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Decision stumps

hj 25(X)
10

05F

1 ifx0) >p
h: p(x) = =7
J’b( ) {—1 otherwise,

@ Can be learned in 0(ndK) time (if features are pre-sorted)

@ Looking at each feature in every boosting iterations
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Accelerating the training of AdaBoost

Motivation, Related work

o Well boostable base learners
o Decision stumps O(ndK)
o Decision trees O(ndKlog N)
o Decision product O(ndKm)
o Saving on the n factor
o stochastic boosting, FILTERBOOST!

o Saving on the d factor

o LAZYB0OST? (random selection)
e our technique: learn the usefulness of the features in
a sequential game using multi-armed bandits (MABs)

LJK. Bradley and R.E. Schapire. FilterBoost: Regression and classification on large datasets. In NIPS 2008.
2G. Escudero, L. Marquez, and G. Rigau. Boosting applied to word sense disambiguation. In-ECML 2000.
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The formal setup

@ Partition the base classifier set 4 into {7—[1. e ’HM}

e in each iteration ¢, use the Multi-armed Bandit (MAB)
algorithm to select a subset H t)

o call the base learner to select h € ’H
e compute the edge

ZW (x;)yi =1—2 xerror

e return the reward
rj(t) = min (1, —logy/1— “,/(t)2> .

to the MAB
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ApAaBoOST.BA(D, = {(xi,yi)};, BASE(", -, "), T, H, BANDITALGO)
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Multi-armed Bandit (MAB) Problem, Adversarial setup

<. . . Fi) - .) indexed by {1,..., M}

@ An adversary chooses a reward vector r() ¢ RM
o Decision maker chooses an arm j(t) and receives reward rj((g in
each iteration step (bandit feedback)

@ The most common performance measure is the weak regret
T T

_ () ()
R= max} - e
=1
| S — ~—
Total reward of best arm  G(M=Total reward
@ A theoretically well-founded algorithm: EXP3.P
Theorem (Auer et al.(1995))

With probability at least 1 —

MT MT
R§4\/I\/IT|og6 +4\/2MTlogM+8|og6
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Reward definition

Theorem (Schapire,Singer(1998))
For ADABoosT.MH

n

R(FT) = = S 1{t(xi) # e

i=1

.
} VK=I][ /1 —A?

@ reward should depend on
@ sum of reward is optimized

@ actually, it is maximized

logy/1 — f)z
—logy/1— fy(t)z



Accelerating the training of AdaBoost
oeo

Reward definition

Theorem (Schapire,Singer(1998))
For ADABoosT.MH

RET) =130 1{d(x) # x) } < rj[\/ A0

i=1

@ reward should depend on \/1—7

@ sum of reward is optimized Iog\/l—i

e actually, it is maximized —logy/1— (2

@ the rawrds must be bounded min (1, — log m)




Accelerating the training of AdaBoost

ooe

Reward definition

r = min (1,—Iog V1 —72)




Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error



Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error

o Weak learnability: ~(t) > p >0



Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error

o Weak learnability: ~(t) > p >0



Accelerating the training of AdaBoost
[1e}

Convergence of AbABoosT.MH.ExpP3.P

e Multiclass training error

o Weak learnability: ~(t) > p >0

With probability at least 1 — §:
R(f(T)) = 0 after

o\7) T

T = max <|0g2 M (‘;S)Af 4log (”pV K- 1))

iterations, where

C = V32M + \/27TMlog M + 16
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Partitioning the base classifier set

@ Decision stump: assign a subset to each feature:
H; = {(pj’b(x) b€ ]R}

@ For Decision trees and products, the naive solution is to assign
a subset of features at size N to an arm —
Number of arms grows expoenentially

@ Trees and products are modeled as sequences of decisions over
the smaller partitioning used for stumps

hj17b1 (X)

VAN

hj27b2 (X) hj37b3 (X)
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Experiments

@ Stochastic bandit algorithms: assuming that the rewards are
drawn from a stationary probability distribution, UCB3,
UCBV*

@ Stochastic bandits does not fit to our setup since the edge
depends on the weights

7O =3 wih O (x)y;
i=1

@ Random feautre selection ~ LAZYB0OOST

@ Synthetic data, UCI datasets and MNIST handwritten digits
recognition

3Auer, P., Cesa-Bianchi, N., and Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine
Learning, 47:235-256, 2002

4Audibert, J.-Y., Munos, R., and Szepesviri, Cs.: Exploration-exploitation tradeoff using variance estimates in
multi-armed bandits. Theor. Comput. Sci., 410(19):1876-1902, 2009



Experiments

Synthetic datasets

o d = 10, number of useful feature = 3, stumps, T = 1000
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Test error vs. CPU time

Experiments
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Conclusions

Concluding remarks

@ our multiboost implementation multiboost.org includes the
bandit based setup

@ ICML'10 Yahoo Learning to Rank Challenge

@ top ten performance using regression-calibrated bandit
boosting

e High-dimensional, structured feature spaces (linear, Haar):
continuous, “metric” bandits?

@ MAB:s are stateless, boosting is not — MDPs?
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