K log N incoherent measurements”

⇒Application: Compression, tomography, ill posed inverse problem.

A non linear sampling theorem

Reconstruction via non linear processing: 
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3D Weak Lensing
Matter in the Universe as a Natural  

Compressed Sensing Operator

min
δ

� δ �1 s.t.
1

2
� κ−Qδ �2Σ−1≤ � (1)

Recent optimization method, based on proximal theory,  
such as Chambolle & Pock (2010) can be used to find the 
solution. 

 A. Leonard, F.-X. Dupe, J.-L. Starck, "A compressed sensing approach to 3D weak 
lensing", Astronomy and Astrophysics,  arXiv:1111.6478,  A&A, in press.
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3D Weak Lensing

Reconstructions of two clusters along the line of sight, 
located at a redshift  0.2 and 1.0 (data binned into Nsp = 20 redshift bins, but aim 
to reconstruct onto Nlp = 25 redshift bins).
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Conclusions/Perspectives

-  Weak Lensing is  a powerful technique to measure large-scale structure

- It directly measures the mass (as opposed to light

- But require tight control of systematic
- Algorithms need clearly to be improved in order to meet EUCLID scientific 
requirements.

   * Psf measurements
   * Shear on individual galaxies
   * Lensing statistics.

- High order statistics should be used to better constraint the cosmological parameters.

- Compressed sensing theory useful to recover the 3D density map.
   * l1 norm minimization is required to find the best solution with such operator.
   * Compressed Sensing approach  may allow us to map the cosmic web in far greater detail than what has 
previously been achieved.


