Neutrinoless double beta decay search using ¹³⁶Xe: The *NEXT* experiment.

Héctor Gómez Maluenda

gomez@lal.in2p3.fr

LAL Seminar, December 2011.

OUTLINE

- \checkmark Neutrino and double beta decay.
- ✓ The Experiment.
 - ✓ Why HP Xe TPC?
 - ✓ The SOFT concept.
- ✓ Present Status.
 - ✓ Prototypes.
 - ✓ NEXT-µM.
 - ✓ NEXT-100.
- ✓ Outlook.
- ✓ Summary.

✓ Neutrino oscillation experiments have shown that neutrino is a *non-zero* mass particle, implying the existence of Physics beyond the Standard Model of Particles.

LAL Seminar. December 2011

✓ Neutrino oscillation experiments have shown that neutrino is a *non-zero* mass particle, implying the existence of Physics beyond the Standard Model of Particles.

 \checkmark It is also known that neutrino mass could have two different mass hierarchies: *normal* and *inverse*.

Normal hierarchy: $m_1 \sim m_2 << m_3 \rightarrow (\Delta m_{23})^2 > 0$

Inverted hierarchy: $m_1 \sim m_2 >> m_3 \rightarrow (\Delta m_{23})^2 < 0$

✓ Neutrino oscillation experiments have shown that neutrino is a *non-zero* mass particle, implying the existence of Physics beyond the Standard Model of Particles.

 ✓ It is also known that neutrino mass could have two different mass hierarchies: normal and inverse.

✓ Unfortunately, neutrino oscillation experiments can only measure $(\Delta m_{ii})^2$.

✓ Double beta decay processes:

LAL Seminar. December 2011

 \checkmark Study of the $0 \nu \beta \beta$ decay for almost 20 years. Some experiments already finished:

Experiment	lsotope	Technique	Laboratory	Results	
				Т _{1/2} ⁰ (у)	< <i>m</i> ,> (eV)
IGEX	⁷⁶ Ge	Ge Diodes	Canfranc	≥ 1.57 10 ²⁵	≤ 0.33-1.35
HEIDELBERG- MOSCOW	⁷⁶ Ge	Ge Diodes	Gran Sasso	≥ 1.55 10 ²⁵	≤ 0.35
HEIDELBERG- MOSCOW*	⁷⁶ Ge	Ge Diodes	Gran Sasso	1.20 10 ²⁵	0.44
MIBETA	¹²⁸ Te	Dolomotore	Gran Sasso	≥ 8.60 10 ²²	≤ 1-2
	¹³⁰ Te	Boiometers		≥ 1.44 10 ²³	
CUORICINO	¹³⁰ Te	Bolometers	Gran Sasso	≥ 3.00 10 ²⁴	≤ 0.19-0.68
NEMO 3	¹⁰⁰ Mo	Track + Calorimetry	Modane	≥ 1.00 10 ²⁴	≤ 0.31-0.96
	⁸² Se			≥ 3.2 10 ²³	≤ 0.94-2.60

*H.V. Klapdor-Kleingrothaus et al. Phys. Lett. B 578:54 & 586:198 (2004)

LAL Seminar. December 2011

✓ Where are we going now? *New generation* experiments.

✓ Trying to reach sensitivities to explore $< m_{v} > ~ 50 \text{ meV}$.

- ✓ Some requirements are mandatory:
- Big amount of $\beta\beta$ emitter mass.
- Radiopure materials.
- Placement underground.
- Background events discrimination.
- ...
- \checkmark Klapdor's claim could be checked.

✓ If no signal is found:

$$\left\langle m_{v}\right\rangle = m_{e} \left(F_{N} T_{1/2}^{0v}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b\Gamma}}$$

$$\left\langle m_{v}\right\rangle < m_{e}\left(F_{N}F_{D}\right)^{-1/2}$$

- Isotopic abundance
- Atomic weight
- Exposure ↑↑
- Background level Џ
- Energy resolution ↓↓

Several techniques, isotopes and detectors proposed trying to optimize F_D.

✓ Some new generation $0\nu\beta\beta$ experiments:

Experiment	Isotope	Technique	Main Strength	
CANDLES	⁴⁸ Ca	CaF ₂ Scintillation	Background, Efficiency	
CARVEL	⁴⁸ Ca	CaWO ₄ Scintillation	Mass, Efficiency	
COBRA	¹³⁰ Te, ¹¹⁶ Cd	ZnCdTe Semiconductors	Resolution, Efficiency	
CUORE	¹³⁰ Te	Bolometers	Resolution, Efficiency	
CUORICINO	¹³⁰ Te	Bolometers	Resolution, Efficiency	
DCBA	¹⁵⁰ Nd	Gaseous TPC	Bkg Rejection, Efficiency	
EXO	¹³⁶ Xe	TPC Ionization + Scintillation	Mass, Efficiency, Final State Signal	
GERDA	⁷⁶ Ge	Ge Diodes	Resolution, Efficiency	
MAJORANA	⁷⁶ Ge	Ge Diodes	Resolution, Efficiency	
MOON	¹⁰⁰ Mo	Tracking + Calorimetry	Compactness, Bkg Rejection	
NEXT	¹³⁶ Xe	Tracking + Calorimetry	Bkg Rejection, Efficiency	
SNO++	¹⁵⁰ Nd	Nd Liquid Scintillation	Mass, Efficiency	
SUPERNEMO	⁸² Se, ¹⁵⁰ Nd	Tracking + Calorimetry	Bkg Rejection, Isotope Selection	
XMASS	¹³⁶ Xe	Liquid Xe	Mass, Efficiency	
YANGYANG	¹²⁴ Sn	Sn Liquid Scintillation	Mass, Efficiency	

✓ Some new generation $0\nu\beta\beta$ experiments:

Experiment	Isotope	Technique	Main Strength	
CANDLES	⁴⁸ Ca	CaF ₂ Scintillation	Background, Efficiency	
CARVEL	⁴⁸ Ca	CaWO ₄ Scintillation	Mass, Efficiency	
COBRA	¹³⁰ Te, ¹¹⁶ Cd	ZnCdTe Semiconductors	Resolution, Efficiency	
CUORE	¹³⁰ Te	Bolometers	Resolution, Efficiency	
CUORICINO	¹³⁰ Te	Bolometers	Resolution, Efficiency	
DCBA	¹⁵⁰ Nd	Gaseous TPC	Bkg Rejection, Efficiency	
EXO	¹³⁶ Xe	TPC Ionization + Scintillation	Mass, Efficiency, Final State Signal	
GERDA	⁷⁶ Ge	Ge Diodes	Resolution, Efficiency	
MAJORANA	⁷⁶ Ge	Ge Diodes	Resolution, Efficiency	
MOON	¹⁰⁰ Mo	Tracking + Calorimetry	Compactness, Bkg Rejection	
NEXT	¹³⁶ Xe	Tracking + Calorimetry	Bkg Rejection, Efficiency	
SNO++	¹⁵⁰ Nd	Nd Liquid Scintillation	Mass, Efficiency	
SUPERNEMO	⁸² Se, ¹⁵⁰ Nd	Tracking + Calorimetry	Bkg Rejection, Isotope Selection	
XMASS	¹³⁶ Xe	Liquid Xe	Mass, Efficiency	
YANGYANG	¹²⁴ Sn	Sn Liquid Scintillation	Mass, Efficiency	

✓ The **NEXT** (Neutrino **E**xperiment with a Xenon **T**PC) experiment expects to measure the $0v\beta\beta$ decay of ¹³⁶Xe using a high pressure Xenon TPC.

LAL Seminar. December 2011

✓ The *NEXT* (*N*eutrino *E*xperiment with a *X*enon *T*PC) experiment expects to measure the 0vββ decay of ¹³⁶Xe using a high pressure Xenon TPC.

WHY A HP XENON TPC?

 \checkmark Let's try to find the answer in these equations:

$$\left\langle m_{v}\right\rangle < m_{e}\left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b\Gamma}}$$

LAL Seminar. December 2011

$$\left\langle m_{v}\right\rangle < m_{e}\left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b\Gamma}}$$

Xe is not difficult to enrich.
Ability of purification and rause of the

 \checkmark Ability of purification and reuse of the enriched Xe.

$$\left\langle m_{v}\right\rangle < m_{e}\left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b\Gamma}}$$

- \checkmark Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.

$$\left\langle m_{v}\right\rangle < m_{e}\left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \frac{MT}{b\Gamma}$$

- ✓ Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.

$$\left\langle m_{v}\right\rangle < m_{e} \left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{bT}}$$

- ✓ Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.
- ✓ High pressure \rightarrow Bigger amount of emitter.
- ✓ Scalable to higher masses.

$$\left\langle m_{v}\right\rangle < m_{e}\left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b}}$$

- ✓ Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.
- ✓ High pressure → Bigger amount of emitter.
- Scalable to higher masses.
- ✓ High $Q_{\beta\beta}$ value (2457.83 keV).

LAL Seminar. December 2011

$$\left\langle m_{v}\right\rangle < m_{e} \left(F_{N} F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b}}$$

- ✓ Xe is not difficult to enrich.
- Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.
- ✓ High pressure \rightarrow Bigger amount of emitter.
- Scalable to higher masses.
- ✓ High $Q_{\beta\beta}$ value (2457.83 keV).
- ✓ Long $T_{1/2}^{2\nu\beta\beta}$ (2.11 ± 0.048(stat.) ± 0.21(sys.) x 10²¹ y).

Observation of Two-Neutrino Double-Beta Decay in ¹³⁶Xe with EXO-200

We report the observation of two-neutrino double-beta decay in 136 Xe with $T_{1/2}=2.11\pm0.04(\text{stat.})\pm0.21(\text{sys.})\times10^{21}$ yr. This second order process, predicted by the Standard Model, has been observed for several nuclei but not for 136 Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrino-less double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale. arXiv: 1108.4193v2 [nucl-ex]

$$\left\langle m_{v}\right\rangle < m_{e} \left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b}}$$

- ✓ Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.
- ✓ High pressure \rightarrow Bigger amount of emitter.
- Scalable to higher masses.
- ✓ High $Q_{\beta\beta}$ value (2457.83 keV).
- ✓ Long $T_{1/2}^{2\nu\beta\beta}$ (2.11 ± 0.048(stat.) ± 0.21(sys.) x 10²¹ y).
- Possibility to detect Ionization/Scintillation and to study Tracking.

$$\left\langle m_{v}\right\rangle < m_{e} \left(F_{N}F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{6D}}$$

- ✓ Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.
- ✓ High pressure \rightarrow Bigger amount of emitter.
- Scalable to higher masses.
- ✓ High $Q_{\beta\beta}$ value (2457.83 keV).
- ✓ Long $T_{1/2}^{2\nu\beta\beta}$ (2.11 ± 0.048(stat.) ± 0.21(sys.) x 10²¹ y).
- Possibility to detect Ionization/Scintillation and to study Tracking.
- ✓ Good energy resolution.

$$\langle m_v \rangle < m_e (F_N F_D)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b\Gamma}}$$

- ✓ Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.
- ✓ High pressure \rightarrow Bigger amount of emitter.
- Scalable to higher masses.
- ✓ High $Q_{\beta\beta}$ value (2457.83 keV).
- ✓ Long $T_{1/2}^{\gamma} 2^{\nu\beta\beta}$ (2.11 ± 0.048(stat.) ± 0.21(sys.) x 10²¹ y).
- Possibility to detect Ionization/Scintillation and to study Tracking.
- Good energy resolution.
- \checkmark F_N is worse if compared with other isotopes.

LAL Seminar. December 2011

$$\left\langle m_{v}\right\rangle < m_{e} \left(F_{N} F_{D}\right)^{-1/2}$$

$$F_D = 4.17 \times 10^{26} \frac{f}{W_{at}} \varepsilon \sqrt{\frac{MT}{b\Gamma}}$$

- ✓ Xe is not difficult to enrich.
- ✓ Ability of purification and reuse of the enriched Xe.
- ✓ ¹³⁶Xe has higher W_{at} compared with other isotopes considered.
- ✓ Source = detector experiment.
- ✓ High pressure \rightarrow Bigger amount of emitter.
- Scalable to higher masses.
- ✓ High $Q_{\beta\beta}$ value (2457.83 keV).
- ✓ Long $T_{1/2}^{2\nu\beta\beta}$ (2.11 ± 0.048(stat.) ± 0.21(sys.) x 10²¹ y).
- Possibility to detect Ionization/Scintillation and to study Tracking.
- Good energy resolution.
- \checkmark F_N is worse if compared with other isotopes.
- Difficulty to design a compact experiment.
- Typical problems coming from working at High Pressure (~10 bars).

✓ The **NEXT** (Neutrino **E**xperiment with a Xenon **T**PC) experiment expects to measure the $0\nu\beta\beta$ decay of ¹³⁶Xe using a high pressure Xenon TPC.

✓ Events detection is based on the **SOFT** TPC concept.

✓ Separated-Optimized Energy Function from Tracking

✓ **SOFT** TPC: Separate-Optimized Energy Function from Tracking.

✓ The experiment will have a *better sensitivity* if we are capable to obtain as accurate as possible:

- *Energy* of the event (with good resolution).
- \checkmark Time of the event (t_0 , related to z position).
- ✓ **Track** of all the particles of the event.

✓ These characteristics will allow not only to determine the energy of the event, but also to reconstruct it in order to apply *pattern recognition* to *discriminate* background events from $0\nu\beta\beta$ ones.

✓ **SOFT** TPC: Separate-Optimized Energy Function from Tracking.

✓ **SOFT** TPC: Separate-Optimized Energy Function from Tracking.

PMT plane: Primary scintillation $\rightarrow t_0$ Electroluminescence Light \rightarrow **Energy** SiPM plane: Electroluminescence Light → Tracking

 \checkmark Different small and medium size TPCs to test and improve elements that will be used in the final setup.

- ✓ Detectors: Energy Resolution, Time Stability...
- ✓ Vessel and internal components: Outgassing, Leak rates...
- ✓ DAQ
- ✓ There are still decisions to be taken about some features of NEXT-100.

NEXT DBDM

NEXT DEMO

LAL Seminar. December 2011

NEXT μM

✓ NEXT DBDM:

 \checkmark Test PMTs energy resolution in HP Xe (up to 15 bar).

✓ NEXT DBDM:

- \checkmark Test PMTs energy resolution in HP Xe (up to 15 bar).
- \checkmark Promising results.

✓ 1% FWHM @ 662 keV

- Drift Field: 0.05 kV/cm/bar
- EL Field: 2 kV/cm/bar

✓ Primary Scint. also observed

• Work with higher Drift Fields.

 Radial dependence and other points to clarify.

✓ NEXT DEMO:

 \checkmark Analog to the NEXT-100 baseline detector concept.

LAL Seminar. December 2011

✓ **NEXT DEMO**:

 \checkmark Analog to the NEXT-100 baseline detector concept.

PMT Plane (*t_o* and *Energy*)

SiPM Plane (*Tracking*)

✓ **NEXT DEMO**:

- \checkmark Analog to the NEXT-100 baseline detector concept.
- ✓ Prototype just commissioned (only preliminary calibrations done).

✓ NEXT μM:

- ✓ Testing of different Xe-base mixtures (effects on the energy resolution).
- ✓ Outgassing and Leak Rates for Feedthorughs and internal components.

✓ But Also…

✓ NEXT μM:

- ✓ Testing of different Xe-base mixtures (effects on the energy resolution).
- ✓ Outgassing and Leak Rates for Feedthorughs and internal components.

✓ But Also…

 \checkmark Study of Micromegas detector as alternative to the baseline.

- \checkmark No operational problems in HP
- ✓ Long term stability
- ✓ Radiopure solution
- ✓ Capable to register energy and tracking
- ✓ Ongoing studies to see EL

✓ …

✓ NEXT μM:

- ✓ Testing of different Xe-base mixtures (effects on the energy resolution).
- ✓ Outgassing and Leak Rates for Feedthorughs and internal components.

✓ But Also…

 \checkmark Study of Micromegas detector as alternative to the baseline.

✓ No operational problems in HP

✓ Long term stability

✓ Radiopure solution

S. Cebrián et al, Astrop Phys 34 (2011) 354-359

Radioactivity levels (in µBq/cm²) measured for a Micromegas without mesh, a *microbulk*-Micromegas, a kapton-copper raw material foil, a copper-kapton-copper raw material foil and those in a PMT used in XENON experiment, taken from [30].

Sample	²³² Th	²³⁵ U	²³⁸ U	⁴⁰ K	⁶⁰ Co
Micromegas without mesh	4.6 ± 1.6	<6.2	<40.3	<46.5	<3.1ª
Microbulk-Micromegas	<9.3	<13.9	26.3 ± 13.9	57.3 ± 24.8	<3.1 ^a
Kapton-copper foil	<4.6 ^a	<3.1 ^a	<10.8	<7.7ª	<1.6 ^a
Copper-kapton-copper foil	<4.6 ^a	<3.1 ^a	<10.8	<7.7ª	<1.6 ^a
Hamamatsu R8520-06 PMT [30]	27.9 ± 9.3	-	<37.2	1705.0 ± 310.0	93.0 ± 15.5

^a Level obtained from the minimum detectable activity (MDA) of the detector [31].

✓ NEXT μM:

- ✓ Testing of different Xe-base mixtures (effects on the energy resolution).
- ✓ Outgassing and Leak Rates for Feedthorughs and internal components.
- ✓ But Also…
 - ✓ Study of Micromegas detector as alternative to the baseline.

- \checkmark No operational problems in HP
- ✓ Long term stability
- ✓ Radiopure solution
- ✓ Capable to register energy and tracking
- \checkmark Ongoing studies to see EL

✓ …

✓ NEXT μM:

- ✓ ~ 79 I Stainless Steel Chamber.
- \checkmark Ø = 28 cm and 35 cm Drift Length for 21.5 I of sensitive volume.

 \rightarrow Up to ~1.2 kg of Xe @ 10 bar in the sensitive volume.

✓ NEXT μM:

- \checkmark ~ 79 I Stainless Steel Chamber.
- \checkmark Ø = 28 cm and 35 cm Drift Length for 21.5 I of sensitive volume.

 \rightarrow Up to ~1.2 kg of Xe @ 10 bar in the sensitive volume.

- ✓ Bulk mM detector $Ø \sim 30$ cm.
- ✓ Copper + Peek + Cirlex Field Cage.
- ✓ Teflon + Copper HV Feedthrough.
- ✓ Readout Feedthrough.

✓ NEXT μM:

- ✓ ~ 79 I Stainless Steel Chamber.
- \checkmark Ø = 28 cm and 35 cm Drift Length for 21.5 I of sensitive volume.

→Up to ~1.2 kg of Xe @ 10 bar in the sensitive volume.

- ✓ Bulk mM detector $Ø \sim 30$ cm.
- ✓ Copper + Peek + Cirlex Field Cage.
- ✓ Teflon + Copper HV Feedthrough.
- ✓ Readout Feedthrough.

✓ NEXT μM:

- ✓ ~ 79 I Stainless Steel Chamber.
- \checkmark Ø = 28 cm and 35 cm Drift Length for 21.5 I of sensitive volume.

→Up to ~1.2 kg of Xe @ 10 bar in the sensitive volume.

- ✓ Bulk mM detector $Ø \sim 30$ cm.
- ✓ Copper + Peek + Cirlex Field Cage.
- ✓ Teflon + Copper HV Feedthrough.
- ✓ Readout Feedthrough.

✓ NEXT μM:

- ✓ ~ 79 I Stainless Steel Chamber.
- \checkmark Ø = 28 cm and 35 cm Drift Length for 21.5 I of sensitive volume.

→Up to ~1.2 kg of Xe @ 10 bar in the sensitive volume.

- ✓ Bulk mM detector $Ø \sim 30$ cm.
- ✓ Copper + Peek + Cirlex Field Cage.
- ✓ Teflon + Copper HV Feedthrough.
- ✓ Readout Feedthrough.

✓ NEXT μM:

- ✓ ~ 79 I Stainless Steel Chamber.
- \checkmark Ø = 28 cm and 35 cm Drift Length for 21.5 I of sensitive volume.

→Up to ~1.2 kg of Xe @ 10 bar in the sensitive volume.

 \checkmark In a first step the prototype was fully equipped with:

- ✓ Bulk mM detector $Ø \sim 30$ cm.
- ✓ Copper + Peek + Cirlex Field Cage.
- ✓ Teflon + Copper HV Feedthrough.
- ✓ Readout Feedthrough.

 \checkmark Before to measure:

- ✓ Pressure Tests
- ✓ Vacuum and Outgassing measurements
- ✓ HV and many others...

✓ **NEXT** µM: Pressure Tests.

✓ Useful to test the vessel but also the Gas System to put the gas inside the vessel (valves, flowmeters, ...)

- 11 bar of Ar
- Monitoring of P and T

LAL Seminar. December 2011

✓ **NEXT** μ **M**: Pressure Tests.

Useful to test the vessel but also the Gas System to put the gas inside the vessel (valves, flowmeters, ...)

✓ **NEXT** μ **M**: Vacuum and outgassing measurements.

- To keep the purity of gas, elements in contact must not emanate any contaminant.
- \checkmark In principle the inner materials were chosen with this purpose.
- ✓ Bake-out cycles \rightarrow To "clean" possible impurities.

LAL Seminar. December 2011

\checkmark **NEXT** μ **M**: Other tests.

- \checkmark HV tests to check that Electric Field needed for the Drift is reachable.
- \checkmark Installation of the electronics close to the vessel.

✓ DAQ based on *AFTER* chip.

✓ Possibility to read mesh (*E*) and pixels (*track*) of the μ M *simultaneously*.

LAL Seminar. December 2011

✓ **NEXT** μ **M**: First measurements.

- ✓ ²²²Rn source diffused in the gas (Ar-iC₄H₁₀ 5%)
- \checkmark ~ 6 MeV α inside the sensitive volume.

LAL Seminar. December 2011

✓ **NEXT** μ **M**: First measurements.

- ✓ ²²²Rn source diffused in the gas (Ar-iC₄H₁₀ 5%)
- \checkmark ~ 6 MeV α inside the sensitive volume.

\checkmark **NEXT** μ **M**: First measurements.

- ✓ ²²²Rn source diffused in the gas (Ar-iC₄H₁₀ 5%)
- \checkmark ~ 6 MeV α inside the sensitive volume.

✓ **NEXT** μ **M**: Presents Status.

- ✓ Prototype fully operative with **Bulk** μ **M**.
- ✓ Possible to register *Energy* and 2-*D* tracks.
- ✓ Next steps:
 - ✓ Installation of *microbulk mM* → LARGEST SURFACE COVERED
 - ✓ Complete the system to register t_0 → 3-D tracks

✓ **NEXT 100** will be placed at Canfranc Underground Laboratory (**LSC**), in the Spanish Pyrenees (**2450** *m.w.e.*).

- \checkmark Commissioning of the detector along **2013**.
- ✓ Start data taking in **2014**.
- ✓ Technical Detector Report (TDR) finished:
 - ✓ Pressure Vessel (SS + internal Cu shielding)

- \checkmark Commissioning of the detector along **2013**.
- ✓ Start data taking in **2014**.
- ✓ Technical Detector Report (TDR) finished:
 - ✓ Pressure Vessel (SS + internal Cu shielding)
 - ✓ Field Cage

- \checkmark Commissioning of the detector along **2013**.
- ✓ Start data taking in **2014**.
- ✓ Technical Detector Report (TDR) finished:
 - ✓ Pressure Vessel (SS + internal Cu shielding)
 - ✓ Field Cage
 - ✓ PMTs and MPPCs

- \checkmark Commissioning of the detector along **2013**.
- ✓ Start data taking in **2014**.
- ✓ Technical Detector Report (TDR) finished:
 - ✓ Pressure Vessel (SS + internal Cu shielding)
 - ✓ Field Cage
 - ✓ PMTs and MPPCs
 - ✓ Shielding

✓ **NEXT 100** time schedule:

- \checkmark Commissioning of the detector along **2013**.
- ✓ Start data taking in **2014**.
- ✓ Technical Detector Report (TDR) finished:
 - ✓ Pressure Vessel (SS + internal Cu shielding)
 - ✓ Field Cage
 - ✓ PMTs and MPPCs
 - ✓ Shielding
- ✓ Radiopurity measurements → Bkg Model
- ✓ Simulations

✓ …

EXPECTED TO REACH THE $< m_{v} > \sim 50$ meV SENSITIVITY

OUTLOOK

✓ PROTOTYPES:

✓ Data taking and test of different element and techniques that will be used in NEXT 100.

✓ **NEXT 100**:

- ✓ Construction and Commissioning of Shielding and Gas System (2012).
- ✓ Final Design and Manufacture of Pressure Vessel (2011-2012).
- ✓ Construction and Characterization of Detector Planes (2012).
- ✓ Construction of Field Cage and HV Feedthroughs (2012).
- ✓ Commissioning of NEXT 100 at LSC (from ~ June 2013).
- ✓ Start Data Taking (2014).

SUMMARY

 \checkmark **0** $\nu\beta\beta$ is a hot topic in Particle Physics.

 \checkmark New generation experiments aim to explore new regions for the neutrino effective mass around 50 meV.

✓ **NEXT** experiment expects to reach this sensitivity using a **HP Xe TPC**.

 \checkmark NEXT **prototypes** are showing that the technology chosen could be suitable for this objective.

 \checkmark **NEXT 100** design is already finished and works to construct the setup will start in **2012**.

 \checkmark The goal is to *start* the data taking in **2014**.

IS A REALLY AMBICIOUS TIME LINE... BUT LET'S TRY IT

Neutrinoless double beta decay search using ¹³⁶Xe: The *NEXT* experiment.

Héctor Gómez Maluenda

gomez@lal.in2p3.fr

LAL Seminar, December 2011.