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Sequential model-based optimization

I Especially useful when target evaluation is costly.
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Gaussian Processes and Expected Improvement
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I GPs are priors over functions that are closed under sampling.

I EI(x) := E
(
(mini f (xi )− f (x)) ∧ 0|Fn

)
.
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A recent application to hyperparameter tuning

I Deep Belief Nets have lots of conditional hyperparameters,
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A recent application to hyperparameter tuning

I We used SMBO, using GPs+EI and a tree-based model+EI in
Bergstra, Bardenet, Kégl and Bengio, NIPS’11.
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{Learning from, tuning for} different datasets

I As of today, what we call a problem is actually a dataset, with
a certain number of features.

I Idea is to place a GP over an augmented
feature+hyperparameters space.

I But error rates coming from different datasets are not
comparable!

I Then a GP over the error rate function is unrelevant.

Idea

1 Store the pairwise rankings given by the evaluation of your
algorithm on single datasets.

2 Infer a flat latent function that preserves ranking:

u ≺ v ⇔ `(u) < `(v).
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An existing GP+ranking framework

I GPs need to be tuned.

I Usually, it’s done by maximizing the marginal likelihood of the
hyperparameters of the GP.

I This approach is unrelevant here, as one does not even know
the values of the latent function.

I Chu and Gharamani, NIPS’05 proposed an algorithm that
takes as input the pairwise rankings and that simultaneously

estimate the ranking-preserving latent function,
and tune a GP placed over it.

I Very expensive. Replaced by SVMrank (Joachims, ’02) on our
preliminary experiments.

Thanks for your attention. Now, back to Matthias!
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