# Sequential design of discriminant functions

Classification with Control

#### Djalel Benbouzid with Balázs Kégl and Róbert Busa-Fekete benbouzid @ lal.in2p3.fr

Laboratoire de l'Accélérateur Linéaire, Univ. Paris-Sud, CNRS/IN2P3

January, 26th 2012

# Outline

#### 1 Preamble

- Motivations
- State of the art
- Some improvements

#### 2 MDDAG

- The setup
- Learning an MDP
- Experiments
- Deep structures

#### 3 Conclusion

# Original motivation

- Application in high energy particles detectors (*triggers*).
- Huge amount of data to classify.
- Imbalanced data distributions.
- Accuracy and classification speed are both requirements.

- P. Viola & M. Jones (2001).
- Motivated by real time face detection.
- Three characteristics :
  - The cascade architecture.
  - Feature selection through Adaboost.
  - Cheap features : Haar-like features.

- P. Viola & M. Jones (2001).
- Motivated by real time face detection.
- Three characteristics :
  - The cascade architecture.



Djalel Benbouzid, Siminole meeting

Sequential design of discriminant functions 4/36

- P. Viola & M. Jones (2001).
- Motivated by real time face detection.
- Three characteristics :
  - The cascade architecture.
  - Feature selection through Adaboost.



Cheap features : Haar-like features.

- P. Viola & M. Jones (2001).
- Motivated by real time face detection.
- Three characteristics :
  - The cascade architecture.
  - Feature selection through Adaboost.
  - Cheap features : Haar-like features.





A set of stages H<sub>j</sub> and thresholds θ<sub>j</sub>, j = 1,..., N
A stage is an AdaBoost strong classifier (predictor) f<sub>j</sub> → ℝ
Basic controller : two actions = { Quit with -1, Carry on }

$$H_j(\mathbf{x}) = egin{cases} -1 & ext{if } \mathbf{f}_j(\mathbf{x}) < heta_j \ H_{j+1} & ext{else} \ \end{pmatrix}$$
 with  $H_N(\mathbf{x}) = egin{cases} -1 & ext{if } \mathbf{f}_N(\mathbf{x}) < heta_j \ +1 & ext{else} \ \end{pmatrix}$ 



- No early classification for positives.
- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.



#### No early classification for positives.

- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.



- No early classification for positives.
- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.



- No early classification for positives.
- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.



- No early classification for positives.
- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.



- No early classification for positives.
- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.

# Early classify positives



# Early classify positives



B Póczos, Y Abbasi-Yadkori, C Szepesvári (2009)
Controller actions =  $\begin{cases}
Quit with -1/+1 \\
Evaluate and keep going
\end{cases}$   $H_j(\mathbf{x}) = \begin{cases}
-1 & \text{if } F_j(\mathbf{x}) < \alpha_j \\
+1 & \text{if } F_j(\mathbf{x}) > \beta_j & \text{with } H_N(\mathbf{x}) = \begin{cases}
-1 & \text{if } F_N(\mathbf{x}) < \theta_j \\
+1 & \text{else}
\end{cases}$ 

### Keep the margin information

Embedded cascade (L. Bourdev, J. Brandt, 2005)



### Keep the margin information

Embedded cascade (L. Bourdev, J. Brandt, 2005)



Waldboost (J. Sochman, J. Matas, 2005)



#### So far ...

- No early classification for positives.
- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.

#### So far ...

- No early classification for positives.
- The margin information is lost.
- Hand-tuning of the hyper-parameters.
- Bootstrapping the data during the learning.
- No straightforward extension to multi-class classification.
- Not data-dependant.

Let the example choose a subset of weak classifiers

- Let the example choose a subset of weak classifiers
- Put otherly, let it choose to skip some...

- Let the example choose a subset of weak classifiers
- Put otherly, let it choose to skip some...
- Controller actions = {Evaluate, Skip, Quit}

- Let the example choose a subset of weak classifiers
- Put otherly, let it choose to skip some...
- Controller actions = {Evaluate, Skip, Quit}
- The result :

- Let the example choose a subset of weak classifiers
- Put otherly, let it choose to skip some...
- Controller actions = {Evaluate, Skip, Quit}
- The result :

- Let the example choose a subset of weak classifiers
- Put otherly, let it choose to skip some...
- Controller actions = {Evaluate, Skip, Quit}
- The result :



# Outline

#### 1 Preamble

- Motivations
- State of the art
- Some improvements

#### 2 MDDAG

- The setup
- Learning an MDP
- Experiments
- Deep structures

#### 3 Conclusion

#### The setup (1)

Assumption A set of K-class features (weak classifiers)  $\mathcal{H}$ 

$$\mathcal{H} = (\mathbf{h}_1, \dots, \mathbf{h}_N)$$
 , $\mathbf{h}_j: \mathcal{X} o \mathbb{R}^K, j = 1, \dots, N$ 

Goal A sparse, data-dependant classifier built from  ${\cal H}$ 

The setup (2)

# AdaBoost.MH satisfies the assumption Assumption Predictor : $\mathbf{f}(\mathbf{x}) = \sum_{i=1}^{N} \mathbf{h}_i(\mathbf{x})$ h<sub>i</sub> are sorted in order of performance Goal $\blacksquare$ learn a controller $\pi$ Actions = {Eval, Skip, Quit} $\mathbf{f}(\mathbf{x}) = \sum \mathbf{b}_i^{\pi} \mathbf{h}_t(\mathbf{x})$

The setup (2)

Assumption AdaBoost.MH satisfies the assumption  
Predictor : 
$$\mathbf{f}(\mathbf{x}) = \sum_{j=1}^{N} \mathbf{h}_j(\mathbf{x})$$
  
 $\mathbf{h}_j$  are sorted in order of performance  
Goal Learn a controller  $\pi$   
Actions = {Eval, Skip, Quit}  
 $\mathbf{f}(\mathbf{x}) = \sum_{j=1}^{N} b_j^{\pi} \mathbf{h}_t(\mathbf{x})$   
 $b_j^{\pi}(\mathbf{x}) = \mathbb{I} \{\pi(.) = \text{Eval and } \forall j' < j : \pi(.) \neq \text{Quit} \}$ 

# Markov Decision Processes

An MDP is a 4-tuple  $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R})$ , where :

- $\blacksquare$   $\mathcal S$  : state space, containing initial and terminal states, resp.  $s_1$  and  $s_\infty$
- A : actions set
- $\mathcal{P}^{a}_{ss'} = Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\}$  : the transition probabilities
- $\mathcal{R}^{a}_{ss'} = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$ : the expected value of the next reward  $r_{t+1}$  for each state-action pair

Model-free learning methods : Sarsa( $\lambda$ ), Q-Learning( $\lambda$ )

# Markov Decision Processes

An MDP is a 4-tuple  $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R})$ , where :

- $\blacksquare$   $\mathcal S$  : state space, containing initial and terminal states, resp.  $s_1$  and  $s_\infty$
- A : actions set
- $\mathcal{P}^{a}_{ss'} = Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\}$  : the transition probabilities
- $\mathcal{R}^{a}_{ss'} = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$ : the expected value of the next reward  $r_{t+1}$  for each state-action pair

Model-free learning methods : Sarsa( $\lambda$ ), Q-Learning( $\lambda$ )

#### The state descriptor

- K + 1 state variables :  $(j, (f_1, \ldots, f_K))$ 
  - The feature index : j
  - The current posteriors :  $\mathbf{f}_i^{\pi}(\mathbf{x}) \mapsto \mathbb{R}^{K}$

$$egin{aligned} \mathbf{f}_j^\pi(\mathbf{x}) &= \sum_{j'=1}^j m{b}_{j'}^\pi(\mathbf{x}) \mathbf{h}_{j'}(\mathbf{x}) \ &= \mathbf{f}_{j-1}^\pi(\mathbf{x}) + m{b}_j^\pi(\mathbf{x}) \mathbf{h}_j(\mathbf{x}) \end{aligned}$$

 $b_j^{\pi}(\mathbf{x}) = \mathbb{I}\left\{\pi\big(j, \mathbf{f}_{j-1}^{\pi}(\mathbf{x})\big) = \mathsf{Eval} \text{ and } \forall j' < j : \pi\big(j', \mathbf{f}_{j'}^{\pi}(\mathbf{x})\big) \neq \mathsf{Quit}\right\}$ 

### The policy and the rewards

• Deterministic policy  $\pi: \mathcal{S} \to \mathcal{A}$ 



- The rewards
  - Correct classification :  $r_t = 1$
  - Penalizing a classification evaluation :  $r_t = -\beta, 0 < \beta < 1$
- Objective function

$$\varrho^{\pi} = \mathbb{E}_{(\mathbf{x},\ell)\sim\mathfrak{D}} \left\{ \underbrace{\mathbb{I}\left\{ \operatorname*{arg\,max}_{\ell'} f^{\pi}_{N,\ell'}(\mathbf{x}) = \ell \right\}}_{\text{correct classification}} - \underbrace{\beta \sum_{j=1}^{N} b^{\pi}_{j}(\mathbf{x})}_{L_{0} \text{ penalty}} \right\}$$

# State representation (1)

Action-Value based methods

$$Q^{\pi}(s,a) = E_{\pi} \{ R_t \mid s_t = s, a_t = a \}$$
$$= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}$$

- For the continuous part of the state  $(f_1, \ldots, f_K)$  :
  - Discritization (only for the binary case)
  - Function approximation

# State representation (2)

#### Discretization (only for the binary case)



# State representation (3)

#### Function approximation : Radial Basis Function Network



# State representation (4)

 Function approximation : Gaussian Softmax Basis Function Network (GSBFN)





Face instance

■ Path : 3, 4, 6, 7, 9, ∞



## Experiments



# Deep structures (1)

#### Toy example



#### Deep structures (2)

#### MNIST



#### Deep structures (2)



#### Deep structures (2)



## Conclusion and future works

- Alternative to cascade architectures
- Interesting osmosis between machine learning subdomains
- Data-dependent / Deep structures
- Curse of dimensionality
- Classification-based Policy Iteration

#### Questions?