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Original motivation

Application in high energy particles detectors (triggers).

Huge amount of data to classify.

Imbalanced data distributions.

Accuracy and classification speed are both requirements.
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Classifier cascade

P. Viola & M. Jones (2001).

Motivated by real time face detection.

Three characteristics :

The cascade architecture.
Feature selection through Adaboost.
Cheap features : Haar-like features.
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Drawbacks and follow-ups
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Stage 2

Stage 3

Stage 4

1

A set of stages Hj and thresholds θj , j = 1, . . . ,N

A stage is an AdaBoost strong classifier (predictor) f j 7→ R
Basic controller : two actions = { Quit with -1, Carry on }

Hj(x) =

{
−1 if fj(x) < θj

Hj+1 else
with HN(x) =

{
−1 if fN(x) < θj

+1 else
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No early classification for positives.

The margin information is lost.

Hand-tuning of the hyper-parameters.

Bootstrapping the data during the learning.

No straightforward extension to multi-class classification.
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Early classify positives

1
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?
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?

Stage 1

Stage 2

Stage 3

Stage 4

2

B Póczos, Y Abbasi-Yadkori, C Szepesvári (2009)

Controller actions =

{
Quit with -1/+1

Evaluate and keep going

Hj(x) =


−1 if Fj(x) < αj

+1 if Fj(x) > βj

Hj+1 else

with HN(x) =

{
−1 if FN(x) < θj

+1 else
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Keep the margin information

Embedded cascade (L. Bourdev, J. Brandt, 2005)
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So far. . .

No early classification for positives.

The margin information is lost.

Hand-tuning of the hyper-parameters.

Bootstrapping the data during the learning.

No straightforward extension to multi-class classification.

Not data-dependant.
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Data-dependant ?

Let the example choose a subset of weak classifiers

Put otherly, let it choose to skip some...

Controller actions = {Evaluate, Skip, Quit}
The result :
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The setup (1)

Assumption A set of K -class features (weak classifiers) H

H = (h1, . . . ,hN) ,

hj : X → RK , j = 1, . . . ,N

Goal A sparse, data-dependant classifier built from H
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The setup (2)

Assumption AdaBoost.MH satisfies the assumption
Predictor : f(x) =

∑N
j=1 hj(x)

hj are sorted in order of performance

Goal Learn a controller π
Actions = {Eval, Skip, Quit}

f(x) =
N∑
j=1

bπj ht(x)

bπj (x) = I
{
π
(
.) = Eval and ∀j ′ < j : π

(
.
)
6= Quit

}
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Markov Decision Processes

An MDP is a 4-tuple M = (S,A,P,R), where :

S : state space, containing initial and terminal states, resp. s1

and s∞
A : actions set

Pa
ss′ = Pr{st+1 = s ′ | st = s, at = a} : the transition

probabilities

Ra
ss′ = E{rt+1 | st = s, at = a, st+1 = s ′} : the expected value

of the next reward rt+1 for each state-action pair

Model-free learning methods : Sarsa(λ), Q-Learning(λ)
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The state descriptor

K + 1 state variables :
(
j , (f1, . . . , fK )

)
The feature index : j

The current posteriors : fπj (x) 7→ RK

fπj (x) =

j∑
j ′=1

bπj ′(x)hj ′(x)

= fπj−1(x) + bπj (x)hj(x)

bπj (x) = I
{
π
(
j , fπj−1(x)

)
= Eval and ∀j ′ < j : π

(
j ′, fπj ′ (x)

)
6= Quit

}
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The policy and the rewards

Deterministic policy π : S → A

π
(

j ,

discriminant function outputs︷ ︸︸ ︷
(f1, . . . , fK )︸ ︷︷ ︸

state descriptor

)
7→
{

Eval,Skip,Quit︸ ︷︷ ︸
actions

}
The rewards

Correct classification : rt = 1
Penalizing a classification evaluation : rt = −β, 0 < β < 1

Objective function

%π = E(x,`)∼D


I
{
argmax

`′
f πN,`′(x) = `

}
︸ ︷︷ ︸

correct classification

−β
N∑
j=1

bπj (x)︸ ︷︷ ︸
L0 penalty


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State representation (1)

Action-Value based methods

Qπ(s, a) = Eπ{Rt | st = s, at = a}

= Eπ

{ ∞∑
k=0

γk rt+k+1

∣∣∣∣ st = s, at = a

}

For the continuous part of the state (f1, . . . , fK ) :

Discritization (only for the binary case)
Function approximation
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State representation (2)

Discretization (only for the binary case)
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State representation (3)

Function approximation : Radial Basis Function Network
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ai (x) = exp(−1/2(x− ci/σi )
2)

ĝ(f;w,C,σ) =
∑n

i=0 wiai (f)
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State representation (4)

Function approximation : Gaussian Softmax Basis Function
Network (GSBFN)
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φi = ai (x)∑
aj (x)

ĝ(f;w,C,σ) =
∑n

i=0 wiφi (f)
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Example

Face instance

Path : 3, 4, 6, 7, 9, ∞

Legend

class face

class nonface
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Example
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Experiments
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Deep structures (1)

Toy example
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Deep structures (2)
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Conclusion and future works

Alternative to cascade architectures

Interesting osmosis between machine learning subdomains

Data-dependent / Deep structures

Curse of dimensionality

Classification-based Policy Iteration
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