
Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Fast boosting using adversarial bandits

Róbert Busa-Fekete1,2 Balázs Kégl1,3

1Linear Accelerator Laboratory (LAL), University of Paris-Sud, CNRS

2Research Group on Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged (RGAI)

3Computer Science Laboratory (LRI), University of Paris-Sud, CNRS and
INRIA-Saclay

ANR meeting
January 26, 2012



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

1 Introduction
AdaBoost.MH reminder
Base learning, in nutshell

2 Accelerating the training of AdaBoost
Motivation, Related work
The formal setup
Adversarial bandits
Weak-to-strong-learning result

3 Experiments

4 Conclusions



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

AdaBoost(Dn = {(xi , yi )}ni=1,Base(·, ·),T )

1 w(1) ← (1/n, . . . , 1/n) . initial weights

2 for t ← 1 to T

3 h(t) ← Base
(
Dn,w

(t)
)

. calling the base learner

4 γ(t) ←
n∑

i=1

w
(t)
i h(t)(xi )yi . edge = 1− 2× error

5 α(t) ← 1

2
ln

(
1 + γ(t)

1− γ(t)

)
. coefficient of h(t)

6 for i ← 1 to n . re-weighting the points

7 if h(t)(xi ) 6= yi then

8 w
(t+1)
i ← w

(t)
i

1

1− γ(t)

9 else

10 w
(t+1)
i ← w

(t)
i

1

1 + γ(t)

11 return f (T )(·) =
T∑
t=1

α(t)h(t)(·)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Decision stumps

-2 2 4 6
xH jL

-1.0

-0.5

0.5

1.0

h j,2.5HxL

hj ,b(x) =

{
1 if x (j) ≥ b,

−1 otherwise,

1 Can be learned in θ(ndK ) time (if features are pre-sorted)

2 Looking at each feature in every boosting iterations



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Decision stumps

-2 2 4 6
xH jL

-1.0

-0.5

0.5

1.0

h j,2.5HxL

hj ,b(x) =

{
1 if x (j) ≥ b,

−1 otherwise,

1 Can be learned in θ(ndK ) time (if features are pre-sorted)

2 Looking at each feature in every boosting iterations



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Decision stumps

-2 2 4 6
xH jL

-1.0

-0.5

0.5

1.0

h j,2.5HxL

hj ,b(x) =

{
1 if x (j) ≥ b,

−1 otherwise,

1 Can be learned in θ(ndK ) time (if features are pre-sorted)

2 Looking at each feature in every boosting iterations



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Accelerating the training of AdaBoost
Motivation, Related work

Well boostable base learners
Decision stumps O(ndK )
Decision trees O(ndK logN)
Decision product O(ndKm)

Saving on the n factor
stochastic boosting, FilterBoost1

Saving on the d factor
LazyBoost2 (random selection)
our technique: learn the usefulness of the features in
a sequential game using multi-armed bandits (MABs)

1J.K. Bradley and R.E. Schapire. FilterBoost: Regression and classification on large datasets. In NIPS 2008.
2G. Escudero, L. Màrquez, and G. Rigau. Boosting applied to word sense disambiguation. In ECML 2000.



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

The formal setup

Partition the base classifier set H into
{
H1, . . . ,HM

}
in each iteration t, use the Multi-armed Bandit (MAB)
algorithm to select a subset Hj (t)

call the base learner to select h(t) ∈ Hj (t)

compute the edge

γ(t) =
n∑

i=1

w
(t)
i h(t)(xi )yi = 1− 2× error

return the reward

r
(t)
j = min

(
1,− log

√
1− γ(t)2

)
.

to the MAB



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

AdaBoost(Dn = {(xi , yi )}ni=1,Base(·, ·),T )

1 w(1) ← (1/n, . . . , 1/n) . initial weights

2 for t ← 1 to T

3 h(t) ← Base
(
Dn,w

(t)
)

. calling the base learner

4 γ(t) ←
n∑

i=1

w
(t)
i h(t)(xi )yi . edge = 1− 2× error

5 α(t) ← 1

2
ln

(
1 + γ(t)

1− γ(t)

)
. coefficient of h(t)

6 for i ← 1 to n . re-weighting the points

7 if h(t)(xi ) 6= yi then

8 w
(t+1)
i ← w

(t)
i

1

1− γ(t)

9 else

10 w
(t+1)
i ← w

(t)
i

1

1 + γ(t)

11 return f (T )(·) =
T∑
t=1

α(t)h(t)(·)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

AdaBoost.BA(Dn = {(xi , yi )}ni=1,Base(·, ·, ·),T ,H,BanditAlgo)

1 w(1) ← (1/n, . . . , 1/n) . initial weights

2 for t ← 1 to T

3 j ← BanditAlgo.getArm()

4 h(t) ← Base
(
Dn,w

(t),Hj

)
. calling the base learner

5 γ(t) ←
n∑

i=1

w
(t)
i h(t)(xi )yi . edge = 1− 2× error

6 r
(t)
j = min

(
1,− log

√
1− γ(t)

Hj

2

)
. calculate reward

7 BanditAlgo.receiveReward(j , r
(t)
j )

8 α(t) ← 1

2
ln

(
1 + γ(t)

1− γ(t)

)
. coefficient of h(t)

9 . re-weighting the points

10 return f (T )(·) =
T∑
t=1

α(t)h(t)(·)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Multi-armed Bandit (MAB) Problem, Adversarial setup(
, , , ,

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)
The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P

Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Multi-armed Bandit (MAB) Problem, Adversarial setup(
r

(t)
1 , r

(t)
2 , . . . , r

(t)
M−1 , r

(t)
M

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)
The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P

Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Multi-armed Bandit (MAB) Problem, Adversarial setup(
, , , r

(t)

j(t) ,

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)

The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P

Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Multi-armed Bandit (MAB) Problem, Adversarial setup(
, , , r

(t)

j(t) ,

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)
The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P

Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Multi-armed Bandit (MAB) Problem, Adversarial setup(
, , , r

(t)

j(t) ,

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)
The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P

Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Multi-armed Bandit (MAB) Problem, Adversarial setup(
, , , r

(t)

j(t) ,

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)
The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P

Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Multi-armed Bandit (MAB) Problem, Adversarial setup(
, , , r

(t)

j(t) ,

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)
The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P
Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Reward definition

Theorem (Schapire,Singer(1998))

For AdaBoost.MH

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )} ≤ √K − 1

T∏
t=1

√
1− γ(t)2

reward should depend on

√
1− γ(t)2

sum of reward is optimized log

√
1− γ(t)2

actually, it is maximized − log

√
1− γ(t)2

the rawrds must be bounded min
(

1,− log

√
1− γ(t)2

)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Reward definition

Theorem (Schapire,Singer(1998))

For AdaBoost.MH

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )} ≤ √K − 1

T∏
t=1

√
1− γ(t)2

reward should depend on

√
1− γ(t)2

sum of reward is optimized log

√
1− γ(t)2

actually, it is maximized − log

√
1− γ(t)2

the rawrds must be bounded min
(

1,− log

√
1− γ(t)2

)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Reward definition

Theorem (Schapire,Singer(1998))

For AdaBoost.MH

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )} ≤ √K − 1

T∏
t=1

√
1− γ(t)2

reward should depend on

√
1− γ(t)2

sum of reward is optimized log

√
1− γ(t)2

actually, it is maximized − log

√
1− γ(t)2

the rawrds must be bounded min
(

1,− log

√
1− γ(t)2

)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Reward definition

Theorem (Schapire,Singer(1998))

For AdaBoost.MH

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )} ≤ √K − 1

T∏
t=1

√
1− γ(t)2

reward should depend on

√
1− γ(t)2

sum of reward is optimized log

√
1− γ(t)2

actually, it is maximized − log

√
1− γ(t)2

the rawrds must be bounded min
(

1,− log

√
1− γ(t)2

)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Reward definition

Theorem (Schapire,Singer(1998))

For AdaBoost.MH

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )} ≤ √K − 1

T∏
t=1

√
1− γ(t)2

reward should depend on

√
1− γ(t)2

sum of reward is optimized log

√
1− γ(t)2

actually, it is maximized − log

√
1− γ(t)2

the rawrds must be bounded min
(

1,− log

√
1− γ(t)2

)



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Reward definition

r = min
(

1,− log
√

1− γ2
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Edge

R
ew

ar
d

x ≈ 0.923



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Convergence of AdaBoost.MH.Exp3.P

Multiclass training error

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )}

Weak learnability: γ(t) ≥ ρ > 0

Theorem

With probability at least 1− δ:
R
(
f(T )

)
= 0 after

T = max

(
log2 M

δ
,

(
4C

ρ2

)4

,
4log

(
n
√
K − 1

)
ρ2

)

iterations, where

C =
√

32M +
√

27M logM + 16



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Convergence of AdaBoost.MH.Exp3.P

Multiclass training error

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )}

Weak learnability: γ(t) ≥ ρ > 0

Theorem

With probability at least 1− δ:
R
(
f(T )

)
= 0 after

T = max

(
log2 M

δ
,

(
4C

ρ2

)4

,
4log

(
n
√
K − 1

)
ρ2

)

iterations, where

C =
√

32M +
√

27M logM + 16



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Convergence of AdaBoost.MH.Exp3.P

Multiclass training error

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )}

Weak learnability: γ(t) ≥ ρ > 0

Theorem

With probability at least 1− δ:
R
(
f(T )

)
= 0 after

T = max

(
log2 M

δ
,

(
4C

ρ2

)4

,
4log

(
n
√
K − 1

)
ρ2

)

iterations, where

C =
√

32M +
√

27M logM + 16



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Convergence of AdaBoost.MH.Exp3.P

Multiclass training error

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )}

Weak learnability: γ(t) ≥ ρ > 0

Theorem

With probability at least 1− δ:
R
(
f(T )

)
= 0 after

T = max

(
log2 M

δ
,

(
4C

ρ2

)4

,
4log

(
n
√
K − 1

)
ρ2

)

iterations, where

C =
√

32M +
√

27M logM + 16



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Partitioning the base classifier set

Decision stump: assign a subset to each feature:
Hj =

{
ϕj ,b(x) : b ∈ R

}
For Decision trees and products, the naive solution is to assign
a subset of features at size N to an arm =⇒
Number of arms grows expoenentially

Trees and products are modeled as sequences of decisions over
the smaller partitioning used for stumps



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Experiments

Stochastic bandit algorithms: assuming that the rewards are
drawn from a stationary probability distribution, UCB3,
UCBV4

Stochastic bandits does not fit to our setup since the edge
depends on the weights

γ(t) =
n∑

i=1

w
(t)
i h(t)(xi )yi

Random feautre selection ≈ LazyBoost

Synthetic data, UCI datasets and MNIST handwritten digits
recognition

3Auer, P., Cesa-Bianchi, N., and Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine
Learning, 47:235–256, 2002

4Audibert, J.-Y., Munos, R., and Szepesvári, Cs.: Exploration-exploitation tradeoff using variance estimates in
multi-armed bandits. Theor. Comput. Sci., 410(19):1876–1902, 2009



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Synthetic datasets

d = 10, number of useful feature = 3, stumps, T = 1000

2 4 6 8 100

5

10

15

20

25

30

35

Feature indices

Pe
rc

en
ta

ge
 s

co
re

 

 

FULL
Random
UCB
UCBV
EXP3.P

2 4 6 8 109

9.5

10

10.5

11

Feature indices

Pe
rc

en
ta

ge
 s

co
re

 

 

FULL
Random
UCB
UCBV
EXP3.P



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Test error vs. CPU time

10
4

10
6

0.075

0.08

0.085

0.09

0.095

0.1

Time in second

MNIST/stump

 

 

FULL
Random
UCB
UCBV
EXP3.P

10
2

10
3

10
4

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time in second

USPS/tree

 

 

FULL

Random

UCB

UCBV

EXP3.P

10
1

10
2

10
3

10
4

0

0.02

0.04

0.06

0.08

0.1

Time in second

PENDIGITS/product

 

 

FULL
Random
UCB
UCBV
EXP3.P

10
2

10
3

10
4

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time in second

ISOLET/stump

 

 

FULL
Random
UCB
UCBV
EXP3.P

10
3

10
4

10
5

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time in second

LETTER/tree

 

 

FULL

Random

UCB

UCBV

EXP3.P

10
2

10
3

10
4

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time in second

USPS/product

 

 

FULL
Random
UCB
UCBV
EXP3.P



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Concluding remarks

our multiboost implementation multiboost.org includes the
bandit based setup

ICML’10 Yahoo Learning to Rank Challenge

top ten performance using regression-calibrated bandit
boosting

High-dimensional, structured feature spaces (linear, Haar):
continuous, “metric” bandits?

MABs are stateless, boosting is not → MDPs?



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Exp3.P(η, λ,T )

1 for j ← 1 to M . initialization

2 ω
(1)
j ← exp

(
ηλ
3

√
T
M

)
3 for t ← 1 to T

4 for j ← 1 to M

5 p
(t)
j ← (1− λ)

ω
(t)
j∑M

j′=1 ω
(t)

j′
+ λ

M

6 j (t) ← Random
(
p

(t)
1 , . . . , p

(t)
M

)
7 Receive reward r

(t)

j(t)

8 for j ← 1 to M

9 r̂
(t)
j ←

{
r

(t)
j /p

(t)
j if j = j (t)

0 otherwise

10 ω
(t+1)
j ← ω

(t)
j exp

(
λ

3M

(
r̂

(t)
j + η

p
(t)
j

√
MT

))


	Introduction
	AdaBoost.MH reminder
	Base learning, in nutshell

	Accelerating the training of AdaBoost
	Motivation, Related work
	The formal setup
	Adversarial bandits
	Weak-to-strong-learning result

	Experiments
	Conclusions

