

Happy New Year 2012 !

Recent search for the Higgs boson by the Atlas experiment with 2011 data

<u>Abstract</u> :

Atlas experiment recorded up to 4.9 fb⁻¹ of data in 2011 at an energy in the center of mass of 7 TeV. Recent searches for Higgs boson in scenario of Standard Model are reported.

Disclaimer : Focus mainly on three channels : $H \rightarrow \gamma\gamma$, $H \rightarrow 41$, $H \rightarrow WW^{(*)} \rightarrow 1\nu l\nu$ and combination ; remaining channels in backup

Marc Escalier, CNRS/LAL

Constraints on Higgs mass

 $m_{\rm H} < 750 \, {\rm GeV}$

High mass constraints

- Unitarity (scattering $W_L W_L$) $m_H < 700 \text{ GeV}$
- Triviality $(\lambda(Q))$

Low mass constraints

• vacuum stability $\lambda(m_t) > 0$

Experimental constraints

• LEP direct search : Teva $m_{\rm H}$ >114.4 GeV (95% CL) [156

 m_{H} >139 GeV (m_t=178.1 GeV) (Λ =10¹⁶ GeV) m_{H} >74 GeV (Λ =1 TeV)

Tevatron direct seearch : [156 ; 177 GeV] excluded

• indirect search : global analysis electroweak observ. complete fit (+ LE • $m_{\rm H}$ =125⁺⁸-10 GeV (68 % CL)

SM Higgs production

Decays and channels (SM)

H decays roughly to heaviest particle available in phase space

• Complementary decays : explore Higgs couplings

LHC

2011 campaign

- \approx 27 km circonference, -100 m under ground
- proton proton, $\sqrt{s}=14 \text{ TeV}(\rightarrow 7 \text{ TeV})^{*}$
- B=8,33 T (→≈4.16 T)
- \approx 2800 bunches of protons (1 bunch \approx 10¹¹ p) \rightarrow 1380 bunches ; 1.5 10¹¹ p
- collisions each 25 ns ($\rightarrow \approx 50$ ns)

4 experiments :

- -ATLAS, -CMS : general purpose
- -LHCb : flavour physics, CP violation
- -ALICE : quarks/gluons plasma

<u>Inner Detector</u> ($|\eta|$ <2.5, B=2 T) Si pixels, strips, Transition Radiation Tracker Tracking, vertexing, e/π separation $\sigma(p_T)/p_T$ <3.8.10⁻⁴ pT [GeV] ⊕ 0.015

<u>EM Calorimeter ($|\eta| < 3.2$)</u>

Pb-LAr accordion, longitudinal segmentation e/ γ separation $\sigma(E)/E\approx 10 \%/\sqrt{E \oplus 0.7 \%}$

 $\begin{array}{l} \underline{\text{Hadronic Calorimeter}} \\ \text{Fe-scint. } (|\eta| < 1.7) ; \text{Cu-LAr } 1.5 < |\eta| < 3.2 \\ \text{Cu/W -LAr (fwd : } 3.1 < |\eta| < 4.9) \\ \text{Trigger, jet, MET ; } \sigma(\text{E})/\text{E} \approx 50 \%/\sqrt{\text{E} \bigoplus 3 \%} \end{array}$

Muon Spectrometer ($|\eta| < 2.7$) Air core toroid magnets, gas chambers μ trigger and momentum measurement 6 $\sigma(p_T)/p_T=2\%$ at 50 GeV ; 10 % at 1 TeV

Main measurements background

Control background ⇔ a path towards Higgs search Good agreement data/theory

8

Statistical treatement

Hyp. testing : null hypothesis : {S+B ; B-only} ; reject null hyp. \rightarrow altern. hyp

$H \rightarrow ZZ^{(*)} \rightarrow 41$

$110 \le m_{\rm H} \le 600 \,\,{\rm GeV}$ 4.8 fb⁻¹

Golden channel, fully reconstructed final state, clean, but small rates examples of mass resolution :

- 2 pairs OS same flavor leptons, $p_T > 7 \text{ GeV} [\geq 2 \text{ w} / p_T > 20 \text{ GeV}]$; $|\eta| < 2.47/2.7 (e/\mu)$
- isolated (suppr. Z+jets, tt)
- $\begin{array}{l}(\Sigma p_T{}^{trk} \Delta R{<}0.2 \ / \ p_T{<}0.15) \ ; \ (\Sigma E_T{}^{cells \ calo} \Delta R{<}0.2 \ / \ p_T{<}0.3) \\ leptons \ separated \ \Delta R{>}0.1\end{array}$
- closest ll pair : $|m_{ll} m_Z| < 15 \text{ GeV}$; second one : $f(m_H) < m_{ll} < 115 \text{ GeV}$
- impact parameter significance <6/3.5 (e/ μ) for two among four leptons(suppr. HF)
- 10

$H \rightarrow ZZ^{(*)} \rightarrow 41$

$110 \le m_H \le 600 \text{ GeV}$ 4.8 fb⁻¹

• Bkg

-primary : irreducible ZZ^(*)

-secondary : Z+j, tt : additive lepton : HF / light jet

• evaluation background

ZZ^(*) : MC (low stat so far ; data-driven in future)

Z+j, tt : CR : remove charge , isolation requirements on second lepton pair (m_{34})

tt : normalization checked w/ sel. OS e-µ pair consistent w/ Z & 2 same-flavor leptons

 $110 \le m_{\rm H} \le 600 \,\,{\rm GeV}$ 4.8 fb⁻¹

• Final discriminant : m₄₁

$H \rightarrow ZZ^{(*)} \rightarrow 41$

$110 \le m_{\rm H} \le 600 \,\,{\rm GeV}$ 4.8 fb⁻¹

Event displays

Candidate $\mu\mu\mu\mu$ $m_{4l}=124.6 \text{ GeV}$ $m_{1l}^2=89.7 \text{ GeV}$ $m_{1l}^2=24.6 \text{ GeV}$

Candidate $2\mu 2e$ $m_{4l} = 123.6 \text{ GeV}$ $m_{1l}^{1} = 89.3 \text{ GeV}$ $m_{1l}^{2} = 30.0 \text{ GeV}$

• Systematics

Lepton rec., ident. eff ; momentum resolution & scale : from W, Z, J/ψ \rightarrow acceptance uncertainty on signal & irr. Bkg :

- -Muon eff. $2e2\mu/4\mu$: 0.16/0.22 %
- -Electron eff. 4e ; $2e2\mu$ (m_H={600/110 GeV}) : {2.3/8.0 %} ; {1.6/4.1 %} -muon momentum resolution & scale uncertainty : small
- -electron energy res. : small ; energy scale on m_{41} 4e/2e2 μ : 0.6 % ; 0.3 %

-ZZ^(*) bkg : th. uncertainty : 15 % (conservative)
-Z+jets, Zbb : normalization : 45/40 % : stat. uncert. CR & MC based CR→SR
-tt : normalization : th. uncertainty : 10 %

-th. σ Higgs : 15-20 % ggH, 3-9 % VBF, 3-4 % associated
-signal selection : 2 % (modelization kinematics)
-Luminosity : 3.9 %

$H \rightarrow ZZ^{(*)} \rightarrow 41$

$110 \le m_{\rm H} \le 600 \,\,{\rm GeV}$ 4.8 fb⁻¹

$110 \le m_{\rm H} \le 300 \ {\rm GeV}$ 2.05 fb⁻¹

• final discriminant : transverse mass

 $f(m_H) < m_T < m_H (suppr. WW, top & interference {H; gg \rightarrow WW})$

$110 \le m_{\rm H} \le 300 \ {\rm GeV}$ 2.05 fb⁻¹

Event display WW candidate ; eµ final state

$110 \le m_{\rm H} \le 300 \,\,{\rm GeV}$ 2.05 fb⁻¹

• Bkg measurement

-W+jets : fully data-driven CR : relax identification & isolation on one lepton Scale factors CR \rightarrow SR : dijets selection

-others : MC corrected by scale factors from CR

-DY : correct mismodelling MET_{rel} : \neq {data ; MC} w/ MET_{rel}>40 GeV for $|m_{ll}-m_Z|<10$ GeV

-WW, top : normalization *relax selection *simultaneous fit on data $CR \rightarrow SR : WW : MC$ top : $0j : \epsilon_{pass}^{2}$ (jet veto top) 1j : MC

• Systematics :

```
-Luminosity : 3.7 %
-theory uncertainty (ggH/VBF) : QCD scale : <sup>+12</sup><sub>-8</sub> % / 8 % ; pdf : 1 % / 4 %
```

```
-#jets : computed from uncertainty on \sigma : H+0j : 10 % ; H+1j : 20 %
-JES : <10 %
-pile-up : 7 %
-e/µ eff : from W, Z : 2-5 % / 0.3-1 % (f(|η|, p<sub>T</sub>))
-lepton energy scale e/µ : <1 % ; <0.1 %
-lepton energy resolution e/µ : <0.6 % ; <5 %
-b-tagging : 6-15 % ; b-mistag rate : <21 %
-MET : 13 %
```

-WW : th. & exp. for $CR \rightarrow SR : H+0 j : 7.6 \% ; H+1 j : 21 \%$ -top : H+0 j : 38 % ; H+1 j : 29 %

 $110 \le m_{\rm H} \le 300 \,\,{\rm GeV}$ 2.05 fb⁻¹

21

Н→үү

$110 \le m_{\rm H} \le 150 \,\,{\rm GeV}$ 4.9 fb⁻¹

- Small BR, sharp peak on top of continuum
- Bkg : irreducible (dominant after identification) : γγ reducible : γj, jj, Drell-Yan
- Invariant mass reconstruction : $m_{\gamma\gamma}^2 = 2E_1E_2(1-\cos\theta_{12})$ -Primary vertex position -Energy calibration
- selection : 2 high- p_T (40 ; 25 GeV) isolated γ (isol.<5 GeV)

modelization bkg : $exp(-\xi x)$ shape (here inclusive) $\longrightarrow \frac{1}{2}$

$110 \le m_{\rm H} \le 150 \,{\rm GeV}$ 4.9 fb⁻¹ $H \rightarrow \gamma \gamma$

Fine segmentation of elmg calorimeter

good separation π^0 / γ

direction : calo pointing

m_{γγ} [GeV]

m_{γγ} [GeV]

$110 \le m_{\rm H} \le 150 \text{ GeV}$ 4.9 fb⁻¹

Calibration

Cluster energy reconstruction :

 $H \rightarrow \gamma \gamma$

- Σ contributions :
- -before calorimeter
- -inside cluster
- -outside cluster (lateral leakage)
- -beyond EM calo (longitudinal leakage)
- Improvement using corrections from Z

Selection 2 OS electrons p_T >25 GeV, quality medium, compatible m_Z 26 bins of η ; E_{mes} = $E_{true}(1+\alpha)$; α from a likelihood fit

$110 \le m_{\rm H} \le 150 \,{\rm GeV}$ 4.9 fb⁻¹

 $m_{\gamma\gamma} = 125.8 \text{ GeV}$ $p_{T\gamma\gamma} = 10.4 \text{ GeV}$ $p_{Tt\gamma\gamma} = 3.1 \text{ GeV}$ $H \rightarrow \gamma \gamma$ 110 $\leq m_{\rm H} \leq 150 \, {\rm GeV}$ 4.9 fb⁻¹

Data-driven bkg estimation
-simultaneous two dimension A=B*C/D method : γγ, γj, jj
-e→γ fake rate : Drell-Yan

Н→үү

systematics

$110 \le m_{\rm H} \le 150 \text{ GeV}$ 4.9 fb⁻¹

Type and source	Uncertainty
Event yield	
Photon reconstruction and identification	$\pm 11\%$
Effect of pileup on photon identification	$\pm 4\%$
Isolation cut efficiency	$\pm 5\%$
Trigger efficiency	$\pm 1\%$
Higgs boson cross section	+15%/-11%
Higgs boson $p_{\rm T}$ modeling	$\pm 1\%$
Luminosity	$\pm 3.9\%$
Mass resolution	
Calorimeter energy resolution	$\pm 12\%$
Photon energy calibration	$\pm 6\%$
Effect of pileup on energy resolution	$\pm 3\%$
Photon angular resolution	$\pm 1\%$
Migration	
Higgs boson $p_{\rm T}$ modeling	$\pm 8\%$
Conversion reconstruction	$\pm 4.5\%$

Spurious signal

Category	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9
Events	±4.3	±0.2	±3.7	±0.5	±3.2	±0.1	±5.6	±0.6	±2.3

28

Н→үү

$110 \le m_{\rm H} \le 150 \text{ GeV}$ 4.9 fb⁻¹

Statistics results

Consistency w/ bkg only hypothesis 0° Data 2011, $\sqrt{s} = 7 \text{ TeV}$ 10° $M \to \gamma\gamma \text{ expected } p_0$ $\int Ldt = 4.9 \text{ fb}^{-1}$ 10^{-1} \sqrt{s} \sqrt{s}

max deviation at $m_{\rm H}$ =126 GeV p_0 =0.27 % \Leftrightarrow 2.8 σ (expected : 1.4 σ) w/ LLE : p_0 =7 % \Leftrightarrow 1.5 σ

Atlas Combination of SM channels

Correlated systematics

Overall effect on signal/bkg yields from a variation of 1 σ of source of systematics for a

$m_{H}=120 \text{ GeV for } H \rightarrow \tau\tau, H \rightarrow \gamma\gamma, H \rightarrow WW \rightarrow l\nu l\nu, H \rightarrow ZZ \rightarrow llll$ $\underline{m_{H}=300 \text{ GeV for } H \rightarrow WW \rightarrow lv \text{ } qq, H \rightarrow ZZ \rightarrow llvv, H \rightarrow ZZ \rightarrow llqq}_{\text{for illustration only}}$

(systematics for cross-section, resolution signal, migration btw categories, etc... are not printed in these tables, but considered in the final results)

Systematics for yields signal signal

Systematics for yields background

	$H o au^+ au^-$			$H \rightarrow V$	$WW^{(*)}$	$H \rightarrow ZZ^{(*)}$		
	$\ell \tau_{had} 3 v$	$\tau_\ell \tau_\ell + jet$	$H \rightarrow \gamma \gamma$	$\ell \nu \ell \nu$	<i>ℓvqq</i>	lll	$\ell\ell vv$	$\ell\ell qq$
Luminosity	+3.8 -3.6	+3.8 -3.6	$^{+4.0}_{-3.8}$	$^{+3.8}_{-3.6}$	$+3.8 \\ -3.6$	$^{+3.9}_{-3.8}$	+3.8 -3.6	$^{+3.8}_{-3.6}$
e/γ eff.	± 3.5	± 2.0	$^{+13.5}_{-11.9}$	± 2.0	± 0.9	± 2.9	± 1.2	± 1.2
$e/\gamma E$. scale	$^{+1.3}_{-0.1}$	± 0.3	-	± 0.4	-	-	± 0.7	± 0.4
e/γ res.	-	$^{+0.2}_{-0.5}$	-	$+0.20 \\ -0.05$	-	-	± 0.25	± 0.1
μ eff.	± 1.0	± 2.0	-	-	±0.3	± 0.16	± 0.7	± 0.5
μ res. Id.	-	+0.2 -0.5	-	+0.02 -0.04	-	-	± 1.1	± 1.1
μ res. MS.	-	-	-	+0.04 +0.08	-	-	$^{+1.1}_{-1.0}$	± 1.1
Jet/ <i>t</i> /MET E. scale	$^{+18.9}_{-16.4}$	$^{+3.4}_{-10.0}$	-	+4.46 -6.47	$^{+18.4}_{-15.5}$	-	±1.6	± 15.0
JER	-	± 2.0	-	$^{+1.8}_{-1.7}$	$^{+9.0}_{-8.2}$	-	$+0.3 \\ -0.0$	$^{+4.0}_{-0.0}$
MET	-	+4.4 -5.3	-	$^{+1.8}_{-1.7}$	-	-	-	-
<i>b</i> -tag eff.	-	-	-	± 0.5	-	-	±0.3	±3.7
au eff	+9.1	-	-	-	-	-	-	

background

fit fit

	$H ightarrow au^+ au^-$		11	$H \rightarrow WW^{(*)}$		$H \rightarrow ZZ^{(*)}$		
	$\ell \tau_{had} 3 v$	$\tau_\ell \tau_\ell + jet$	$H \rightarrow \gamma \gamma$	$\ell \nu \ell \nu$	ℓ <i>vqq</i>	lll	$\ell\ell vv$	$\ell \ell q q$
Luminosity	$^{+3.0}_{-2.9}$	$+3.8 \\ -3.6$	-	±0.2	-	+3.7 -3.6	$^{+2.4}_{-2.3}$	$^{+0.3}_{-0.2}$
e/γeff.	± 2.4	$^{+0.5}_{-1.6}$	-	±2.3	± 0.8	±1.6	± 0.8	± 0.1
$e/\gamma E$. scale	$^{+0.9}_{-0.3}$	± 0.8	-	$+0.2 \\ -0.1$	-	-	$^{+1.7}_{-1.6}$	± 0.1
e/γres.	-	$^{+0.3}_{-2.6}$	-	$^{+0.1}_{-0.0}$	-	-	± 0.6	± 0.2
μ eff.	± 1.4	$^{+0.5}_{-1.6}$	-	-	±0.3	±0.1	± 0.5	± 0.03
μ res. Id.	-	$^{+0.3}_{-2.6}$	-	-0.03 -0.06	-	-	$^{+1.7}_{-1.6}$	± 0.2
μ res. MS.	-	-	-	$^{+0.00}_{-0.02}$	-	-	$^{+1.7}_{-1.6}$	± 0.2
Jet/ τ /MET E. scale	$^{+10.0}_{-8.9}$	$^{+7.0}_{-9.8}$	-	$^{+8.5}_{-10.4}$	-	-	$^{+6.9}_{-5.2}$	± 1.0
JER	-	± 2.5	-	$+3.3 \\ -3.0$	-	-	$^{+1.8}_{-0.0}$	$^{+0.3}_{-0.0}$
MET	-	$^{+0.4}_{-2.7}$	-	$^{+0.6}_{-0.5}$	-	-	-	32
<i>b</i> -tag eff.	-	-	-	± 1.8	-	-	$^{+7.0}_{-5.5}$	± 0.2
au eff.	±7.2	-	-	-	-	-	-	

Upper limits

Excluded 95 % CL -Observed : [112.7; 115.5] U [131; 237] U [251; 453] GeV -Expected : [124.6 ; 520] GeV

95% CL Limit on σ/σ_{SM}

Consistency of obs. w/ bkg-only hyp.

Best fit signal strength

$\mu=0$: bkg-only $\mu=1$: 1 xSM $\mu=n$: n xSM

compatible w/ SM within fit uncertainty band

Negative values authorized but pdf ≥ 0 (not the case for p₀, limited to 0.5)

110 115 120 125 130 135 140 145 150

2011 Data

M_H [GeV]

-2

-3

compatible w/ SM

compatible w/ SM

Excess in the same region 124-126 GeV A bit higher for CMS (⇔more SM-like)

flashed

Atlas

flashed $H \rightarrow WW \rightarrow l\nu l\nu$

Atlas

(previous) Combination Atlas/CMS w/ 1.0-2.3 fb⁻¹/experiment

Channel	Experiment	m_H range $[GeV]$	Luminosity (fb^{-1})	sub-channels
$H \rightarrow \gamma \gamma$	ATLAS	110 - 150	1.1	5 : η ; conv. of photons
	CMS	110 - 150	1.7	8 : $p_{T_{\gamma\gamma}}$; η ; conv. of photons
$H \rightarrow \tau \tau$	ATLAS	110 - 150	1.1	5 : $ll4\nu$: $ee, \mu\mu, e\mu$; $l\tau_{had}$: e, μ
	CMS	110 - 140	1.6	$6: l\tau_{had}: e, \mu; e + \mu; VBF jets \text{ or not}$
$H \rightarrow bb$	ATLAS	110 - 130	1.0	2: WH, ZH
	CMS	110 - 135	1.1	$5: WH, ZH; e, \mu$
$H \rightarrow WW \rightarrow l\nu l\nu$	ATLAS	110 - 300	1.7	$6: e, \mu, e\mu; 0, 1j$
	CMS	110 - 600	1.5	$4: l_1 = l_2, l_1 \neq l_2; 0, 1 j$
$H \rightarrow ZZ \rightarrow llll$	ATLAS	110 - 600	2.0 - 2.3	$3: 4\mu, 2e2\mu, 4e$
	CMS	110 - 600	1.7	$3: 4\mu, 2e2\mu, 4e$
$H \rightarrow ZZ \rightarrow 2l2\tau$				
	CMS	180 - 600	1.1	8 : $e\mu$; $\tau_{had}\tau_{had}$, $l\tau_{had}$: e, μ , $e\mu$
$H \rightarrow ZZ \rightarrow 2l2\nu$	ATLAS	200 - 600	2.0	2 : ee, µµ
	CMS	180 - 600	1.1	$2:ee, \mu\mu$
$H \rightarrow ZZ \rightarrow 2l2q$	ATLAS	200 - 600	1.0	$2:ee, \mu\mu$
	CMS	225 - 600	1.6	$6: ee, \mu\mu; 0, 1, 2 b$

Uncertainties taken either : 100 % correlated (+ or -) or uncorrelated. Partially correlated broken down to subcomponents 100 % correlated or uncorrelated, or considered as 100 % correlated (conservative) \rightarrow allow to factorize all constraints in likelihood

41

(previous) Combination Atlas/CMS w/ 1.0-2.3 fb⁻¹/experiment

Observed exclusion : 141-476 GeV Expected exclusion : 124-520 GeV

 p_0^{local} : 0.001→3.1 sigma p_0^{global} : 0.05→1.6 sigma

Conclusion...

Search for Higgs boson by Atlas experiment continued w/ 2011 data

- Exploration continue for beyond SM Higgs
- Shrinking of viable region for existence of SM Higgs : current status : excluded 95 % CL

-Observed : [112.7 ; 115.5] U [131 ; 237] U [251 ; 453] GeV

-Expected : [124.6 ; 520] GeV

Higgs if it exists, would most probably be in the range [116; 131] GeV Not enough statistics to make conclusion on \exists/\exists of Higgs

43

... Prospects

• improve analysis :

-update $H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$, $W/Z H \rightarrow bb$, $H \rightarrow \tau \tau w/O(5 \text{ fb}^{-1})$

-relax kinematic cuts (eg p_T lepton) to increase acceptance for low masses -improve identification (MVA, etc)

-further categorization, exclusive channels, new discriminating variables -combine with CMS : not before publication of individual results

• 2012 : running at 8 TeV and 20 fb⁻¹

20 fb⁻¹ per experiment would allow : -Atlas alone : 5 σ discovery at m_H \approx 125 GeV -Atlas+CMS : 5 σ down to m_H \approx 116 GeV -8 TeV : gain sensitivity \approx 10 %

44

- What will be with Higgs? Nobody can answer, yet
- LHC running in 2012 will most probably bring an answer
- →enthousiastic future, possible surprises (good or bad) : let's remain stoic

seminars of F. Gianotti (Atlas) and G. Tonelli (CMS) : https://indico.cem.ch/conferenceDisplay.py?confId=164890

From F. Gianotti's, seminar :

Link :

2011 Physics Proton Trigger Menu (end of run L = $3.3 \ 10^{33} \ \text{cm}^{-2}\text{s}^{-1}$)							
		Trigger Se	election	L1 Rate (kHz) at 3e33	EF Rate (Hz) at 3e33		
	Offline Selection	L1	EF				
Single leptons	Single muon > 20GeV	11 GeV	18 GeV	8	100		
	Single electron > 25GeV	16 GeV	22 GeV	9	55		
Two leptons	2 muons > 17, 12GeV	11GeV	15,10GeV	8	4		
	2 electrons, each > 15GeV	2x10GeV	2x12GeV	2	3		
	2 taus > 45, 30GeV	15,11GeV	29,20GeV	7.5	15		
Two photons	2 photons, each > 25GeV	2x12GeV	20GeV	3.5	5		
Single jet plus MET	Jet pT > 130 GeV & MET > 140 GeV	50 GeV & 35 GeV	75GeV & 55GeV	0.8	18		
MET	MET > 170 GeV	50 GeV	70GeV	0.6	5		
Multi-jets	5 jets, each pT > 55 GeV	5x10GeV	5x30GeV	0.2	9		
TOTAL				<75	~400 (mean)		

Beyond SM Higgs : MSSM

• MSSM (2HDM type II) : h, H, A, H, H[±] (A : CP odd) -neutral (h/H/A) : $\Phi_{g \to \tilde{u}u}/g_{H^{SM}\tilde{u}u}$

ttH : suppressed for large tan β

```
dominant decay : bb, \tau\tau
```


decay : $H^+ \rightarrow tb$; $H^+ \rightarrow \tau v$ sizeable (high tan β) ^g ^{QQQQQQ}

 $g_{\Phi VV}/g_{H^{\rm SM}VV}$

 $\sin(\beta - \alpha)$

 $\cos(\beta - \alpha)$

0

<SM

Beyond SM Higgs : NMSSM ; 4SM

many free param in MSSM : soft SUSY breaking terms, µ prob. : fine-tuning

• NMSSM : CP even : $\{H_1, H_2, H_3\}$ CP odd : $\{A_1, A_2\}$ charged : $\{H^+, H^-\}$ Light CP-odd Higgs boson : A_1 $A_1 \rightarrow \mu \mu$

if 9.2<mastering magnetic moment anomalous μ magnetic moment

• could explain some discrepancy by Babar wrt SM

• extra degree of freedom could satisfy dark matter limits $m_{a1} < 2m_B$: escapes LEP limits

- {Left-Right symmetric ; Higgs triplet ; Little Higgs} double charged Higgs : $H^{\pm\pm}$
- 4th generation : gg fusion ↑

Fermiophobic scenario

H-fermions coupling : suppressed (« phoby of fermions ») \rightarrow ggH, ttH suppressed ; H \rightarrow bb suppressed ; H $\rightarrow\gamma\gamma$: strongly enhanced Two opposite effects : global : increase of σxBR

Production modes : VBF and VH : recoiling jets and vector boson $\rightarrow p_T$ of Higgs can be exploited

Channels investigated by Atlas w/ data $\frac{S}{B}$

SM Beyond SM

• H→bb (VH)	ATLAS-CONF-2011-103 ; http://cdsweb.cern.ch/record/1369826			
• H \rightarrow $\tau\tau$ (ll, $l\tau_{had}$, $\tau_{had}\tau_{had}$)	ATLAS-CONF-2011-132 ; http://cdsweb.cern.ch/record/1383835			
• H→ττ (ll 4ν) +j	ATLAS-CONF-2011-133 ; http://cdsweb.cern.ch/record/1383836			
• H → үү	ATLAS-CONF-2011-161; http://cdsweb.cern.ch/record/1406356			
• $H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$	arXiv:1112.2577; <u>http://arxiv.org/abs/1112.2577</u>			
• $H \rightarrow WW^{(*)} \rightarrow l\nu qq$	arXiv:1109.3615; <u>http://arxiv.org/abs/1109.3615</u>			
• $H \rightarrow ZZ^{(*)} \rightarrow 41$	ATLAS-CONF-2011-162 ; http://cdsweb.cern.ch/record/1406357			
• H→ZZ→ll vv	ATLAS-CONF-2011-148; http://cdsweb.cern.ch/record/1392668			
• H→ZZ→ll qq	ATLAS-CONF-2011-150 ; https://cdsweb.cern.ch/record/1397901			
• combination (\leq 4.9 fb ⁻¹); ATLAS-CONF-2011-163 <u>http://cdsweb.cern.ch/record/1406358</u>				
 prospectives 8 TeV 	ATL-PHYS-PUB-2011-001 ; http://cdsweb.cern.ch/record/1323856/			
• Atlas/CMS	ATLAS-CONF-2011-157 ; http://cdsweb.cern.ch/record/1399599			
• $H^{\pm} \rightarrow \tau_{lep} \nu w/ tt$	ATLAS-CONF-2011-151 ; https://cdsweb.cern.ch/record/1398187			
• $H^{\pm} \rightarrow \tau + j w/ tt$	ATLAS-CONF-2011-138; http://cdsweb.cern.ch/record/1383841			
• H [±] →cs	ATLAS-CONF-2011-094 ; http://cdsweb.cern.ch/record/1367737			
• a ₁ →μμ	ATLAS-CONF-2011-020 ; http://cdsweb.cern.ch/record/1336749			
• H ^{±±} →μ [±] μ [±]	ATLAS-CONF-2011-127 ; http://cdsweb.cern.ch/record/1383792			
• Higgs SM4	ATLAS-CONF-2011-135 ; http://cdsweb.cern.ch/record/1383838			
• H→γγ fermiophobic	ATLAS-CONF-2011-149; https://cdsweb.cern.ch/record/1397815			

Identification of electrons/photons

Track/cluster matching & exploits various quantities of shower shape. Ex :

Electrons

Efficiency measurement : tag & probe method applied to $Z \rightarrow ee$, $W \rightarrow en$, $J/\psi \rightarrow ee$

 $J/\psi \rightarrow$ produced promptly & in decay of B-hadrons (non promptly) $\rightarrow \neq$ eff

Impact of PU

Deterioration w/ PU mainly from increasing hadronic activity overlayed to electron calo shower

Granularity elmg calorimeter

EM calorimeter							
Number of layers and $ \eta $ coverage							
Presampler	1	$ \eta < 1.52$	1	$1.5 < \eta < 1.8$			
Calorimeter	3	$ \eta < 1.35$	2	$1.375 < \eta < 1.5$			
	2	$1.35 < \eta < 1.475$	3	$1.5 < \eta < 2.5$			
			2	$2.5 < \eta < 3.2$			
Granularity $\Delta \eta \times \Delta \phi$ versus $ \eta $							
Presampler	0.025 imes 0.1	$ \eta < 1.52$	0.025 imes 0.1	$1.5 < \eta < 1.8$			
Calorimeter 1st layer	$0.025/8 \times 0.1$	$ \eta < 1.40$	0.050 imes 0.1	$1.375 < \eta < 1.425$			
	0.025 imes 0.025	$1.40 < \eta < 1.475$	0.025 imes 0.1	$1.425 < \eta < 1.5$			
			0.025/8 imes 0.1	$1.5 < \eta < 1.8$			
			$0.025/6 \times 0.1$ > 0.025	$ \eta < 2.0$			
			$0.025/4 \times 0.1 \geq 0.025$	$ $ δ 2.0 < $ \eta $ < 2.4			
			0.025 imes 0.1	$2.4 < \eta < 2.5$			
			0.1 imes 0.1	$2.5 < \eta < 3.2$			
Calorimeter 2nd layer	0.025 imes 0.025	$ \eta < 1.40$	0.050 imes 0.025	$1.375 < \eta < 1.425$			
	0.075 imes 0.025	$1.40 < \eta < 1.475$	0.025 imes 0.025	$1.425 < \eta < 2.5$			
			0.1 imes 0.1	$2.5 < \eta < 3.2$			
Calorimeter 3rd layer	0.050 imes 0.025	$ \eta < 1.35$	0.050 imes 0.025	$1.5 < \eta < 2.5$			
Number of readout channels							
Presampler	7808		1536 (both sides)				
Calorimeter	101760		62208 (both sides)				

Summary cuts identification electron/photons

Type

Description

Acceptance of the detector $|\eta| < 2.47$ for electrons, $|\eta| < 2.37$ for photons (1.37 < $|\eta| < 1.52$ excluded) Hadronic leakage Ratio of E_T in the 1st sampling of the hadronic calorimeter to E_T of the R_{had1} EM cluster (used over the range $|\eta| < 0.8$ and $|\eta| > 1.37$) Ratio of E_T in the hadronic calorimeter to E_T of the EM cluster R_{had} (used over the range $|\eta| > 0.8$ and $|\eta| < 1.37$) Middle layer of the Ratio in η of cell energies in 3×7 versus 7×7 cells. R_{η} EM calorimeter Lateral width of the shower w_2 Medium electron cuts (in addition to the loose cuts) Strip layer of the Total lateral shower width (20 strips) Wstot EM calorimeter Ratio of the energy difference associated with the largest and second largest Eratio energy deposits over the sum of these energies Track quality Number of hits in the pixel detector (at least one) Number of hits in the pixels and SCT (at least seven) Transverse impact parameter (<5 mm) d_0 $\Delta \eta$ between the cluster and the track in the strip layer of the EM calorimeter Track matching $\Delta \eta_1$ Tight electron cuts (in addition to the medium electron cuts) **B**-layer Number of hits in the B-layer (at least one) $\Delta \phi$ between the cluster and the track in the middle of the EM calorimeter Track matching $\Delta \phi_2$ Ratio of the cluster energy to the track momentum E/p TRT Total number of hits in the TRT (used over the acceptance of the TRT, $|\eta| < 2.0$) Ratio of the number of high-threshold hits to the total number of TRT hits (used over the acceptance of the TRT, $|\eta| < 2.0$) Tight photon cuts (in addition to the loose cuts, applied with stricter thresholds) Second layer of the Ratio in ϕ of cell energies Rφ EM calorimeter in 3×3 and 3×7 cells Strip layer of the Shower width for three strips around maximum strip Ws3 EM calorimeter Total lateral shower width Wstot Fraction of energy outside core of three central strips but within seven strips Fside Difference between the energy of the strip with the second greatest ΔE energy and the energy of the strip with the smallest energy between the two leading strips Ratio of the energy difference associated with the largest and second largest Eratio energy deposits over the sum of these energies

Loose electron and photon cuts

Variable name

Calorimeter isolation & pile-up

event-by-event

subs. using ambient $\rho_{\rm F}$

Transverse isolation energy :

- $\Sigma_{R=0.4}$ cells elmg & hadronic calo around elmg objects
- Subs. core 5x7 cells around barycenter of elmg object
- Corrections from out-of-core energy leakage
- Corrections from UE & in-time pile-up

Mean for Z decays

- constructive interference : increases mean
 cancelation of in-time & out-of-time PU
 for 12 bunches spaced of 50 ns (⇔600 ns)
 Mean isolation : independent bunch
 position train
- •After gap of 8 bunch crossing : cancellation incomplete again (other bunches)

Direction of photons

•

conv. photons non TRT standalone :

1st sampling+conversion point

(direction of electron : tracks)

unconv. photons & TRT standalone
 conv. photons : calorimeter pointing

Statistical treatement

Profile likelihood test statistics, CLs prescription, asymptotic method Check w/ pseudo-experiments & w/ Bayesian

Statistical treatement

• Quantification consistency of hyp. wrt signal strenght « μ »

 $(\mu = 0 : bkg ; \mu = 1 : signal) :$

 p_{μ} -value of the test statistics : probability than a given unknown measurement is more extremal than what is really measured

- p-value<x % \rightarrow Confidence Level (CL) at (100-x) % of the observation
- problem : ↓ fluct. of bkg : could exclude signal for which no sensitivity
 →conservative solution at LHC :

•
$$CL_s = \frac{CL_{s+b}}{CL_b} > CL_{s+b}$$
 \rightarrow test $CL_s < 0.05$ for exclusion

- Exclusion/upper limits : test consistency of obs/exp. w/ signal-only hyp. p_{μ} -value : Prob(bkg-only exp. is more signal-like than observed one)
- Observation/discovery : test consistency of obs/exp. w/ bkg-only hyp. p_0 : Prob than bkg+sig exp. is more bkg-like than observed one construction such than p_0 =can't be > 50 % if bkg \downarrow

Possible statistical results

- Observed exclusion and expected exclusion confortable w/ exclusion (within CL : sometimes resurrection of an exclusion)
- Observed exclusion but expected non exclusion exclusion wo sensitivity : typical : statistical fluctuation down of bkg
- Expected exclusion but observed non exclusion statistical fluctuation up of bkg or signal
- low expected p-value and high observed p₀-value Signal (within significance)
- low expected p-value but high observed p_0 -value Non deviation of results with SM
- high expected p-value but low observed p_0 -value statistical fluctuation down of bkg or signal

Look-elsewhere effect

-Authorize to look « elsewhere » to the current mass point -The bigger the mass window for analysis, the bigger Prob($\exists \ge 1$ fluctuation) - $p_0^{local} \rightarrow p_0^{global}$: corrective factor : « trial factor »

eg for computing for LEE

Individual channels : (I) beyond SM

Statistical independance of channels with same final state : eg : in SM : {Z(II)H(bb) ; $H \rightarrow ZZ \rightarrow II bb$ } \rightarrow use mutual exclusive selection (range of masses, etc.)

Final discriminant variables (SM)

Entries / 10 GeV

typical : invariant or transverse mass

MSSM A/H/h→てて

ZZ, WW dominant for SM for $m_H > 140 \text{ GeV}$ MSSM : HVV : suppressed by $\cos^2(\beta - \alpha)$; AVV : 0 While coupling to T3=-1/2 enhanced for high tan β , and proportional to $m_f \rightarrow \tau \tau$ decay promising

A/H/h→ττ→eµ+4ν, [90-450 GeV], 1.06 fb⁻¹, data 2011, _{ATLAS-CONF-2011-132} A/H/h→ττ→eτ_{had}+3ν, [90-450 GeV], 1.06 fb⁻¹, data 2011, _{ATLAS-CONF-2011-132} A/H/h→ττ→τ_{had}τ_{ad}+2ν, [90-450 GeV], 1.06 fb⁻¹, data 2011, _{ATLAS-CONF-2011-132}

Tau invariant mass reconstruction

- $M_{\tau\tau}^{\text{visible}}$: use visible tau decays : broaden $m_{\tau\tau}$ \rightarrow reduces sensitivity
- $M_{\tau\tau}^{\text{effective}}$ (m_T) uses visible $\sqrt{(p_{\tau+}+p_{\tau-}+p_{miss})^2}$: applicable to fraction events
- Coll. approx : assumpt. : $v \approx$ collinear w/ vis. τ decays ; $m_{\tau\tau} = m_{vis} / \sqrt{(x_1 x_2)}$ ie 900

 x_i : fraction of visible momentum for τ_i

Missing Mass Calculator : (arxiv:1012.4686)

performance-Solving system of 4 equations :

 $E_{xmiss}, E_{ymiss}, m_{\tau}^2, m_{\tau}^2 =$

 $f(p_{miss1}, \sin \theta_{miss1}, \phi_{miss1}, p_{miss2}, \sin \theta_{miss2}, \phi_{miss2}, p_{vis1}, p_{vis2}, \Delta \theta \{vis_1, mis_1\}, \Delta \theta \{vis_2, mis_2\})$ #constraints < #unknown

150 200 \Rightarrow system solved for a grid of points in $\Delta\phi$ {vis₁,mis₁}, $\Delta\phi$ {vis₂,mis₂} $M_{...}$ (GeV/c²) At each point compute $\Delta \theta^{3D}$ {vis,mis} and weight by probability (from simu)

66

Missing Mass Calculato

Collinear Approximation

800

400

300

200^E

100

MSSM A/H/h $\rightarrow \tau \tau \rightarrow e\mu + 4\nu$ 90 $\leq m_{H} \leq 450 \text{ GeV}$ 1.06 fb⁻¹

 $m_{\tau\tau}\, \text{visible}\,[\text{GeV}]$

MSSM A/H/h $\rightarrow \tau \tau \rightarrow e\mu + 4\nu$ 90 $\leq m_{\rm H} \leq 450 \, {\rm GeV}$ 1.06 fb⁻¹

 $MSSM A/H/h \rightarrow \tau \tau \rightarrow l\tau_{had} + 3\nu$

MSSM $A/H/h \rightarrow \tau \tau \rightarrow \tau_{had} \tau_{had} + 2\nu$

MSSM charged Higgs

H⁺→τ_{lep}ν w/ tt [90-160 GeV], 1.03 fb-1, data 2011, ATLAS-CONF-2011-151 H[±]→τ_{had} j [90-160 GeV], 1.03 fb⁻¹, data 2011, ATLAS-CONF-2011-138 H[±]→cs, [90-130 GeV], 35 pb⁻¹, data 2011, ATLAS-CONF-2011-094 H^{±±}→μ[±]μ[±] [100-400 GeV], 1.6 fb-1, data 2011, ATLAS-CONF-2011-127

$H^+ \rightarrow \tau_{lep} v$

• signature

 $\begin{array}{cccc} t \rightarrow Wb & (SM) & t \rightarrow H^+b & (beyond SM) \\ & & \downarrow \rightarrow 1 \nu & \downarrow \rightarrow \tau \nu & light H+, \tan \beta > 3 : BR(H^+ \rightarrow \tau \nu) > 90 \% \\ & & \downarrow \rightarrow 1 \nu \dots & \downarrow \rightarrow 1 \nu \dots & \\ & & \downarrow \rightarrow 1 \nu \dots & \rightarrow l(W) / l(\tau) \\ & BR(H^+ \rightarrow \tau \nu \rightarrow l+\nu \dots) \approx 35 \% \\ & BR(W \rightarrow l+\nu \dots) \approx 25 \% & increases tt \rightarrow 1 ; 2 leptons \end{array}$

Not enough : viable strategy : discriminating variable : $m_{lb} \rightarrow \cos \theta^* = (2m_{bl}^2)/(m_t^2 - m_W^2)$

• selection

Production : tt

- 1 lepton and 2 leptons channels
- ≥ 2 jets (# = f(channel), =2 b-jets
- for 21: m_{ll} >15 GeV & $|m_{ll}-m_Z|$ >10 GeV (suppr. Z)

- MET>40 GeV

- eµ channel : $\Sigma |p_T|$ (l, jets) >130 GeV

- $\cos \theta^* < 1$

Final discriminant : transverse mass

$90 \le m_{\rm H} \le 160 \,\,{\rm GeV}$ 1.03 fb⁻¹

Limits

B(t→bH⁺) < 5.2-14.1 % $m_{\rm H}^{\rm max}$ scenario : tan β>30-56 excluded ($m_{\rm H}$ in [90 ; 140 GeV])

$90 \le m_{\rm H} \le 140 {\rm ~GeV}$ 1.03 fb⁻¹

$MSSM H^{\pm} \rightarrow \tau_{had} j$

• Production mechanism Low mass : $t \rightarrow H^+b$

- background tt, multijets, 1-t, W+j
- Selection
- $\ge 4 j$ (apart τ jets)
- =1 τ jet (veto second)
- veto electron/muon
- ≥ 1 b-jet
- MET>40 GeV
- Topology consistent w/ t \rightarrow qqb -final discriminant variable : m_T

• Measure bkg Enriched multijets sample τ : loose \ tight & revert b-tagging fit MET

BR(t \rightarrow bH[±])xBR(H[±] \rightarrow tv) : 0.03-0.10 for m_H in [90 ; 160] m_h^{max} scenario : tan β >22-30 for 22-30 for m_H in [90 ; 140]

- Production mechanism Low mass : $t \rightarrow H^+b$
- Signature : 1 lepton, 4 jets
 -similar to semi-leptonic tt, apart mjj≠m_W
 Increase of tt→jj due to additional all hadronic decay mode tt→H+bH-b

• background

Primary : tt Secondary : 1-t, W/Z+j, WW, WZ, ZZ, QCD

• selection

- =1 lepton (e, μ)
- MET>35/20 GeV (e, μ) (suppr. QCD) -m_T(1; MET)>thr (suppr. QCD)
- $\ge 4j$ (suppr. W+j)
- ≥ 1 b-jet
- Combinatory of jets : kinematic fitter

NMSSM $a_1 \rightarrow \mu \mu$

$0 \le m_{a1} \le 12 \text{ GeV}$ 39 pb⁻¹

•Pdfs from data : bkg : sidebands ; signal : Y Entries/100 MeV ATLAS Preliminary $\sqrt{s} = 7 \text{ TeV}, \text{ L dt} = 39 \text{ pb}^{-1}$ 10⁴ 10^{3} Before the LB select After the LB selection g m(a) = 6.5 GeVC 1600 10² /(C · m(a) = 8.5 GeV limits on ____1400 m(a) = 11.5 Ge ື່ສູ 1200 ຍ 8 9 10 12 11 1000 m_{uu} [GeV] **Systematics** Luminosity: 3% Generator : 60-30 % Di-muon efficiency : 14 % Trigger : 10 % Likelihood ratio modeling : 3 %

$H^{\pm\pm} \rightarrow \mu^{\pm} \mu^{\pm}$

$100 \le m_{\rm H} \le 400 \, {\rm GeV}$ 1.6 fb⁻¹

background

-primary : HV, decay-in-flight π/K -secondary WZ, ZZ, WW -tertiary : ttW

selection

 $-=2 \mu$ same charge

350

 $\sigma(H^{\pm\pm}) x BR(H^{\pm\pm} \rightarrow \mu^{\pm} \mu^{\pm}) < 13-1.6 \text{ fb}^{-1}$ Left-Right symmetric model : if BR($H^{\pm\pm} \rightarrow \mu^{\pm} \mu^{\pm}$)=100% -exclude $H^{\pm\pm}_{I}$ <375 GeV -exclude $H^{\pm\pm}_{L}$ <295 GeV

$110 \le m_{\rm H} \le 130 \,\,{\rm GeV}$ 1.08 fb⁻¹

- ggH, ttH non existing \rightarrow VBF, WH, ZH exploits $p_{T\gamma\gamma}$ category to improve sensitivity $p_T \leq 50 \text{ GeV}$; $50 < p_T \leq 100 \text{ GeV}$; $p_T > 100 \text{ GeV}$
- Deformed inv. mass due to turn-on of high- p_T

 \rightarrow avoid exponential shape : uses Bernstein-based polynomial 2th order

Drawback of $p_{T\gamma\gamma}$: turn-on effect on invariant mass. New variable : P_{Tt} introduced later on for SM analysis $H \rightarrow \gamma\gamma$

Fermiophobic $H \rightarrow \gamma \gamma$

 $\rightarrow 9\%$

Systematics

Production mode (VBF, VH) : 4 %

5% added linearly for EW radiative corrections

Common uncertainties of summer 2011 H $\rightarrow\gamma\gamma$ analysis (EPS 2011)

Total rate uncertainty : 15 %

Signal invariant mass resolution : same as for EPS note SM

Bkg modelization/spurious signal : deviation of bkg mass to fit

 \rightarrow ±6.5 events for low p_T ; ±2.2 events for middle p_T ; ±0.65 events for high p_T

Limit on SM4 : 4th generation of fermions

Excluded at 95 % : $m_{\rm H}$: 119-593 GeV

Individual channels : (II) SM

Low masses : $m_{H} < 140 \text{ GeV}$ $H \rightarrow \gamma\gamma$; $H \rightarrow bb$; $H \rightarrow \tau\tau$

Intermediate/high mass : 130-600 GeV $H \rightarrow WW \rightarrow lv lv$; $H \rightarrow ZZ \rightarrow 4l$

High mass $H \rightarrow ZZ \rightarrow Ilvv$; $H \rightarrow ZZ \rightarrow Ilqq$; $H \rightarrow WW \rightarrow Inqq$

$H → bb 110 \le m_{\rm H} \le 130 \text{ GeV} 1.04 \text{ fb}^{-1}$ W(lv)H(bb) Z(ll)H(bb)

• Bkg

-Primary : tt

- -Secondary : 1-t, QCD, W+j
- -Tertiary : Z+j, WW, WZ, ZZ

```
-Primary : Z+j
```

-Secondary : tt, QCD, ZZ, WZ

-exactly 2 j ; b-tagged (suppr. tt) -discriminating variable : m_{bb}

• Selection :

-exactly 1 isol. lepton (suppr. Z, tt) -MET>25 GeV (suppr. $Z \rightarrow ll$; QCD) -{1; MET} comp. w/ W -m_T>40 GeV

- =2 OS (apart e) same flav isol. l, $m_{ll} \approx m_Z$ (suppr. non Z bkg : tt, QCD) -MET<50 GeV (suppr. tt)

H→bb

• Measurement of bkg W+j :

-top : MC, normalization : data sideband m_{bb} & sub. other contrib from data

- -QCD : template method, fit MET for normalization
- -W+j : data-driven template m_{jj} ; substract non-W by MC ; normalization : sideband fit m_{bb}
- -Z+j : MC & normalization : fit on data

-WZ/WW/ZZ : MC

- Measurement of bkg Z+j :
- -Z+j : MC, normalization : sidebands m_{bb} (non Z+j substracted from data)
- -ZZ : irreducible : MC (small : difficult to constraint w/ data)
- -top : MC, normalization : sidebands m_{ll} & b-tagging criteria
- -QCD : e channel : l : L\T : template $m_{ll} w \ge 2 j$ μ channel : MC semileptonic bb, cc : negligeable after $m_{\mu\mu}$ cut

H→bb

$110 \le m_{\rm H} \le 130 \,\,{\rm GeV}$ 1.04 fb⁻¹

Dominant systematics -JES : 2-7 % -Jet energy resolution : 5-12 % -b-tagging eff. : 5-14 % -b mistag-rate : 8-12 % -Muon momentum scale : 2-16 %

10-20 xSM Not as competitive as other channels

H→bb

$110 \le m_{\rm H} \le 130 \,\,{\rm GeV}$ 1.04 fb⁻¹

• Systematics

-Detector and rec related systematic

Source of Uncertainty	Treatment in analysis
Jet Energy Scale (JES)	$2-7\%$ as a function of $p_{\rm T}$ and η
Jet Pile-up Uncertainty	$2-7\%$ as a function of $p_{\rm T}$ and η
b-quark Energy Scale	2.5%
Jet Energy Resolution	5 - 12%
Electron Selection Efficiency	$0.7 - 3\%$ as a function of $p_{\rm T}$, $0.4 - 6\%$ as a function of η
Electron Trigger Efficiency	$0.4 - 1\%$ as a function of η
Electron Reconstruction Efficiency	$0.7 - 1.8\%$ as a function of η
Electron Energy Scale	$0.1 - 6\%$ as a function of η , pileup, material effects etc.
Electron Energy Resolution	Sampling term 20%, a small constant term has a large variation with η
Muon Selection Efficiency	$0.2 - 3\%$ as a function of $p_{\rm T}$
Muon Trigger Efficiency	< 1%
Muon Momentum Scale	$2 - 16\% \eta$ -dependent systematic on scale
Muon Momentum Resolution	$p_{\rm T}$ and η -dependent resolution smearing functions, systematic $\leq 1\%$
<i>b</i> -tagging Efficiency	$5 - 14\%$ as a function of $p_{\rm T}$
b-tagging Mis-tag Fraction	$8 - 12\%$ as a function of $p_{\rm T}$ and η
Missing Transverse Energy	Add/subtract object uncertainties in $E_{\rm T}^{\rm miss}$

-non detector and rec related systematics

Source of Uncertainty	Treatment in analysis		
	ZH	WH	
Luminosity	3.7%	3.7%	
Higgs boson cross-section	5%	5%	
Background norm. and shape:			
Тор	9%	6%	
Z+jets	9% plus shape	9%	
W+jets	negligible	14% plus shapes	
ZZ	11%	negligible	
WZ	11%	11%	
WW	negligible	11%	
QCD multijets	100%	50%	

-Impact on signal yields

Source of Uncertainty	Effect on $ZH \rightarrow \ell\ell b\bar{b}$ signal		Effect on $WH \rightarrow \ell v b \bar{b}$ signal	
	$m_H = 115 \text{ GeV}$	$m_H = 130 \text{ GeV}$	$m_H = 115 \text{ GeV}$	$m_H = 130 \text{ GeV}$
Electron Energy Scale	< 1%	< 1%	1%	1%
Electron Energy Resolution	< 1%	< 1%	1%	1%
Muon Momentum Resolution	1%	3%	4%	1%
Jet Energy	9%	7%	1%	3%
Jet Energy Resolution	< 1%	< 1%	1%	1%
Missing Transverse Energy	2%	2%	2%	3%
b-tagging Efficiency	16%	17%	16%	17%
b-tagging Mis-tag Fraction	< 1%	< 1%	3%	3%
Electron Efficiency	1%	1%	1%	1%
Muon Efficiency	1%	1%	1%	1%
Luminosity	4%	4%	4%	4%
Higgs Cross-section	5%	5%	5%	5%

84

alternative approach : boosted Higgs : $p_T(H) > 200 \text{ GeV}$

 $p_T(H)>200 \text{ GeV}$: rej. 95 % signal ; $p_T(H) \uparrow \rightarrow \Delta \phi \downarrow$ → jet substructure technique Loss of statistics compensated by increase of S/B

Selection : $W \rightarrow lv$ consistent with $p_T > 200$ GeV Background : Primary : tt Secondary : W+jTertiary : WW

useful control sample : encouraging observation of peak at m_W fom tt $\rightarrow lv$ b qq b

Jet Mass [GeV]

$H \rightarrow \tau \tau \rightarrow ll + 4\nu$ 110 $\leq m_{\rm H} \leq 140 \text{ GeV}$ 1.06 fb⁻¹

• Selection

- ≥ 1 high p_T jet \Leftrightarrow boost of Higgs: increases $p_T(H) \rightarrow MET$
- MET>thr : suppr. $Z/\gamma^* \rightarrow ll$ (e, μ), QCD
- =2 isolated opposite charge leptons (e, μ) : N_e+N_{μ}=2
- m_{ll} >20 GeV (suppr. Y); thr1< m_{ll} <thr2: suppr. $Z/\gamma^* \rightarrow ee, \mu\mu$
- Collinear approximation : low thr<x_{1,2}<high thr
- \rightarrow neutrinos collinear to charged leptons
- 0.3 < $\Delta \phi_{ll}$ <2.5 : suppr. Z/ $\gamma^* \rightarrow$ ee, $\mu \mu$, tt
- $|\eta_j|$ >0.5 : to boost Higgs system : jets from tt more central : suppr. tt
- $m_{\tau\tau j}$ >225 GeV : suppr. Z/ γ^* \rightarrow ee, $\mu\mu$, $\tau\tau$
- $100 < m_{\tau\tau} < 150 \text{ GeV}$
- Bkg
- -Primary : $Z/\gamma^* \rightarrow \tau \tau$, $Z/\gamma^* \rightarrow ll$
- -Secondary : tt, 1-t, WW, WZ, ZZ

$H \rightarrow \tau \tau \rightarrow ll + 4\nu$ 110 $\leq m_{\rm H} \leq 140 \text{ GeV}$ 1.06 fb⁻¹

• Evaluation background

 $-Z/\gamma^* \rightarrow \tau\tau$: data-driven : τ -embedding technique $Z/\gamma^* \rightarrow \mu$ -tt, 1-t, $Z \rightarrow 11$, WW, WZ, ZZ : MC -tt, Z : confirmed by data w/ Control Regions -fake leptons : template method

$H \rightarrow \tau \tau \rightarrow l \tau_{had} + 3 \nu$

- Selection
- =1 isol. or μ ; p_T>25 GeV/20 GeV: suppr. Z/ $\gamma^* \rightarrow ll$ (e, μ), tt, 1-t
- opposite charge τ_{had}
- MET>20 GeV : suppr. QCD, $Z/\gamma^* \rightarrow ll (e,\mu)$
- $m_T < 30 \text{ GeV}$: suppr. W $\rightarrow l\nu$

H→WW→lvqq

$240 \le m_{\rm H} \le 600 \ {\rm GeV}$ 1.04 fb⁻¹

• Bkg

-primary : W+j

-secondary : Z+j, QCD, top, dibosons (WW, WZ, ZZ)

- Selection
- =1 isolated lepton (e/μ) ; veto 2 leptons : statistically independent of H \rightarrow ZZ \rightarrow llvv - MET>30 GeV
- =2/3 jets (H+0j / H+1j)
- veto b-jets (suppr. top)
- $m_{jj} \approx m_W$

H→WW→lvqq

$240 \le m_{\rm H} \le 600 \text{ GeV}$ 1.04 fb⁻¹

• Evaluation background

-QCD : loosen electron identification & invert isolation $\boldsymbol{\mu}$

- systematics signal Objet reco ; dominant : JES, resolution
- Limits :

likelihood fit to exponential decreasing bkg+signal template

$H \rightarrow ZZ \rightarrow IIqq \qquad 200 \le m_{\rm H} \le 600 \text{ GeV} \qquad 2.05 \text{ fb}^{-1}$

Higher BR than 41 channel (x21), but less clean (jets)

Z on-shell : reduces background

• Bkg -primary : Z+j -secondary : tt : -tertiary : ZZ, WZ

- Selection
 - same-flavor di-lepton, m_{ll} compatible with m_Z -muons : OS

-electrons : not requested : bremsstrahlung

- $\geq 2 j, m_{jj} \approx m_Z$
- MET $< \tilde{50}$ GeV : suppr. tt
- large Higgs mass : Z boosted : $\Delta \phi_{ll} < thr$; $\Delta \phi_{jj} < thr$
- Categorization of b-jets : 2 b-jets ; <2 b-jets
 dominant Z+jets : b rare : ≈ 2% (b-pdf from proton)
 O(20%) signal contains b-jets

$H \rightarrow ZZ \rightarrow 11qq \qquad 200 \le m_{\rm H} \le 600 \text{ GeV} \qquad 2.05 \text{ fb}^{-1}$

• Background from control samples :

-Z+jets : MC (10 % less than data), scale factor from data (sidebands $m_{jj} \neq Z$ peak) -tt : MC, scale factor from data : sidebands $m_{11} \neq Z$ peak

-ZZ irreducible : difficult to constraint : Z+j contamination & signal in CR : MC -WZ, W+j : MC

-QCD multijets : e : relax lepton id ; normalization : multicomponent fit to m_{ll}

 μ : $\mu\mu$ +j : ABCD isolation ; $m_{\mu\mu}$ wrt Z

, W+jets : sidebands with m_{jj} , m_{ll} , reversed cuts

-WW/WZ/ZZ : MC, uncertainty 15 %

• Final discriminant : m₄₁

Limits : btw 1.2 and 12xSM

$H \rightarrow ZZ \rightarrow II_{VV}$ 200 $\leq m_{H} \leq 600 \text{ GeV}$ 2.05 fb⁻¹

Higher BR than 41 channel (x6), but less clean (MET)

Z on-shell : reduces background

contrib of $H \rightarrow WW \rightarrow |v|v$

Statistical independance from mutual exclusion in selection (#1, m_{ll} , MET, etc.)_{Bk9}

- -primary : Z+j -secondary : top, W, QCD
- Selection
 - same-flavor OS leptons, m_{ll} compatible with m_Z : suppr. top, W, QCD
 - MET>m(_H); $\Delta\phi(\text{vector } p_T, \text{vector } p_T^{\text{miss}}) > 0.3$: suppr. fake MET
 - Veto ≥ 1 b-jet : suppr. top
 - large Higgs mass : Z boosted : $\Delta \phi_{ll} < f(m_H)$
 - high mass : additive cut : $\Delta \phi$ (vector p_T^{miss} , vector p_T^{ll})>thr
- Final discriminating variable

m_T

$H \rightarrow ZZ \rightarrow II_{VV}$ 200 $\leq m_{H} \leq 600 \text{ GeV}$ 2.05 fb⁻¹

• Limits : Exclusion at 95 % CL : m_H : [310 ; 470] GeV

Trigger for $H \rightarrow \gamma \gamma$

EF_2g20_loose : L1_EM14 : coarse elmg calorimeter granularity ; pT>14 GeV on each photon

EF : full elmg calorimeter granularity ; photon loose identification

Efficienty measurement bootstrap method :

- Eff^{EF_2g20_loose}=eff^{EF_g20_loose}_{lead}xeff^{EF_g20_loose}_{sub}
 Eff=eff^{EF_g20_loose}_{tight photon}=eff^{EF_g20_loose}_{L1}xeff^{L1}_{MinBias}
- L1 : L1_EM14 (D-K) ; L1_EM12 (L-M) (L1_EM14 prescaled)

Systematics : diff eff. MC H $\rightarrow \gamma \gamma$ & fake photons from dijets selection Difference btw tag & probe and pseudo tag & probe (\Leftrightarrow no inv. mass cut) Select one tight photon passing cuts=tag Other = probe ; require $m_{\gamma\gamma}$ compatible with m_Z Max of difference between methods : systematics

Prospects : g30_g20_loose

Introduction to improved 2x2D method

•Remembrance of standard 2x2D method : sequential subdivision

8 regions to count events but 7 independent regions

→additional MC input : asymmetry parameter : $\alpha = N_{j\gamma}/(N_{j\gamma} + N_{\gamma j})$

•improved 2x2D method : simultaneous subdivision \rightarrow 4x4=16 regions

Reduce systematics

•neglect different fake rate for jets in jj and $\gamma j/j\gamma$

Deduce fake rates f_1, f_2 : Prob true Loose' jet to pass isolation cut Eff for true tight identified photon to pas isolation cut : $\varepsilon_1, \varepsilon_2$

4x4 matrix (N=Non-Isolated ; I=Isolated)

$$\begin{pmatrix} N_{II} \\ N_{IN} \\ N_{NI} \\ N_{NN} \end{pmatrix} = \begin{pmatrix} \varepsilon_1 \varepsilon_2 & \varepsilon_1 f_2 & f_1 \varepsilon_2 & f_1 f_2 \\ \varepsilon_1 (1 - \varepsilon_2) & \varepsilon_1 (1 - f_2) & f_1 (1 - \varepsilon_2) & f_1 (1 - f_2) \\ (1 - \varepsilon_1) \varepsilon_2 & (1 - \varepsilon_1) f_2 & (1 - f_1) \varepsilon_2 & (1 - f_1) f_2 \\ (1 - \varepsilon_1) (1 - \varepsilon_2) & (1 - \varepsilon_1) (1 - f_2) & (1 - f_1) (1 - \varepsilon_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \begin{pmatrix} N_{\gamma\gamma}^{TT} \\ N_{\gamma j}^{TT} \\ N_{j\gamma}^{TT} \\ N_{jj}^{TT} \end{pmatrix}$$