Fast boosting using adversarial bandits

Rébert Busa-Fekete!? Balazs Kégl!3

'Linear Accelerator Laboratory (LAL), University of Paris-Sud, CNRS

2Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged (RGAI)

3Computer Science Laboratory (LRI), University of Paris-Sud, CNRS and
INRIA-Saclay

ANR meeting
January 26, 2012

@ Introduction
o ADABOOST.MH reminder
@ Base learning, in nutshell

@ Accelerating the training of AdaBoost
@ Motivation, Related work
@ The formal setup
@ Adversarial bandits
@ Weak-to-strong-learning result

© Experiments

@ Conclusions

Introduction
°

ApaBoosT(D, = {(x;,yi)}1—;, BASE(+,-), T)

1w« (1/n,...,1/n) > indtial weights
2fort«1toT
3 A BASE(Dn,w(t)) > calling the base learner

4 40 Z W,-(t)h(t)(x;)yi > edge =1 —2 x error
i=1

1 14~
5 o)« Zin it > coefficient of h(®)
2 1—~®)
6 fori<1ton > re-weighting the points
7 if h(Y)(x;) # y; then
8 wt) W-(t)il
I I 1 _ 'Y(t)
9 else
10 w8 !
I i 1 ‘l"}/(t)

;
11 return f(7)(.) = Za(t)h(t)(-)
=1

Introduction
°

Decision stumps

hj 25(X)
10
05
i‘z—‘ L 4 2—&‘ 7 o —©@ 6‘ X
-0.5

1 ifx0) >p
h: p(x) = =7
J’b() {—1 otherwise,

Introduction
°

Decision stumps

hj 25(X)
10
05F
e ° oo o — o0&
) 2 4 6
-05
1 ifx0 > b
hi p(x) = -
j:6(x) {—1 otherwise,
@ Can be learned in 0(ndK) time (if features are pre-sorted)

Introduction
°

Decision stumps

hj 25(X)
10

05F

1 ifx0) >p
h: p(x) = =7
J’b() {—1 otherwise,

@ Can be learned in 0(ndK) time (if features are pre-sorted)

@ Looking at each feature in every boosting iterations

Accelerating the training of AdaBoost
°

Accelerating the training of AdaBoost

Motivation, Related work

o Well boostable base learners
o Decision stumps O(ndK)
o Decision trees O(ndKlog N)
o Decision product O(ndKm)
o Saving on the n factor
o stochastic boosting, FILTERBOOST!

o Saving on the d factor

o LAZYB0OST? (random selection)
e our technique: learn the usefulness of the features in
a sequential game using multi-armed bandits (MABs)

LJK. Bradley and R.E. Schapire. FilterBoost: Regression and classification on large datasets. In NIPS 2008.
2G. Escudero, L. Marquez, and G. Rigau. Boosting applied to word sense disambiguation. In-ECML 2000.

Accelerating the training of AdaBoost
®00

The formal setup

@ Partition the base classifier set 4 into {7—[1. e ’HM}

e in each iteration ¢, use the Multi-armed Bandit (MAB)
algorithm to select a subset H t)

o call the base learner to select h € ’H
e compute the edge

ZW (x;)yi =1—2 xerror

e return the reward
rj(t) = min (1, —logy/1— “,/(t)2> .

to the MAB

Accelerating the training of AdaBoost
o] 1o}

ApaBoosT(D, = {(x;,yi)}1—;, BASE(+,-), T)

1w« (1/n,...,1/n) > indtial weights
2fort«1toT
3 A BASE(Dn,w(t)) > calling the base learner

4 40 Z W,-(t)h(t)(x;)yi > edge =1 —2 x error
i=1

1 14~
5 o)« Zin] > coefficient of h(®)
2 1—~®)
6 fori<1ton > re-weighting the points
7 if h(Y)(x;) # y; then
8 wt) W-(t)il
I I 1 _ 'Y(t)
9 else
10 w8 !
I i 1 ‘l"}/(t)

;
11 return f(7)(.) = Za(t)h(t)(-)
=1

Accelerating the training of AdaBoost
ocoe

ApAaBoOST.BA(D, = {(xi,yi)};, BASE(", -, "), T, H, BANDITALGO)

1w« (1/n,...,1/n) > initial weights

2 fort<1to T

3 j < BANDITALGO.getArm()

4 h) BASE(Dn,W(t),HJ') > calling the base learner

5 A0 Z W,-(t)h(t)(xi)yi > edge =1 —2 x error

2
6 rJ.(t) = min (1, —log/1— 152 > > calculate reward

7 BANDITALGO.receiveReward(j, rj(t))

1 1 (t)
8 o)« Zin T > coefficient of h(®)
2 1—~®

9 > re-wetghting the points

10 return (7 Za h(.)

Accelerating the training of AdaBoost
®00

Multi-armed Bandit (MAB) Problem, Adversarial setup

<.) indexed by {1,..., M}

Accelerating the training of AdaBoost
®00

Multi-armed Bandit (MAB) Problem, Adversarial setup

° <r1(t), rz(t), — r,(\/,t)_l, r,ﬁ/,t)> indexed by {1,..., M}

@ An adversary chooses a reward vector r() ¢ RM

Accelerating the training of AdaBoost
®00

Multi-armed Bandit (MAB) Problem, Adversarial setup

<. . . Fi) - .) indexed by {1,..., M}

@ An adversary chooses a reward vector r() ¢ RM

(1)

o Decision maker chooses an arm j(t) and receives reward i) in
each iteration step (bandit feedback)

Accelerating the training of AdaBoost
®00

Multi-armed Bandit (MAB) Problem, Adversarial setup

<. . . Fi) - .) indexed by {1,..., M}

@ An adversary chooses a reward vector r() ¢ RM

o Decision maker chooses an arm j(t) and receives reward rj((g in
each iteration step (bandit feedback)
@ The most common performance measure is the weak regret
T T

R = max Z rj(t) — Z rj((ttz
= =

=1
| S — ~—
Total reward of best arm G(M=Total reward

Accelerating the training of AdaBoost
®00

Multi-armed Bandit (MAB) Problem, Adversarial setup

<. . . Fi) - .) indexed by {1,..., M}

@ An adversary chooses a reward vector r() ¢ RM

(1)

o Decision maker chooses an arm j(t) and receives reward i) in

each iteration step (bandit feedback)
@ The most common performance measure is the weak regret
T T

_ () ()
R= max} - e
t=1 t=1
| S — ~—
Total reward of best arm G(M=Total reward

@ A theoretically well-founded algorithm: EXP3.P

Accelerating the training of AdaBoost
®00

Multi-armed Bandit (MAB) Problem, Adversarial setup

<. . . Fi) - .) indexed by {1,..., M}

@ An adversary chooses a reward vector r() ¢ RM

(1)

o Decision maker chooses an arm j(t) and receives reward i) in

each iteration step (bandit feedback)
@ The most common performance measure is the weak regret
T T

_ () ()
R= max} - e
t=1 t=1
| S — ~—
Total reward of best arm G(M=Total reward

@ A theoretically well-founded algorithm: EXP3.P

Accelerating the training of AdaBoost
®00

Multi-armed Bandit (MAB) Problem, Adversarial setup

<. . . Fi) - .) indexed by {1,..., M}

@ An adversary chooses a reward vector r() ¢ RM
o Decision maker chooses an arm j(t) and receives reward rj((g in
each iteration step (bandit feedback)

@ The most common performance measure is the weak regret
T T

_ () ()
R= max} - e
=1
| S — ~—
Total reward of best arm G(M=Total reward
@ A theoretically well-founded algorithm: EXP3.P
Theorem (Auer et al.(1995))

With probability at least 1 —

MT MT
R§4\/I\/IT|og6 +4\/2MTlogM+8|og6

Accelerating the training of AdaBoost
oeo

Reward definition

Theorem (Schapire,Singer(1998))
For ADABoosT.MH

)
RED) = =S 1{6(x) # xi) b < VR=1] /107

Accelerating the training of AdaBoost
oeo

Reward definition

Theorem (Schapire,Singer(1998))
For ADABoosT.MH

n

R(FT) = =S 1{t(x) # Fxi) } < f[A0

i=1

@ reward should depend on 1—)

Accelerating the training of AdaBoost
oeo

Reward definition

Theorem (Schapire,Singer(1998))
For ADABoosT.MH

R(f”’)liﬂ{fu # () }gﬁf{x/ 702

@ reward should depend on \/1
@ sum of reward is optimized logy/1 f)z

Accelerating the training of AdaBoost

(o] le}

Reward definition

Theorem (Schapire,Singer(1998))
For ADABoosT.MH

n

R(FT) = = S 1{t(xi) # e

i=1

.
} VK=I][/1 —A?

@ reward should depend on
@ sum of reward is optimized

@ actually, it is maximized

logy/1 — f)z
—logy/1— fy(t)z

Accelerating the training of AdaBoost
oeo

Reward definition

Theorem (Schapire,Singer(1998))
For ADABoosT.MH

RET) =130 1{d(x) # x) } < rj[\/ A0

i=1

@ reward should depend on \/1—7

@ sum of reward is optimized Iog\/l—i

e actually, it is maximized —logy/1— (2

@ the rawrds must be bounded min (1, — log m)

Accelerating the training of AdaBoost

ooe

Reward definition

r = min (1,—Iog V1 —72)

Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error

Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error

o Weak learnability: ~(t) > p >0

Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error

o Weak learnability: ~(t) > p >0

Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error

o Weak learnability: ~(t) > p >0

With probability at least 1 — §:
R(f(T)) = 0 after

o\7) T

T = max <|0g2 M (‘;S)Af 4log (”pV K- 1))

iterations, where

C = V32M + \/27TMlog M + 16

Accelerating the training of AdaBoost
oe

Partitioning the base classifier set

@ Decision stump: assign a subset to each feature:
H; = {(pj’b(x) b€]R}

@ For Decision trees and products, the naive solution is to assign
a subset of features at size N to an arm —
Number of arms grows expoenentially

@ Trees and products are modeled as sequences of decisions over
the smaller partitioning used for stumps

hj17b1 (X)

VAN

hj27b2 (X) hj37b3 (X)

Experiments

Experiments

@ Stochastic bandit algorithms: assuming that the rewards are
drawn from a stationary probability distribution, UCB3,
UCBV*

@ Stochastic bandits does not fit to our setup since the edge
depends on the weights

7O =3 wih O (x)y;
i=1

@ Random feautre selection ~ LAZYB0OOST

@ Synthetic data, UCI datasets and MNIST handwritten digits
recognition

3Auer, P., Cesa-Bianchi, N., and Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine
Learning, 47:235-256, 2002

4Audibert, J.-Y., Munos, R., and Szepesviri, Cs.: Exploration-exploitation tradeoff using variance estimates in
multi-armed bandits. Theor. Comput. Sci., 410(19):1876-1902, 2009

Experiments

Synthetic datasets

o d = 10, number of useful feature = 3, stumps, T = 1000

—FULL
30 —Random
° —UuCB
5 25 —UucBv
@ —EXP3.P
o 20|
>
8
15
e
& 10
® Lvt
0 2 4 6 8 10
Feature indices
"
—FuULL
Random
—UucB
2108 —ucBv
3 —EXP3.P
o
& 10
€ \ N\ /S~
8
<l
[
o 95

4 6
Feature indices

Test error vs. CPU time

Experiments

MNIST/stump o1 UsPSitree PENDIGITS/product
—FULL || O T —Fo
—uce —ucB
—ucsv_ (%% —UucBY
—EXP3.P —_EXPaP
0.06
0.04
ST 002 o]
? * 10 o 10° 10°
Time in second Time in second Time in second
o ISOLET/stump LETTERNree o USPS/product
—FuL || o1 By T —FuLL
0.09 —uce [1°99 o 0.09 —_uce
—UcBY ||0.08] ooy —ucev
0.08 —EXP3P —_Expap| 008 —EXP3.P
0.07,
007 0.0 0.07
0.06 0.05 0.08
0.04
008 0.03 % 008 M&
0.04 0. 4!
6 g 0 o 0 100 0% g q

Time in second

0
Time in second

0
Time in second

Conclusions

Concluding remarks

@ our multiboost implementation multiboost.org includes the
bandit based setup

@ ICML'10 Yahoo Learning to Rank Challenge

@ top ten performance using regression-calibrated bandit
boosting

e High-dimensional, structured feature spaces (linear, Haar):
continuous, “metric” bandits?

@ MAB:s are stateless, boosting is not — MDPs?

Conclusions

Exp3.P(n,\, T)
1 for j«— 1to M > initialization
2 w}l) — exp <773)‘ AZ)
3 fort<1to T
4 for j«— 1to M
(t)
(1) _ Yj A
6 j) RANDOM(pY), . ,pf\;))
7 Receive reward rj((tt?
8 for j« 1to M
(1)) (8) s o o(t
0 0 e it =0
J 0 otherwise
(t+1) (1) A1)
10 wj < LL}J exp (3/\4 (rj + p}t):}W))

	Introduction
	AdaBoost.MH reminder
	Base learning, in nutshell

	Accelerating the training of AdaBoost
	Motivation, Related work
	The formal setup
	Adversarial bandits
	Weak-to-strong-learning result

	Experiments
	Conclusions

