AUL SCHERRER INSTITUT Metal photocathode research for 4th generation light sources : The needs and the achievements

F. Le Pimpec

LAL, February 2012

SwissFEL

High Brightness Source for High Brilliance XFEL

- Brilliance / Brightness
- Which Electron sources

General Problematic for photocathodes

- Emittance and QE of metal photocathodes
- Lifetime of photocathodes

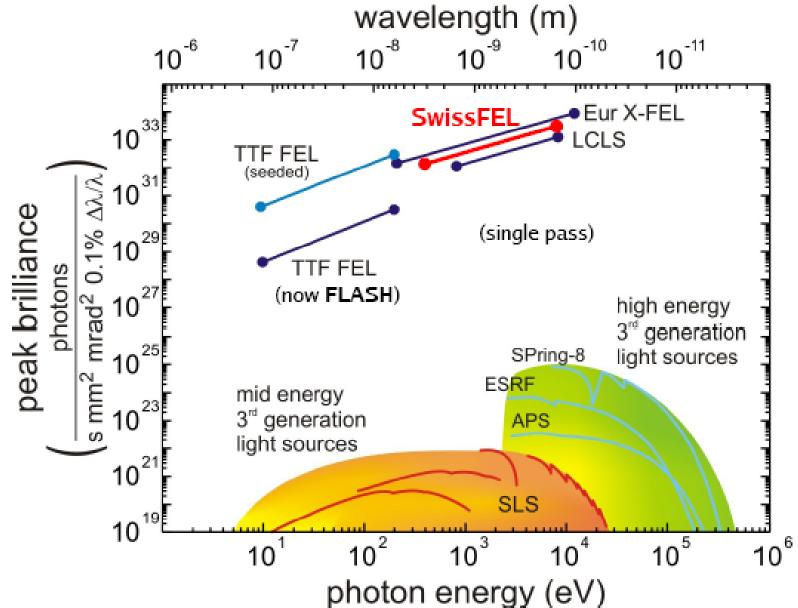
Summary & Conclusions

Future...

XFEL performances

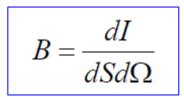
PAUL SCHERRER INSTITUT

SASE FELs have a peak brilliance of a few order of magnitude above 3rd generation light sources (SLS - Soleil - ALS...)


Scientifically interesting

PSI-XFEL Workshop Crazy Ideas and Challenges ...

 $\frac{d^4N}{dtd\Omega dSd\lambda/\lambda}$



XFEL performances

How to obtain the Brilliance

Produce a beam of <u>high Brightness</u>

For particle distribution whose boundary in 4D trace space is defined by an hyperellipsoid

$$\overline{B} = \frac{2I}{\pi^2 \varepsilon_x \varepsilon_y} \quad \text{[A/(m-rad)^2]}$$

$$\overline{B}_n = \frac{2I}{\pi^2 \varepsilon_{nx} \varepsilon_{ny}}$$

Normalized Brightness

A. Cianchi

- Increase beam peak current More QE (laser damage, response time) e⁻ beam compression (magnetic bunch compressor)
- Decrease the Emittance ε (mm.mrad)
 Find an electron source of a low thermal emittance.

time)
 RMS emittance:

 unch

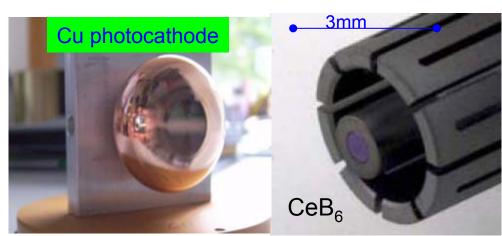
$$\mathcal{E}_{x,rms} = \sqrt{\langle u^2 \rangle \cdot \langle u'^2 \rangle - \langle uu' \rangle^2}$$
 $\mathcal{E}_{x,rms} = \sqrt{\langle u^2 \rangle \cdot \langle u'^2 \rangle - \langle uu' \rangle^2}$

 ermal
 $\mathcal{E}_{n,x,rms} = \beta \gamma \cdot \sqrt{\langle u^2 \rangle \cdot \langle u'^2 \rangle - \langle uu' \rangle^2}$

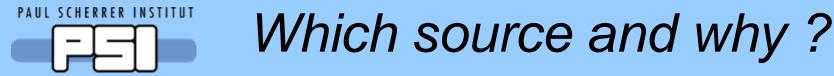

 F. Le Pimpec

Electron Sources :

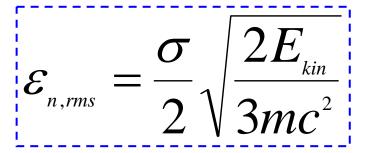
1. Field Emitter a) Array


PAUL SCHERRER INSTITUT

- Commercial (metal, CNT...)
- PSI made
- b)Single tip FE


2. Photocathode

3. Thermionic


4. Hybridizing the sources is also possible

F. Le Pimpec

•FEL theory : high peak I, and low beam σ required for high gain FELs •For a compact XFEL (\$\$) : compensate beam E with a lower initial ε

Ultimate limit in Accelerators: Thermal emittance of the Electron Source

 $\boldsymbol{\sigma}$: Size of the produced Electron Beam

E_{kin}: Thermal Agitation of produced electrons

Thermionic EmissionPhotoemissionField Emission $E_{kin,r} \sim \frac{3}{2}kT_{Solid}$ $E_{kin,r} \sim h\nu - \Phi + e\sqrt{\frac{eE}{4\pi\varepsilon_0}}$ $E_{kin,r} \sim \frac{3}{2}kT_{Solid}$ $J < 10^6 A.m^{-2}$ $J < 10^9 A.m^{-2}$ $J < 10^{12} A.m^{-2}$ T=1500KT=300KT=300KIf hv $\approx \Phi$, E ≈ 0 – very cold beam, but QE is bad !

F. Le Pimpec

he (obviously) most important Photocathode Properties

Quantum efficiency

- •High QE at the longest possible wavelength \rightarrow Cheaper Laser system
- •Fast response time: <100 ps \rightarrow follow laser impulse
- Uniform emission
 - •Non-uniform emission seeds emittance growth due to transverse, space charge expansion
- •Easy to fabricate, reliable, reproducible
- •Low dark current, field emission. → roughness, ion back bombardment roughening (CsI)

Intrinsic emittance

- Low as possible
 - •Atomically flat: ~few nm p-p, to minimize emittance growth due to surface roughness and space charge \rightarrow might be true but not necessarily
- •Tunable, controllable with photon wavelength

•May need to "chase" the work function: $\varepsilon_{\text{intrinsic}} \propto \sqrt{\hbar \omega - \phi_{\text{eff}}}$

Better at cryogenic temperatures?

Lifetime, survivability, robustness, operational properties

- Require >1 year of operating lifetime
 - •reasonable vacuum level: 10^{-10} Torr range \rightarrow Effect of gases on surfaces ?
- •Easy, reliable cathode cleaning or rejuvenation or re-activation
- Low field emission at high electric fields
 - •needs to be very flat: ~few nm p-p \rightarrow crystallographic defects (Single crystals)
- Reliable installation and replacement system (load lock)

D. H. Dowell -- EuroFEL Workshop

AUL SCHERRER INSTITUT Atomically clean - Atomically flat

Vacuum : Desorption

What is a good vacuum Surface ?

An atomically clean surface !

What about a surface with an outgassing rate = 0 ?!



Photocathode : Emittance

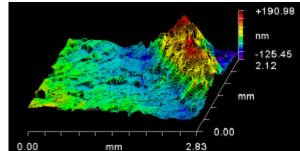
What is a good Photocathode Surface ?

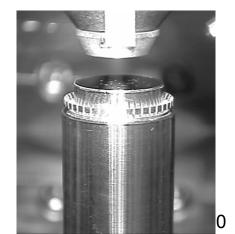
An atomically flat surface !

What about a surface which emits electron with $P_{\perp} = 0$?!

Need to seriously understand the emission mechanism of electrons from a material !!!

Cu cathode - The usual choice


Metal photocathode :


- Fast response time to laser impulse
- Rather resilient to adverse vacuum conditions
- In-situ cleaning is not too complicated
- Easy to get and manufacture
- QE is much lower than SC photocathode
- Require UV laser of high power (\$, UV cracking, ablation)

Copper cathode is a usual choice as a metal photocathode (tradition ?) Why not Mg or AlLi or Y or ... ?

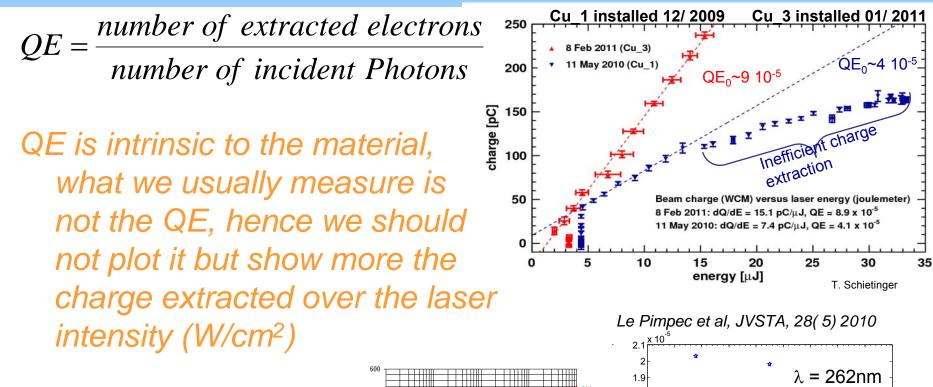
Grain Size ~ 0.3- 0.5 mm **Roughness: Ra ~3 nm; PV= 15 nm (bfr) Roughness: Ra ~ 8 nm; PV= 110 nm (aftr)** Diamond Tool Waviness: 0.1 mm

PAUL SCHERRER INSTITUT

Survey of cathode testing : QE

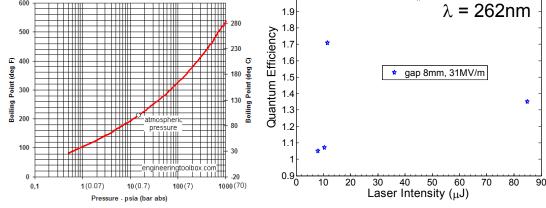
Simple metals & their alloys	True work function $e\varphi \approx hv_0$, eV	Photoelectric threshold λ_0 , nm	Quantum yield (el./phot.)	Photon energy, eV	Metal	Wavelength& Energy:	Quantum Efficiency (electrons per	Vacuum for 1000 Hr Operation (Torr)	Work Function, ø ^w (eV)		rmal ttance
Mg	3.7	341	5.1×10^{-5} 1×10^{-4}	4.7 4.7	Cathodes	λομ (nm), ħω(eV)	photon)			(microns)	(mm(rms))
Mg-2.1% Ba	2.4	514	2.6×10^{-2}	4.9	Bare Metal					Theory	Expt.
Mg–5% Ba	2.9	427	$6 \times 10^{-4} 10^{-3}$	4.9	Cu	250, 4.96	1.4x10 ⁻⁴	10-9	4.6 [34]	0.5	1.0±0.1 [39]
Al	4.3	298	3.2×10^{-5}	4.7							1.2±0.2 [40] 0.9±0.05 [3]
Al-2% Li	2.9	423	$3.6 imes 10^{-3}$	4.9	Mg	266, 4.66	6.4x10 ⁻⁴	10-10	3.6 [41]	0.8	0.4±0.1 [41]
Al-3% Li	3.1	403	1.7×10^{-3}	4.9	Pb	250, 4.96	6.9x10 ⁻⁴	10 ⁻⁹	4.0 [34]	0.8	?
Cu	4.6 5.3	235	2.2×10^{-6}	4.7	Nb	250, 4.96	~2 10-3	10-10	4.38 [34]	0.6	?
Cu–5% BaO	3.0	415	1.2×10^{-3}	4.7	Coated Metal CsBr:Cu	250, 4.96	7x10 ⁻³	10-9	~2.5	?	?
Cu–8% BaO	2.7	445	2.5×10^{-3}	4.7	CsBr:Nb	250, 4.96	7x10 ⁻³	10-9	~2.5	?	?

V. G. Tkachenko, A. I. Kondrashev and I. N. Maksimchuk Applied Physics B - 98 (4), 2010 D. H. Dowell, I. Bazarov, B. Dunham, K. Harkay, C. Hernandez-Garcia, R. Legg, H. Padmore, T. Rao, J. Smedley and W. Wan, NIM A622 (2010) 685-697.


The same article survey other cathodes including SC photocathodes.

QE are not comparable easily - Cathode preparation

RF gun, Diode gun (Field presence on the surface)

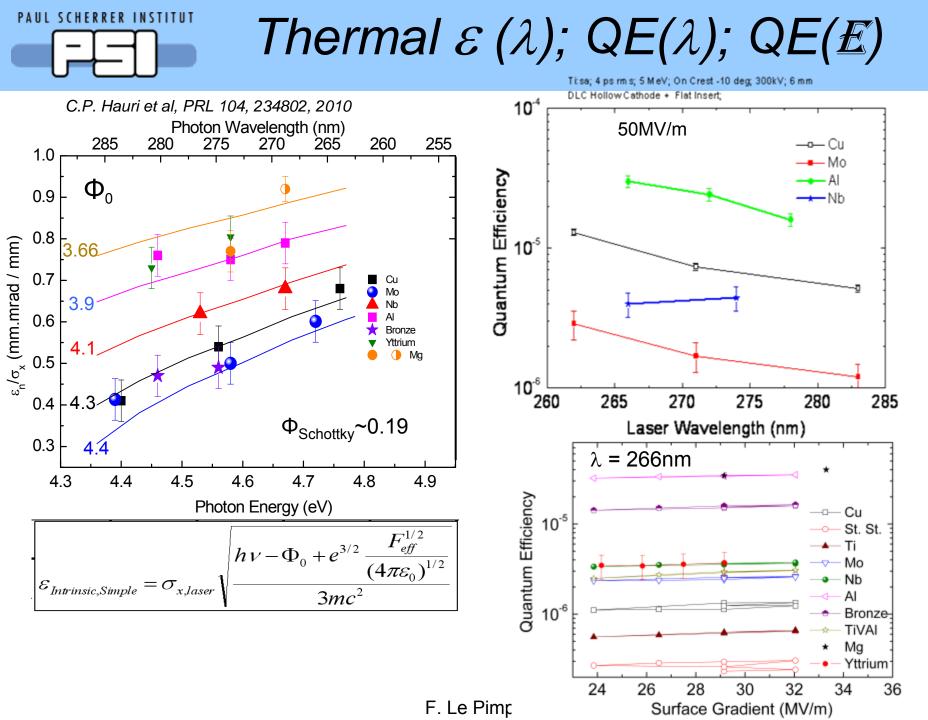

Simple laser experiment - UV lamp experiment

QE : to plot or not to plot ?

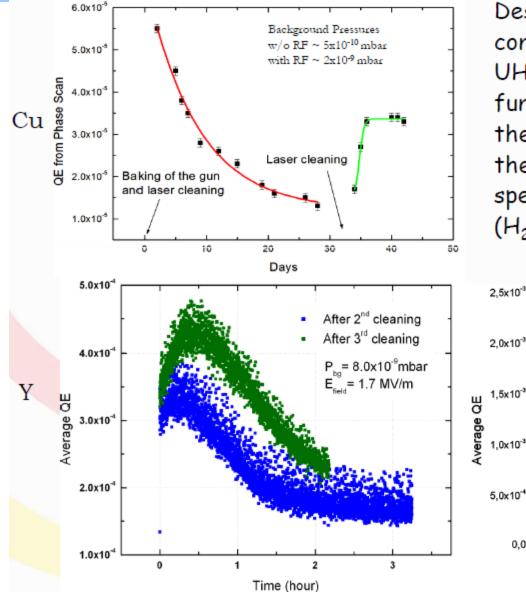
QE is as intrinsic as the boiling point ...

PAUL SCHERRER INSTITUT

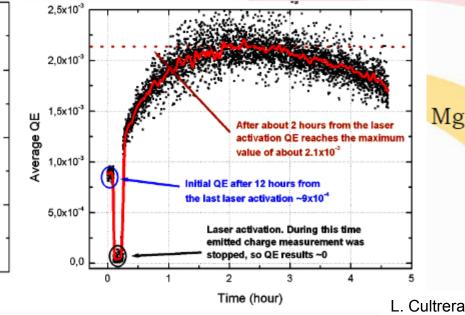
One can use QE_0 and $QE_{effective}$



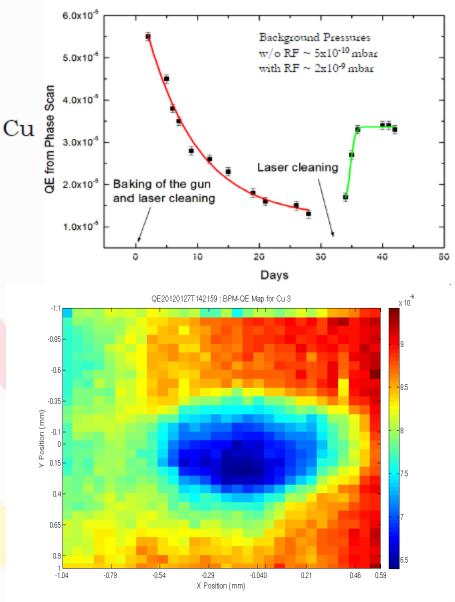
Thermal ε (λ); QE(λ); QE(\mathcal{E})



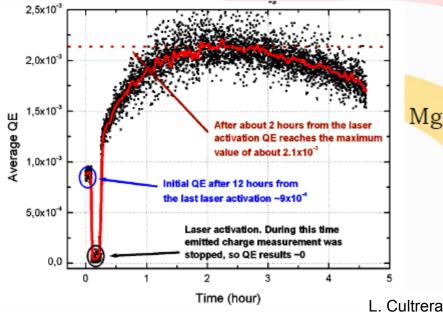
PolyC metal	Φ ₀ (eV) Literature	Φ ₀ (eV) Expt	λ (nm) lit
Cu	4.65 4.53-5.1	4.3	267
Мо	4.6	4.4	270
Nb Nb(110)	4.3 4.77	4.1	260
Mg	3.66	3.7 - 3.9	339
AI	4.28	3.9	290


Difference in WF input is dominated by Chemistry (O_2) not by topology nor Stress

Metallic photocathode: lifetime

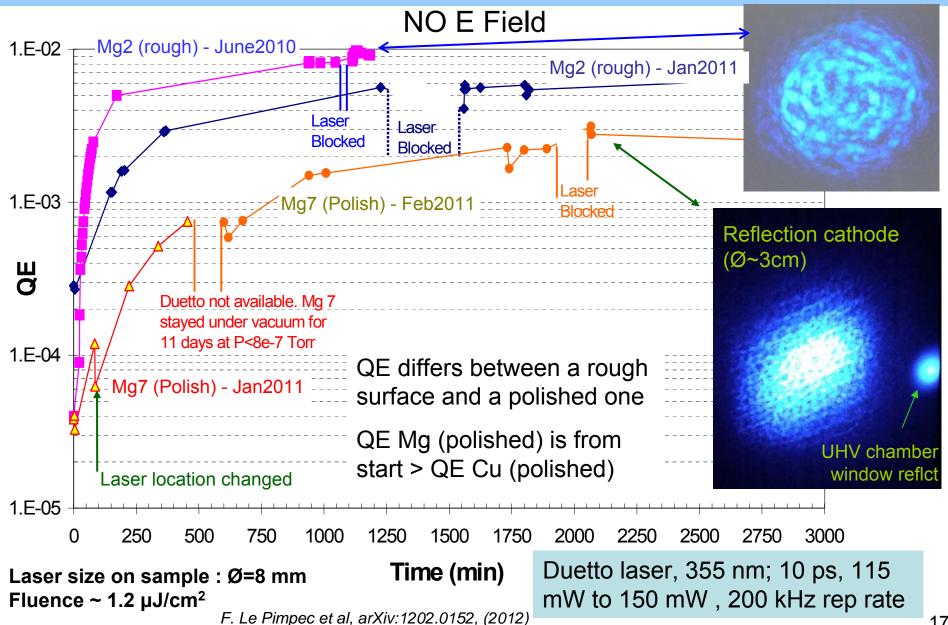


Despite their lower claimed contamination sensitivity even in UHV (10^{-9} mbar range) low work function metals as Mg, Y but also the most inert Cu may suffer from the contamination due to chemical species present in residual gases (H₂, CO, CO₂, H₂O).

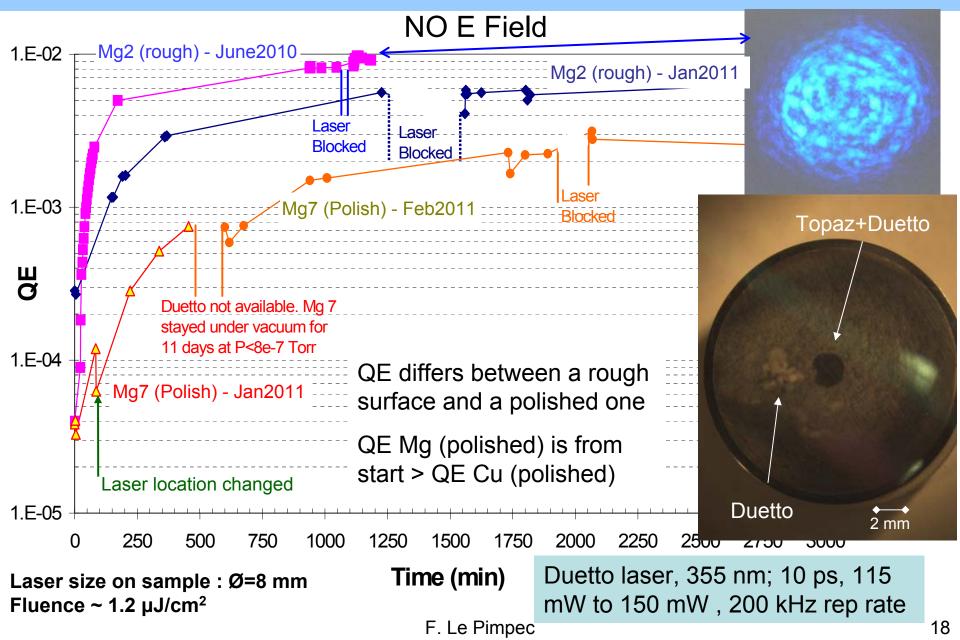


F. Le Pimpec

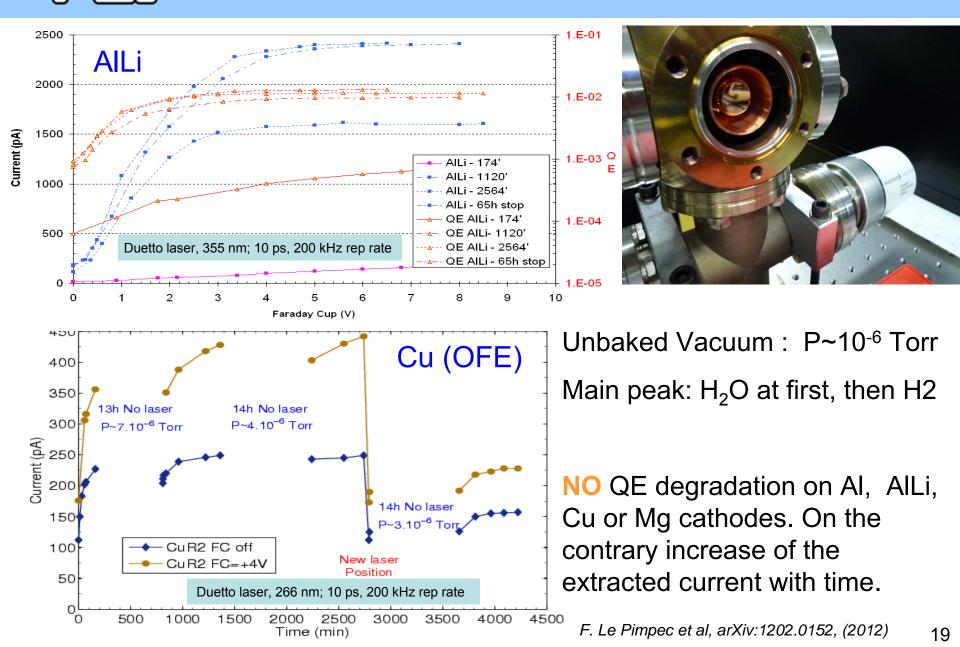
Metallic photocathode: lifetime



Despite their lower claimed contamination sensitivity even in UHV (10^{-9} mbar range) low work function metals as Mg, Y but also the most inert Cu may suffer from the contamination due to chemical species present in residual gases (H₂, CO, CO₂, H₂O).



F. Le Pimpec


PAUL SCHERRER INSTITUT Mg Laser Cleaning and lifetime

Mg Laser Cleaning and lifetime

Lifetime in absence of RF field

Summary & Conclusions

- Compact (\$\$) High Brilliance XFEL requires a high Brightness electron beam → Need for low thermal emittance electron source.
- RF Photogun technology has matured. Not quite off the shelves yet.
- Cathodes are easily available (SC too) They provide the charge, lifetime is sufficiently long. This is what is often requested.
- Metal photocathodes in XFEL RF guns do suffer from QE degradation over the months. Not acceptable !
- Laser (Ozone) Cleaning on Mg is very efficient: low rep rate high laser E density and high rep rate low laser E are both very efficient in improving QE. For how long ?
- In the community this degradation is attributed to vacuum effect (photocracking on the surface ?). We showed that this is not the case. Is the native oxide presence beneficial ? The presence of the RF field is important !!!

Future...

- The XFEL community wants an *Emittonium* cathode : QE ~ %%, P₁~0, fast response time, long life time, resilient to adverse vacuum conditions.
- Constructing such lattice will require a much better theoretical understanding of the electron transportemission, more R&D in material science... TIME !!!!

- US national labs are trying to seriously tie up on this topic.
- Europe : Some talks about collaboration (UK, PSI, DESY, Milan...)

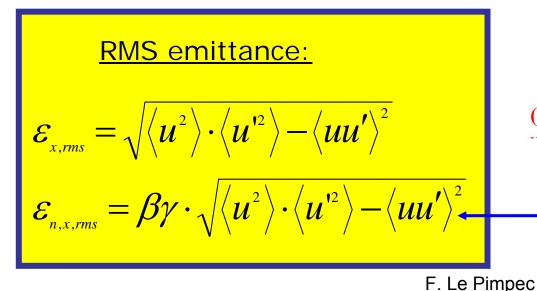
Aimed at bringing the photocathode community together to discuss and explore the current state of the art in accelerator photocathodes, from both a theoretical and a materials science perspective.

All types of photocathode materials were discussed, including metals, NEA and PEA semiconductors, and 'designer' photocathodes with bespoke properties.

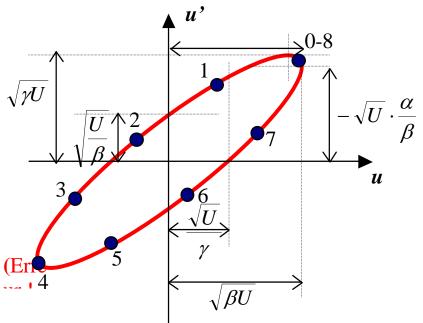
Share documentation Learn from our predecessors

http://www.bnl.gov/pppworkshop/

Fay Hannon


http://photocathodes2011.eurofel.eu/talks/

THANK YOU


Emittance (ϵ), what is that ?

- ε describes the phase space area/volume occupied by the beam
- ε is a measure for the "parallelism" of the beam (size x divergence).
- ε is a measure of the beam quality (ε : mm.mrad)

Ellipse equation $\gamma \cdot u^2 + 2 \cdot \alpha \cdot u \cdot u' + \beta \cdot u'^2 = U$

Area of the ellipse = π . $\varepsilon \equiv U$

The normalized emittance is a quantity which is invariant upon acceleration