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AdaBoost(Dn = {(xi , yi )}ni=1,Base(·, ·),T )

1 w(1) ← (1/n, . . . , 1/n) . initial weights

2 for t ← 1 to T

3 h(t) ← Base
(
Dn,w

(t)
)

. calling the base learner

4 γ(t) ←
n∑

i=1

w
(t)
i h(t)(xi )yi . edge = 1− 2× error

5 α(t) ← 1

2
ln

(
1 + γ(t)

1− γ(t)

)
. coefficient of h(t)

6 for i ← 1 to n . re-weighting the points

7 if h(t)(xi ) 6= yi then

8 w
(t+1)
i ← w

(t)
i

1

1− γ(t)

9 else

10 w
(t+1)
i ← w

(t)
i

1

1 + γ(t)

11 return f (T )(·) =
T∑
t=1

α(t)h(t)(·)
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Decision stumps
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−1 otherwise,

1 Can be learned in θ(ndK ) time (if features are pre-sorted)

2 Looking at each feature in every boosting iterations
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Accelerating the training of AdaBoost
Motivation, Related work

Well boostable base learners
Decision stumps O(ndK )
Decision trees O(ndK logN)
Decision product O(ndKm)

Saving on the n factor
stochastic boosting, FilterBoost1

Saving on the d factor
LazyBoost2 (random selection)
our technique: learn the usefulness of the features in
a sequential game using multi-armed bandits (MABs)

1J.K. Bradley and R.E. Schapire. FilterBoost: Regression and classification on large datasets. In NIPS 2008.
2G. Escudero, L. Màrquez, and G. Rigau. Boosting applied to word sense disambiguation. In ECML 2000.
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The formal setup

Partition the base classifier set H into
{
H1, . . . ,HM

}
in each iteration t, use the Multi-armed Bandit (MAB)
algorithm to select a subset Hj (t)

call the base learner to select h(t) ∈ Hj (t)

compute the edge

γ(t) =
n∑

i=1

w
(t)
i h(t)(xi )yi = 1− 2× error

return the reward

r
(t)
j = min

(
1,− log

√
1− γ(t)2

)
.

to the MAB
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AdaBoost.BA(Dn = {(xi , yi )}ni=1,Base(·, ·, ·),T ,H,BanditAlgo)

1 w(1) ← (1/n, . . . , 1/n) . initial weights

2 for t ← 1 to T

3 j ← BanditAlgo.getArm()

4 h(t) ← Base
(
Dn,w

(t),Hj

)
. calling the base learner

5 γ(t) ←
n∑

i=1

w
(t)
i h(t)(xi )yi . edge = 1− 2× error

6 r
(t)
j = min

(
1,− log

√
1− γ(t)

Hj

2

)
. calculate reward

7 BanditAlgo.receiveReward(j , r
(t)
j )

8 α(t) ← 1

2
ln

(
1 + γ(t)

1− γ(t)

)
. coefficient of h(t)

9 . re-weighting the points

10 return f (T )(·) =
T∑
t=1

α(t)h(t)(·)
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Multi-armed Bandit (MAB) Problem, Adversarial setup(
, , , ,

)
indexed by {1, . . . ,M}

An adversary chooses a reward vector r(t) ∈ RM

Decision maker chooses an arm j (t) and receives reward r
(t)

j(t) in

each iteration step (bandit feedback)
The most common performance measure is the weak regret

R = max
j

T∑
t=1

r
(t)
j︸ ︷︷ ︸

Total reward of best arm

−
T∑
t=1

r
(t)

j(t)︸ ︷︷ ︸
G (T )=Total reward

A theoretically well-founded algorithm: EXP3.P

Theorem (Auer et al.(1995))

With probability at least 1− δ

R ≤ 4

√
MT log

MT

δ
+ 4

√
5

3
MT logM + 8 log

MT

δ
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Reward definition

Theorem (Schapire,Singer(1998))

For AdaBoost.MH

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )} ≤ √K − 1

T∏
t=1

√
1− γ(t)2

reward should depend on

√
1− γ(t)2

sum of reward is optimized log

√
1− γ(t)2

actually, it is maximized − log

√
1− γ(t)2

the rawrds must be bounded min
(

1,− log

√
1− γ(t)2

)
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Reward definition

r = min
(

1,− log
√

1− γ2
)
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Convergence of AdaBoost.MH.Exp3.P

Multiclass training error

R
(
f(T )

)
=

1

n

n∑
i=1

I
{
`(xi ) 6= ̂̀(xi )}

Weak learnability: γ(t) ≥ ρ > 0

Theorem

With probability at least 1− δ:
R
(
f(T )

)
= 0 after

T = max

(
log2 M

δ
,

(
4C

ρ2

)4

,
4log

(
n
√
K − 1

)
ρ2

)

iterations, where

C =
√

32M +
√

27M logM + 16
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Partitioning the base classifier set

Decision stump: assign a subset to each feature:
Hj =

{
ϕj ,b(x) : b ∈ R

}
For Decision trees and products, the naive solution is to assign
a subset of features at size N to an arm =⇒
Number of arms grows expoenentially

Trees and products are modeled as sequences of decisions over
the smaller partitioning used for stumps
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Experiments

Stochastic bandit algorithms: assuming that the rewards are
drawn from a stationary probability distribution, UCB3,
UCBV4

Stochastic bandits does not fit to our setup since the edge
depends on the weights

γ(t) =
n∑

i=1

w
(t)
i h(t)(xi )yi

Random feautre selection ≈ LazyBoost

Synthetic data, UCI datasets and MNIST handwritten digits
recognition

3Auer, P., Cesa-Bianchi, N., and Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine
Learning, 47:235–256, 2002

4Audibert, J.-Y., Munos, R., and Szepesvári, Cs.: Exploration-exploitation tradeoff using variance estimates in
multi-armed bandits. Theor. Comput. Sci., 410(19):1876–1902, 2009
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Synthetic datasets

d = 10, number of useful feature = 3, stumps, T = 1000

2 4 6 8 100

5

10

15

20

25

30

35

Feature indices

Pe
rc

en
ta

ge
 s

co
re

 

 

FULL
Random
UCB
UCBV
EXP3.P

2 4 6 8 109

9.5

10

10.5

11

Feature indices

Pe
rc

en
ta

ge
 s

co
re

 

 

FULL
Random
UCB
UCBV
EXP3.P



Outline Introduction Accelerating the training of AdaBoost Experiments Conclusions

Test error vs. CPU time
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Concluding remarks

our multiboost implementation multiboost.org includes the
bandit based setup

ICML’10 Yahoo Learning to Rank Challenge

top ten performance using regression-calibrated bandit
boosting

High-dimensional, structured feature spaces (linear, Haar):
continuous, “metric” bandits?

MABs are stateless, boosting is not → MDPs?
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Exp3.P(η, λ,T )

1 for j ← 1 to M . initialization

2 ω
(1)
j ← exp

(
ηλ
3

√
T
M

)
3 for t ← 1 to T

4 for j ← 1 to M

5 p
(t)
j ← (1− λ)

ω
(t)
j∑M

j′=1 ω
(t)

j′
+ λ

M

6 j (t) ← Random
(
p

(t)
1 , . . . , p

(t)
M

)
7 Receive reward r

(t)

j(t)

8 for j ← 1 to M

9 r̂
(t)
j ←

{
r

(t)
j /p

(t)
j if j = j (t)

0 otherwise

10 ω
(t+1)
j ← ω

(t)
j exp

(
λ

3M

(
r̂

(t)
j + η

p
(t)
j

√
MT

))
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