## Particle Physics: The Standard Model

## **Dirk Zerwas**

LAL zerwas@lal.in2p3.fr

March 8, 2012

## 1

## The Standard Model of Particle Physics: Overview

- Kinematics
- s channel and t channel
- Cross section and total width
- Description of an unstable particle

→ ∃ →

## The Course Philosophy

- Emphasis of the course is on the phenomenology
- We will discuss experimental aspects but more important is the interpretation of measurements
- In an ideal world: construct theory and apply it
- Real (course) world: theory and application in parallel
- Build the theory knowledge to put the experiments into perspective
- Natural units:  $\hbar = c = 1 \rightarrow \hbar c = 197.3 \text{MeV} \cdot \text{fm}$

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

| $\left( \begin{array}{c} u_L \\ d_L \end{array} \right)$               | $\left(\begin{array}{c} c_L\\ s_L \end{array}\right)$                        | $\left( \begin{array}{c} t_L \\ b_L \end{array} \right)$                       |
|------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\left(\begin{array}{c} \nu_{\rm e_L} \\ {\rm e_L} \end{array}\right)$ | $\left(\begin{array}{c} \nu_{\mu_{\rm L}} \\ \mu_{\rm L} \end{array}\right)$ | $\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array}\right)$ |
|                                                                        | c <sub>R</sub>                                                               | t <sub>R</sub>                                                                 |
| $d_R$                                                                  | SR                                                                           | $b_R$                                                                          |
| e <sub>R</sub>                                                         | $\mu_{ m R}$                                                                 |                                                                                |

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

| $\left( \begin{array}{c} u_L \\ d_L \end{array} \right)$            | $\left(\begin{array}{c} c_L\\ s_L \end{array}\right)$                        | $\left( \begin{array}{c} t_L \\ b_L \end{array} \right)$                       |
|---------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\left(\begin{array}{c}\nu_{\rm e_L}\\ {\rm e_L}\end{array}\right)$ | $\left(\begin{array}{c} \nu_{\mu_{\rm L}} \\ \mu_{\rm L} \end{array}\right)$ | $\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array}\right)$ |
|                                                                     | c <sub>R</sub>                                                               | t <sub>R</sub>                                                                 |
| $d_{\rm R}$                                                         | SR                                                                           | $b_R$                                                                          |
| e <sub>R</sub>                                                      | $\mu_{ m R}$                                                                 |                                                                                |

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

| $\left( \begin{array}{c} u_L \\ d_L \end{array} \right)$               | $\left(\begin{array}{c} c_L\\ s_L \end{array}\right)$                    | $\left( \begin{array}{c} t_L \\ b_L \end{array} \right)$                       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\left(\begin{array}{c} \nu_{\rm e_L} \\ {\rm e_L} \end{array}\right)$ | $\left( egin{array}{c}  u_{\mu_{ m L}} \\ \mu_{ m L} \end{array}  ight)$ | $\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array}\right)$ |
| u <sub>R</sub>                                                         | c <sub>R</sub>                                                           | t <sub>R</sub>                                                                 |
| d <sub>R</sub>                                                         | $s_R$                                                                    | $b_R$                                                                          |
| e <sub>R</sub>                                                         | $\mu_{ m R}$                                                             |                                                                                |

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families = heavier copies of the first family

| $\left( \begin{array}{c} u_L \\ d_L \end{array} \right)$               | $\left(\begin{array}{c} c_L\\ s_L \end{array}\right)$                    | $\left(\begin{array}{c} t_L \\ b_L \end{array}\right)$                         |
|------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\left(\begin{array}{c} \nu_{\rm e_L} \\ {\rm e_L} \end{array}\right)$ | $\left( egin{array}{c}  u_{\mu_{ m L}} \\ \mu_{ m L} \end{array}  ight)$ | $\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array}\right)$ |
| u <sub>R</sub>                                                         | c <sub>R</sub>                                                           | t <sub>R</sub>                                                                 |
| d <sub>R</sub>                                                         | SR                                                                       | b <sub>R</sub>                                                                 |
| e <sub>R</sub>                                                         | $\mu_{ m R}$                                                             | $	au_{\mathbf{R}}$                                                             |

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin–1 massless
- Weak interaction: Spin–1 massive
- Masses: Spin–0 massive

| $\left( \begin{array}{c} u_L \\ d_L \end{array} \right)$                                      | $\left(\begin{array}{c} c_L \\ s_L \end{array}\right)$                   | $\left( \begin{array}{c} t_L \\ b_L \end{array} \right)$                       |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\left( \begin{array}{c} \nu_{\mathrm{e_L}} \\ \mathrm{e_L} \end{array}  ight)$               | $\left( egin{array}{c}  u_{\mu_{ m L}} \\ \mu_{ m L} \end{array}  ight)$ | $\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array}\right)$ |
| u <sub>R</sub><br>d <sub>R</sub><br>e <sub>R</sub>                                            | $c_{ m R} \ { m s}_{ m R} \ \mu_{ m R}$                                  | $t_{ m R}$<br>$b_{ m R}$<br>$	au_{ m R}$                                       |
| $egin{array}{c} oldsymbol{\gamma} \\ oldsymbol{g} \\ \mathrm{W}^{\pm}, Z^{\circ} \end{array}$ |                                                                          |                                                                                |

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin–1 massless
- Weak interaction: Spin–1 massive
- Masses: Spin–0 massive

| $\left( \begin{array}{c} u_L \\ d_L \end{array} \right)$                                  | $\left(\begin{array}{c} c_L\\ s_L \end{array}\right)$                    | $\left( \begin{array}{c} t_L \\ b_L \end{array} \right)$                   |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|
| $\left( \begin{array}{c} \nu_{\mathrm{e_L}} \\ \mathrm{e_L} \end{array}  ight)$           | $\left( egin{array}{c}  u_{\mu_{ m L}} \\ \mu_{ m L} \end{array}  ight)$ | $\left(\begin{array}{c}\nu_{\tau_{\rm L}}\\\tau_{\rm L}\end{array}\right)$ |
| u <sub>R</sub><br>d <sub>R</sub><br>e <sub>R</sub>                                        | $c_{ m R} \ { m s}_{ m R} \ \mu_{ m R}$                                  | $t_{ m R}$<br>$b_{ m R}$<br>${	au}_{ m R}$                                 |
| $egin{array}{c} \gamma \ oldsymbol{g} \ \mathrm{W}^{\pm}, \mathrm{Z}^{\circ} \end{array}$ |                                                                          |                                                                            |

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin–1 massless
- Weak interaction: Spin–1 massive
- Masses: Spin–0 massive

$$\begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix}$$

$$\begin{pmatrix} \nu_{e_{L}} \\ e_{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu_{L}} \\ \mu_{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau_{L}} \\ \tau_{L} \end{pmatrix}$$

$$u_{R} \quad c_{R} \quad t_{R} \\ d_{R} \quad s_{R} \quad b_{R} \\ e_{R} \quad \mu_{R} \quad \tau_{R}$$

$$\gamma$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\overset{g}{\mathrm{W}^{\pm},\mathrm{Z}^{\circ}}$ 

- Electromagnetism: Spin–1 massless
- Strong interaction (p=uud): Spin–1 massless
- Weak interaction: Spin–1 massive
- Masses: Spin–0 massive

| $\left(\begin{array}{c} u_L \\ d_L \end{array}\right)$                           | $\left(\begin{array}{c} c_L \\ s_L \end{array}\right)$                   | $\left( \begin{array}{c} t_L \\ b_L \end{array} \right)$                       |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\left( \begin{array}{c} \nu_{\mathrm{e_L}} \\ \mathrm{e_L} \end{array} \right)$ | $\left( egin{array}{c}  u_{\mu_{ m L}} \\ \mu_{ m L} \end{array}  ight)$ | $\left(\begin{array}{c} \nu_{\tau_{\rm L}} \\ \tau_{\rm L} \end{array}\right)$ |
| u <sub>R</sub>                                                                   | $c_{R}$                                                                  | t <sub>R</sub>                                                                 |
| d <sub>R</sub>                                                                   | s <sub>R</sub>                                                           | $b_R$                                                                          |
| e <sub>R</sub>                                                                   | $\mu_{	extbf{R}}$                                                        | $	au_{\mathbf{R}}$                                                             |
| $\gamma$                                                                         |                                                                          |                                                                                |
| g                                                                                |                                                                          |                                                                                |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

W<sup>±</sup>, Z° H

## Properties: Electric Charge

- Fractional charges not observed in nature
- Strong interaction: uud, udd

$$\begin{array}{c} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{array} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} \\ 0 \\ -1 \\ \begin{pmatrix} \nu_{e_{L}} \\ e_{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu_{L}} \\ \mu_{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau_{L}} \\ \tau_{L} \end{pmatrix} \\ \frac{2}{3} \\ -\frac{1}{3} \\ d_{R} \\ s_{R} \\ b_{R} \\ -1 \\ e_{R} \\ \mu_{R} \\ \tau_{R} \\ \end{array} \\ \begin{array}{c} \tau_{R} \\ \tau_{R} \\ 0 \\ 0 \\ g \\ \pm 1, 0 \\ 0 \\ H \end{array}$$

イロト イ団ト イヨト イヨト

큰

## Properties: Electric Charge

- Fractional charges not observed in nature
- Strong interaction: uud, udd

$$\begin{array}{c} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{array} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} \\ 0 \\ -1 \\ \begin{pmatrix} \nu_{e_{L}} \\ e_{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu_{L}} \\ \mu_{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau_{L}} \\ \tau_{L} \end{pmatrix} \\ \frac{2}{3} \\ -\frac{1}{3} \\ d_{R} \\ s_{R} \\ b_{R} \\ -1 \\ e_{R} \\ \mu_{R} \\ \tau_{R} \\ \end{array} \\ \begin{array}{c} \tau_{R} \\ \tau_{R} \\ 0 \\ 0 \\ g \\ \pm 1, 0 \\ 0 \\ H \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 >

## Properties: Color charge

- Sum of colors (RGB) white
- R+G+B=
   (qqq =baryon)
- Color+anti-color=
   White (qq
   =meson)
- Gluon carries color+anti-color
- 8 different gluons (not 9)

$$\begin{array}{c} \mathbf{C} & \left(\begin{array}{c} u_{L} \\ d_{L} \end{array}\right) & \left(\begin{array}{c} c_{L} \\ s_{L} \end{array}\right) & \left(\begin{array}{c} t_{L} \\ b_{L} \end{array}\right) \\ \end{array} \\ \begin{array}{c} - & \left(\begin{array}{c} \nu_{e_{L}} \\ e_{L} \end{array}\right) & \left(\begin{array}{c} \nu_{\mu_{L}} \\ \mu_{L} \end{array}\right) & \left(\begin{array}{c} \nu_{\tau_{L}} \\ \tau_{L} \end{array}\right) \\ \end{array} \\ \begin{array}{c} \mathbf{C} & u_{R} & \mathbf{c}_{R} & t_{R} \\ \mathbf{C} & d_{R} & s_{R} & b_{R} \\ - & e_{R} & \mu_{R} & \tau_{R} \end{array} \\ \end{array} \\ \mathbf{C} + \overline{\mathbf{C}'} & \mathbf{g} \\ - & \mathbf{W}^{\pm}, \mathbf{Z}^{\circ} \\ - & \mathbf{H} \end{array}$$

## Rule of thumb for interactions

| Interaction     | Carrier                                 | Relative strength |
|-----------------|-----------------------------------------|-------------------|
| Gravitation     | Graviton (G)                            | 10 <sup>-40</sup> |
| Weak            | Weak Bosons (W $^{\pm}$ ,Z $^{\circ}$ ) | 10 <sup>-7</sup>  |
| Electromagnetic | Photon ( $\gamma$ )                     | 10 <sup>-2</sup>  |
| Strong          | Gluon (g)                               | 1                 |

- Forget about Gravitation in particle physics problems
- The course and problem solving sessions will lead us to understand how the model describes the interactions and their strength.

#### Kinematics s channel and t channel Cross section and total width Description of an unstable particle

$$m{a} = (E_a, ec{p}_a) = (p_0, p_1, p_2, p_3) \ E_a \cdot E_a - ec{p}_a \cdot ec{p}_a = m_a^2 \ g^{\mu
u} p_\mu p_
u = m_a^2$$

$$g^{\mu\mu} = (1, -1, -1, -1)$$
  
for  $\mu \neq 
u : g^{\mu
u} = 0$ 

### Conservation of E and $\vec{p}$

$$\mathbf{a} + \mathbf{b} = \mathbf{c} + \mathbf{d}$$

therefore

$$\mathbf{a} - \mathbf{c} = \mathbf{d} - \mathbf{b}$$

### Mandelstam Variables

 $a + b \rightarrow c + d$  $s = (a + b)^{2}$  $t = (a - c)^{2}$  $u = (a - d)^{2}$ 

イロト イ理ト イヨト イヨト

#### Kinematics s channel and t channel Cross section and total width Description of an unstable particle

$$m{a} = (E_a, ec{p}_a) = (p_0, p_1, p_2, p_3) \ E_a \cdot E_a - ec{p}_a \cdot ec{p}_a = m_a^2 \ g^{\mu
u} p_\mu p_
u = m_a^2$$

$$g^{\mu\mu} = (1, -1, -1, -1)$$
  
for  $\mu \neq 
u : g^{\mu
u} = 0$ 

## Conservation of E and $\vec{p}$

$$\mathbf{a} + \mathbf{b} = \mathbf{c} + \mathbf{d}$$

therefore

$$\mathbf{a} - \mathbf{c} = \mathbf{d} - \mathbf{b}$$

 $a + b \rightarrow c + d$  $s = (a + b)^{2}$  $t = (a - c)^{2}$  $u = (a - d)^{2}$ 

イロト イポト イヨト イヨト

#### Kinematics s channel and t channel Cross section and total width Description of an unstable particle

$$m{a} = (E_a, ec{p}_a) = (p_0, p_1, p_2, p_3) \ E_a \cdot E_a - ec{p}_a \cdot ec{p}_a = m_a^2 \ g^{\mu
u} p_\mu p_
u = m_a^2$$

$${
m g}^{\mu\mu} = ({\sf 1}, -{\sf 1}, -{\sf 1}, -{\sf 1})$$
 for  $\mu 
eq 
u : {
m g}^{\mu
u} = {\sf 0}$ 

## Conservation of E and $\vec{p}$

$$\mathbf{a} + \mathbf{b} = \mathbf{c} + \mathbf{d}$$

therefore

$$\mathbf{a} - \mathbf{c} = \mathbf{d} - \mathbf{b}$$

Mandelstam Variables  

$$a + b \rightarrow c + d$$
  
 $s = (\mathbf{a} + \mathbf{b})^2$   
 $t = (\mathbf{a} - \mathbf{c})^2$   
 $u = (\mathbf{a} - \mathbf{d})^2$ 

2

s channel and t channel Cross section and total width Description of an unstable particle

# Theorem s + t + u $= m_a^2 + m_b^2 + m_c^2 + m_d^2$ = 0

- High energy approx  $(E \gg m \sim 0, E = |\vec{p}|$
- CM-frame  $(\vec{p}_a = -\vec{p}_b)$
- $\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$

## Proof.

- $s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$ 
  - $= m_a^2 + m_b^2 + 2(E_a \cdot E_b \vec{p}_a \cdot \vec{p}_b)$
  - $= 2(E_a \cdot E_b \vec{p}_a \cdot \vec{p}_b)$
  - = 2( $E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a$ )
  - $= 2(E_a^2 + E_a^2)$
  - $= 4E_a^2$
- $t = -2(E_a \cdot E_c \vec{p}_a \cdot \vec{p}_c)$  $u = -2(E_a \cdot E_d \vec{p}_a \cdot \vec{p}_d)$

s channel and t channel Cross section and total width Description of an unstable particle

## Theorem

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2$$

- High energy approx  $(E \gg m \sim 0, E = |\vec{p}|)$
- CM-frame  $(\vec{p}_a = -\vec{p}_b)$

• 
$$\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$$

## Proof.

$$\mathbf{s} = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

 $= m_a^2 + m_b^2 + 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

$$= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$$

 $= 2(E_a^2 + E_a^2)$ 

$$= 4E_a^2$$

- $= -2(E_a \cdot E_c \vec{p}_a \cdot \vec{p}_c)$
- $u = -2(E_a \cdot E_d \vec{p}_a \cdot \vec{p}_d)$

$$= -2(E_a \cdot E_c + \vec{p}_a \cdot \vec{p}_c)$$

s channel and t channel Cross section and total width Description of an unstable particle

Theorem  

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_c^2$$

$$= 0$$

- High energy approx  $(E \gg m \sim 0, E = |\vec{p}|$
- CM-frame  $(\vec{p}_a = -\vec{p}_b)$

• 
$$\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$$

## Proof.

$$\mathbf{s} = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

 $= m_a^2 + m_b^2 + 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

- $= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$
- $= 2(E_a^2 + E_a^2)$

$$= 4E_a^2$$

- $= -2(E_a \cdot E_c \vec{p}_a \cdot \vec{p}_c)$
- $J = -2(E_a \cdot E_d \vec{p}_a \cdot \vec{p}_d)$ 
  - $= -2(E_a \cdot E_c + \vec{p}_a \cdot \vec{p}_c)$

s channel and t channel Cross section and total width Description of an unstable particle

## Theorem

$$s + t + u$$

$$= m_a^2+m_b^2+m_c^2+m_d^2$$

- High energy approx  $(E \gg m \sim 0, E = |\vec{p}|)$
- CM-frame  $(\vec{p}_a = -\vec{p}_b)$
- $\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$

## Proof.

$$s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

 $= m_a^2 + m_b^2 + 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

- $= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$
- $= 2(E_a^2 + E_a^2)$

$$= 4E_a^2$$

- $= -2(E_a \cdot E_c \vec{p}_a \cdot \vec{p}_c)$
- $u = -2(E_a \cdot E_d \vec{p}_a \cdot \vec{p}_d)$

$$= -2(E_a \cdot E_c + \vec{p}_a \cdot \vec{p}_c)$$

s channel and t channel Cross section and total width Description of an unstable particle

## Theorem

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_c^2$$

- High energy approx ( $E \gg m \sim 0, E = |\vec{p}|$ )
- CM-frame  $(\vec{p}_a = -\vec{p}_b)$
- $\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$

## Proof.

ι

$$s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

$$=$$
  $m_a^2+m_b^2+2(E_a\cdot E_b-ec p_a\cdot ec p_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

$$= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$$

 $= 2(E_a^2 + E_a^2)$ 

$$= 4E_a^2$$

$$= -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$

$$\Psi = -2(E_a \cdot E_d - \vec{p}_a \cdot \vec{p}_d)$$

$$= -2(E_a \cdot E_c + \vec{p}_a \cdot \vec{p}_c)$$

s channel and t channel Cross section and total width Description of an unstable particle

### Theorem

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2$$
$$= 0$$

- High energy approx  $(E \gg m \sim 0, E = |\vec{p}|)$
- CM-frame ( $\vec{p}_a = -\vec{p}_b$ )
- $\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$

## Proof.

t

$$s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

=  $m_a^2+m_b^2+2(E_a\cdot E_b-ec p_a\cdot ec p_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

- $= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$
- $= 2(E_a^2 + E_a^2)$

$$= 4E_a^2$$

- $= -2(E_a \cdot E_c \vec{p}_a \cdot \vec{p}_c)$
- $u = -2(E_a \cdot E_d \vec{p}_a \cdot \vec{p}_d)$

s channel and t channel Cross section and total width Description of an unstable particle

## Theorem

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2$$
$$= 0$$

- High energy approx ( $E \gg m \sim 0, E = |\vec{p}|$ )
- CM-frame  $(\vec{p}_a = -\vec{p}_b)$
- $\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$

## Proof.

$$s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

$$=$$
  $m_a^2+m_b^2+2(E_a\cdot E_b-ec p_a\cdot ec p_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

$$= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$$

 $= 2(E_a^2 + E_a^2)$ 

$$= 4E_a^2$$

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$
$$u = -2(E_a \cdot E_d - \vec{p}_a \cdot \vec{p}_d)$$
$$= -2(E_a \cdot E_c + \vec{p}_a \cdot \vec{p}_c)$$

s channel and t channel Cross section and total width Description of an unstable particle

## Theorem

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2$$
$$= 0$$

- High energy approx ( $E \gg m \sim 0, E = |\vec{p}|$ )
- CM-frame ( $\vec{p}_a = -\vec{p}_b$ )

• 
$$\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$$

## Proof.

$$s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

$$=$$
  $m_a^2+m_b^2+2(E_a\cdot E_b-ec p_a\cdot ec p_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

$$= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$$

 $= 2(E_a^2 + E_a^2)$ 

$$= 4E_a^2$$

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$
$$u = -2(E_a \cdot E_d - \vec{p}_a \cdot \vec{p}_d)$$
$$= -2(E_a \cdot E_c + \vec{p}_a \cdot \vec{p}_c)$$

s channel and t channel Cross section and total width Description of an unstable particle

## Theorem

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2$$
$$= 0$$

- High energy approx ( $E \gg m \sim 0, E = |\vec{p}|$ )
- CM-frame ( $\vec{p}_a = -\vec{p}_b$ )

• 
$$\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$$

## Proof.

$$s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

$$=$$
  $m_a^2+m_b^2+2(E_a\cdot E_b-ec p_a\cdot ec p_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

$$= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$$

$$= 2(E_a^2 + E_a^2)$$

$$= 4E_a^2$$

$$t = -2(E_a \cdot E_c - \vec{p}_a \cdot \vec{p}_c)$$
$$u = -2(E_a \cdot E_d - \vec{p}_a \cdot \vec{p}_d)$$

$$= -2(E_a \cdot E_c + \vec{p}_a \cdot \vec{p}_c)$$

s channel and t channel Cross section and total width Description of an unstable particle

## Theorem

$$s + t + u$$

$$= m_a^2 + m_b^2 + m_c^2 + m_d^2$$
$$= 0$$

- High energy approx ( $E \gg m \sim 0, E = |\vec{p}|$ )
- CM-frame ( $\vec{p}_a = -\vec{p}_b$ )

• 
$$\rightarrow E_a = E_b = E_c = E_d = \sqrt{(s)/2}$$

## Proof.

t u

$$s = \mathbf{a}^2 + \mathbf{b}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b}$$

$$=$$
  $m_a^2+m_b^2+2(E_a\cdot E_b-ec p_a\cdot ec p_b)$ 

$$= 2(E_a \cdot E_b - \vec{p}_a \cdot \vec{p}_b)$$

$$= 2(E_a \cdot E_a + \vec{p}_a \cdot \vec{p}_a)$$

$$= 2(E_a^2+E_a^2)$$

$$= 4E_a^2$$

$$= -2(E_a\cdot E_c - ec{p}_a\cdot ec{p}_c)$$

$$= -2(E_a \cdot E_d - \vec{p}_a \cdot \vec{p}_d)$$

$$= -2(E_a\cdot E_c+ec{
ho}_a\cdotec{
ho}_c)$$

#### Kinematics

s channel and t channel Cross section and total width Description of an unstable particle

イロト イポト イヨト イヨト 一座

## Proof.

 $t + u = -2(2 \cdot E_a \cdot E_c)$ = -2(2 \cdot E\_a \cdot E\_a)  $s + t + u = 4 \cdot E_a \cdot E_a - 4 \cdot E_a \cdot E_a$ = 0

#### Kinematics

s channel and t channel Cross section and total width Description of an unstable particle

イロト イポト イヨト イヨト 一座

## Proof.

 $t + u = -2(2 \cdot E_a \cdot E_c)$ = -2(2 \cdot E\_a \cdot E\_a)  $s + t + u = 4 \cdot E_a \cdot E_a - 4 \cdot E_a \cdot E_a$ = 0

s channel and t channel Cross section and total width Description of an unstable particle

-큰

イロト イポト イヨト イヨト

## Proof.

$$t + u = -2(2 \cdot E_a \cdot E_c)$$
  
=  $-2(2 \cdot E_a \cdot E_a)$   
 $s + t + u = 4 \cdot E_a \cdot E_a - 4 \cdot E_a \cdot E_a$   
=  $0$ 

s channel and t channel Cross section and total width Description of an unstable particle

-2

イロト イポト イヨト イヨト

## Proof.

$$t + u = -2(2 \cdot E_a \cdot E_c)$$
  
= -2(2 \cdot E\_a \cdot E\_a)  
$$s + t + u = 4 \cdot E_a \cdot E_a - 4 \cdot E_a \cdot E_a$$
  
= 0

| a + b  ightarrow c + d                     | $a + ar{c}  ightarrow ar{b} + d$         |                                 |     |
|--------------------------------------------|------------------------------------------|---------------------------------|-----|
| $\mathbf{s} = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{\bar{c}})^2$ | $= ({\bf a} - {\bf c})^2$       | = t |
| $t=(\mathbf{a}-\mathbf{c})^2$              | $t' = (\mathbf{a} - \mathbf{\bar{b}})^2$ | $= (\mathbf{a} + \mathbf{b})^2$ | = S |
| $u = (\mathbf{a} - \mathbf{d})^2$          | $u' = (\mathbf{a} - \mathbf{d})^2$       | $= (a - d)^2$                   | = U |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

< ロ > < 同 > < 回 > < 回 > < 回 >

| $a + b \rightarrow c + d$         | $m{a}+ar{m{c}} ightarrowar{m{b}}+m{d}$ |                           |     |
|-----------------------------------|----------------------------------------|---------------------------|-----|
| $s = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{ar{c}})^2$ | $= (a - c)^2$             | = t |
| $t=(\mathbf{a}-\mathbf{c})^2$     | $t'=(\mathbf{a}-\mathbf{ar{b}})^2$     | $= ({\bf a} + {\bf b})^2$ | = S |
| $u = (\mathbf{a} - \mathbf{d})^2$ | $u' = (\mathbf{a} - \mathbf{d})^2$     | $= (a - d)^2$             | = U |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

< ロ > < 同 > < 回 > < 回 > < 回 >

| $a + b \rightarrow c + d$         | $a+ar{c} ightarrowar{b}+d$             |                                 |     |
|-----------------------------------|----------------------------------------|---------------------------------|-----|
| $s = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{ar{c}})^2$ | $= (\mathbf{a} - \mathbf{c})^2$ | = t |
| $t=(\mathbf{a}-\mathbf{c})^2$     | $t'=(\mathbf{a}-\mathbf{ar{b}})^2$     | $= (\mathbf{a} + \mathbf{b})^2$ | = S |
| $u = (\mathbf{a} - \mathbf{d})^2$ | $u'=(\mathbf{a}-\mathbf{d})^2$         | $= (\mathbf{a} - \mathbf{d})^2$ | = U |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

| $a + b \rightarrow c + d$         | $m{a}+ar{m{c}} ightarrowar{m{b}}+m{d}$ |                                 |            |
|-----------------------------------|----------------------------------------|---------------------------------|------------|
| $s = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{ar{c}})^2$ | $= (\mathbf{a} - \mathbf{c})^2$ | = <i>t</i> |
| $t=(\mathbf{a}-\mathbf{c})^2$     | $t'=(\mathbf{a}-\mathbf{ar{b}})^2$     | $= (\mathbf{a} + \mathbf{b})^2$ | = s        |
| $u = (\mathbf{a} - \mathbf{d})^2$ | $u' = (\mathbf{a} - \mathbf{d})^2$     | $= (\mathbf{a} - \mathbf{d})^2$ | <i>= u</i> |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

< ロ > < 同 > < 回 > < 回 > < 回 >

$$\begin{array}{c|c} \mathbf{a} + \mathbf{b} \rightarrow \mathbf{c} + \mathbf{d} \\ s = (\mathbf{a} + \mathbf{b})^2 \\ t = (\mathbf{a} - \mathbf{c})^2 \\ u = (\mathbf{a} - \mathbf{d})^2 \end{array} \begin{array}{c} \mathbf{a} + \bar{\mathbf{c}} \rightarrow \bar{\mathbf{b}} + \mathbf{d} \\ s' = (\mathbf{a} + \bar{\mathbf{c}})^2 \\ t' = (\mathbf{a} - \bar{\mathbf{b}})^2 \\ u' = (\mathbf{a} - \mathbf{d})^2 \end{array} \begin{array}{c} = (\mathbf{a} - \mathbf{c})^2 \\ = (\mathbf{a} - \mathbf{b})^2 \\ = (\mathbf{a} - \mathbf{d})^2 \\ u' = (\mathbf{a} - \mathbf{d})^2 \end{array}$$

## • Calculate a process as function of *s*,*t*,*u*

- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

| $a + b \rightarrow c + d$         | $m{a}+ar{m{c}} ightarrowar{m{b}}+m{d}$ |                                 |            |
|-----------------------------------|----------------------------------------|---------------------------------|------------|
| $s = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{ar{c}})^2$ | $= (\mathbf{a} - \mathbf{c})^2$ | = <i>t</i> |
| $t = (\mathbf{a} - \mathbf{c})^2$ | $t'=(\mathbf{a}-\mathbf{ar{b}})^2$     | $= (\mathbf{a} + \mathbf{b})^2$ | = s        |
| $u = (\mathbf{a} - \mathbf{d})^2$ | $u' = (\mathbf{a} - \mathbf{d})^2$     | $= (\mathbf{a} - \mathbf{d})^2$ | <i>= u</i> |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

| $a + b \rightarrow c + d$         | $m{a}+ar{m{c}} ightarrowar{m{b}}+m{d}$ |                                 |            |
|-----------------------------------|----------------------------------------|---------------------------------|------------|
| $s = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{ar{c}})^2$ | $= (\mathbf{a} - \mathbf{c})^2$ | = <i>t</i> |
| $t = (\mathbf{a} - \mathbf{c})^2$ | $t'=(\mathbf{a}-\mathbf{ar{b}})^2$     | $= (\mathbf{a} + \mathbf{b})^2$ | = s        |
| $u = (\mathbf{a} - \mathbf{d})^2$ | $u' = (\mathbf{a} - \mathbf{d})^2$     | $= (\mathbf{a} - \mathbf{d})^2$ | <i>= u</i> |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

| $a + b \rightarrow c + d$         | $m{a}+ar{m{c}} ightarrowar{m{b}}+m{d}$ |                                 |            |
|-----------------------------------|----------------------------------------|---------------------------------|------------|
| $s = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{ar{c}})^2$ | $= (\mathbf{a} - \mathbf{c})^2$ | = <i>t</i> |
| $t = (\mathbf{a} - \mathbf{c})^2$ | $t'=(\mathbf{a}-\mathbf{ar{b}})^2$     | $= (\mathbf{a} + \mathbf{b})^2$ | = s        |
| $u = (\mathbf{a} - \mathbf{d})^2$ | $u'=(\mathbf{a}-\mathbf{d})^2$         | $= (\mathbf{a} - \mathbf{d})^2$ | <i>= u</i> |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving

| $a + b \rightarrow c + d$         | $m{a}+ar{m{c}} ightarrowar{m{b}}+m{d}$ |                                 |            |
|-----------------------------------|----------------------------------------|---------------------------------|------------|
| $s = (\mathbf{a} + \mathbf{b})^2$ | $s' = (\mathbf{a} + \mathbf{ar{c}})^2$ | $= (\mathbf{a} - \mathbf{c})^2$ | = <i>t</i> |
| $t = (\mathbf{a} - \mathbf{c})^2$ | $t'=(\mathbf{a}-\mathbf{ar{b}})^2$     | $= (\mathbf{a} + \mathbf{b})^2$ | = s        |
| $u = (\mathbf{a} - \mathbf{d})^2$ | $u'=(\mathbf{a}-\mathbf{d})^2$         | $= (\mathbf{a} - \mathbf{d})^2$ | <i>= u</i> |

- Calculate a process as function of s,t,u
- Derive crossed process by  $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation  $s \rightarrow -t$

Kinematics and Crossing and the - in Problem Solving



the photon is massive (virtual) time-like

## t-channel: scattering







イロト イポト イヨト イヨト 三座





the photon is massive (virtual) time-like

## t-channel: scattering





$$\begin{aligned} \mathbf{p}_{e_i^-} &= \mathbf{q}_{\gamma} + \mathbf{p}_{e_o^-} \\ &= \mathbf{q}_{\gamma}^2 \\ &= m_e^2 + m_e^2 - 2 \cdot \mathbf{p}_{e_i^-} \cdot \mathbf{p}_{e_o^-} \\ &\approx -2(E_i E_o - |\vec{p}_i||\vec{p}_o|\cos\theta) \\ &\approx -2E_i E_o(1 - \cos\theta) \\ &\leq 0 \end{aligned}$$

the photon is massive space-like

イロト イポト イヨト イヨト 三座





the photon is massive (virtual) time-like

## t-channel: scattering





$$\begin{aligned} \mathbf{p}_{e_i^-} &= \mathbf{q}_{\gamma} + \mathbf{p}_{e_o^-} \\ &= \mathbf{q}_{\gamma}^2 \\ &= m_e^2 + m_e^2 - 2 \cdot \mathbf{p}_{e_i^-} \cdot \mathbf{p}_{e_o^-} \\ &\approx -2(E_i E_o - |\vec{p}_i||\vec{p}_o|\cos\theta) \\ &\approx -2E_i E_o(1 - \cos\theta) \\ &\leq 0 \end{aligned}$$

イロト イポト イヨト イヨト 二連



$$\begin{array}{rcl} {\bf q}_{\gamma} & = & {\bf p}_{{\rm e}^-} + {\bf p}_{{\rm e}^+} \\ s & = & {\bf q}_{\gamma}^2 \\ (CM) & = & (E_{{\rm e}^-} + E_{{\rm e}^+})^2 \\ & > & 0 \end{array}$$

## the photon is massive (virtual) time-like

## t-channel: scattering







イロト イポト イヨト イヨト 二連



the photon is massive (virtual) time-like

## t-channel: scattering







イロト イポト イヨト イヨト 二連



$$\begin{array}{rcl} {\bf q}_{\gamma} & = & {\bf p}_{e^-} + {\bf p}_{e^+} \\ s & = & {\bf q}_{\gamma}^2 \\ (CM) & = & (E_{e^-} + E_{e^+})^2 \\ & > & 0 \end{array}$$

## the photon is massive (virtual) time-like

## t-channel: scattering







イロト イ理ト イヨト イヨト



## t-channel: scattering





$$\begin{array}{rcl} \mathbf{e}_{i}^{-} & - & \mathbf{q}_{\gamma} + \mathbf{p}_{\mathbf{e}_{o}^{-}} \\ & = & \mathbf{q}_{\gamma}^{2} \\ & = & m_{e}^{2} + m_{e}^{2} - 2 \cdot \mathbf{p}_{\mathbf{e}_{i}^{-}} \cdot \mathbf{p}_{\mathbf{e}_{o}^{-}} \\ & \approx & -2(E_{i}E_{o} - |\vec{p}_{i}||\vec{p}_{o}|\cos\theta) \\ & \approx & -2E_{i}E_{o}(1 - \cos\theta) \\ & \leq & 0 \end{array}$$

イロト イポト イヨト イヨト 二連

the photon is massive space-like

## the photon is massive (virtual) time-like



the photon is massive (virtual) time-like

## t-channel: scattering







イロン イ理 とく ヨン ト ヨン・



the photon is massive (virtual) time-like

## t-channel: scattering





$$\approx -2(E_i E_o - |\vec{p}_i||\vec{p}_o|\cos\theta)$$
  
$$\approx -2E_i E_o(1 - \cos\theta)$$
  
$$\leq 0$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

## **Cross Section**

- The cross section  $\sigma$  is the ratio of the transition rate and the flux of incoming particles.
- Its unit is cm<sup>2</sup>
- $1b = 10^{-24} \text{cm}^2$  (puts barn in perspective, doesn't it?)

## Two ingredients:

 the interaction tranforming initial state |i> to a final state (f) of m particles with four-vectors p'<sub>i</sub>

kinematics (including Lorentz-Invariant phase space element)

$$\mathbf{d}\sigma = \frac{1}{2S_{12}} \prod_{i=1}^{m} \frac{\mathrm{d}^{3} p_{i}^{\prime}}{(2\pi)^{3} 2E_{i}^{\prime 0}} (2\pi)^{4} \delta(\mathbf{p}_{1}^{\prime} + \dots + \mathbf{p}_{m}^{\prime} - \mathbf{p}_{1} - \mathbf{p}_{2}) |\mathcal{M}|^{2}$$

with  $S_{12} = \sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}$ 

## **Cross Section**

- The cross section  $\sigma$  is the ratio of the transition rate and the flux of incoming particles.
- Its unit is cm<sup>2</sup>
- $1b = 10^{-24} \text{cm}^2$  (puts barn in perspective, doesn't it?)

Two ingredients:

- the interaction tranforming initial state |i> to a final state (f) of m particles with four-vectors p'<sub>i</sub>
- kinematics (including Lorentz-Invariant phase space element)

$$\mathrm{d}\sigma = \frac{1}{2S_{12}} \prod_{i=1}^{m} \frac{\mathrm{d}^{3} p_{i}'}{(2\pi)^{3} 2E_{i}'^{0}} (2\pi)^{4} \delta(\mathbf{p}_{1}' + ... + \mathbf{p}_{m}' - \mathbf{p}_{1} - \mathbf{p}_{2}) |\mathcal{M}|^{2}$$

with 
$$S_{12} = \sqrt{(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2)}$$

< ロ > < 同 > < 回 > < 回 > < 回 >

## Total Width or Decay Rate

- Total width is the inverse of the lifetime of the particle
- unit: energy, e.g., GeV.
- Closely related, but not identical to the cross section

$$\mathrm{d}\Gamma = \frac{1}{2E} \prod_{i=1}^{m} \frac{\mathrm{d}^{3} p_{i}^{\prime}}{(2\pi)^{3} 2E_{i}^{\prime 0}} \delta(\mathbf{p}_{1}^{\prime} + ... + \mathbf{p}_{m}^{\prime} - \mathbf{p}_{1}) |\mathcal{M}|^{2}$$

For the decay of an unpolarized particle of mass *M* into two particles (in the CM frame  $\vec{p}'_1 = -\vec{p}'_2$ ):

$$\mathrm{d}\Gamma = \frac{1}{32\pi^2} \frac{|\vec{p}_1'|}{M^2} |\mathcal{M}|^2 \mathrm{d}\Omega$$

where  $\Omega$  is the solid angle with  $d\Omega = d\phi d\cos\theta$ 

## Cross section and total width for a final state with 2 particles

Cross section  $2 \rightarrow 2$  reaction with four massless particles:

$$\mathrm{d}\sigma = \frac{1}{64\pi^2} \frac{|\mathcal{M}|^2}{\mathrm{s}} \mathrm{d}\Omega$$

Width of a massive particle ( $\sqrt{s} = M$ ) decaying to two massless particles in the final state  $|\vec{p}'_1| = \sqrt{s}/2$ :

$$\mathrm{d}\Gamma = \frac{1}{64\pi^2} \frac{|\mathcal{M}|^2}{\sqrt{s}} \mathrm{d}\Omega$$

Study of the phase space in Problem Solving with applications to 2-body and 3-body reactions.

## Particles: plane waves ψ(x, t) ~ exp − im₀t m₀ → m₀ − iΓ/2

$$\begin{array}{rcl} N(t) &=& N_0 \cdot \exp{-t/\tau} \\ \Gamma &=& 1/\tau \end{array}$$

Fourrier transform to momentum space:

$$egin{array}{rcl} A & \sim & rac{1}{(m-m_0)+i\Gamma/2} \ |A|^2 & \sim & rac{1}{(m-m_0)^2+\Gamma^2/4} \end{array}$$

Γ: full width half maximum Similarity to classical mechanics: resonance

イロト イ理ト イヨト イヨト

## • Particles: plane waves $\psi(\vec{x}, t) \sim \exp -im_0 t$

•  $m_0 \rightarrow m_0 - i\Gamma/2$ 

 $N(t) = N_0 \cdot \exp{-t/\tau}$  $\Gamma = 1/\tau$ 

Fourrier transform to momentum space:

$$A \sim \frac{1}{(m-m_0)+i\Gamma/2} |A|^2 \sim \frac{1}{(m-m_0)^2+\Gamma^2/4}$$

Γ: full width half maximum Similarity to classical mechanics: resonance

イロト イ理ト イヨト イヨト

3

• Particles: plane waves  

$$\psi(\vec{x}, t) \sim \exp{-im_0 t}$$
  
•  $m_0 \rightarrow m_0 - i\Gamma/2$   
 $N(t) = N_0 \cdot \exp{-t/\tau}$   
 $\Gamma = 1/\tau$ 

Fourrier transform to momentum space:

$$egin{array}{rcl} A & \sim & rac{1}{(m-m_0)+i\Gamma/2} \ |A|^2 & \sim & rac{1}{(m-m_0)^2+\Gamma^2/4} \end{array}$$

Γ: full width half maximum Similarity to classical mechanics: resonance

-큰

• Particles: plane waves  

$$\psi(\vec{x}, t) \sim \exp{-im_0 t}$$
  
•  $m_0 \rightarrow m_0 - i\Gamma/2$   
 $N(t) = N_0 \cdot \exp{-t/\tau}$   
 $\Gamma = 1/\tau$ 

Fourrier transform to momentum space:

$$\begin{array}{rcl} A & \sim & \frac{1}{(m-m_0)+i\Gamma/2} \\ |A|^2 & \sim & \frac{1}{(m-m_0)^2+\Gamma^2/4} \end{array}$$

Γ: full width half maximum Similarity to classical mechanics: resonance

イロト イポト イヨト イヨト

-2

• Particles: plane waves  

$$\psi(\vec{x}, t) \sim \exp{-im_0 t}$$
  
•  $m_0 \rightarrow m_0 - i\Gamma/2$   
 $N(t) = N_0 \cdot \exp{-t/\tau}$   
 $\Gamma = 1/\tau$ 

Fourrier transform to momentum space:

$$\begin{array}{rcl} A & \sim & \frac{1}{(m-m_{0})+i\Gamma/2} \\ |A|^{2} & \sim & \frac{1}{(m-m_{0})^{2}+\Gamma^{2}/4} \end{array}$$

Γ: full width half maximum Similarity to classical mechanics: resonance

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

• Particles: plane waves  $\psi(\vec{x}, t) \sim \exp -im_0 t$ 

• 
$$m_0 \rightarrow m_0 - i\Gamma/2$$
  
 $N(t) = N_0 \cdot \exp(-t/\tau)$   
 $\Gamma = 1/\tau$ 

Fourrier transform to momentum space:

$$\begin{array}{rcl} A & \sim & \frac{1}{(m-m_{0})+i\Gamma/2} \\ |A|^{2} & \sim & \frac{1}{(m-m_{0})^{2}+\Gamma^{2}/4} \end{array}$$

Γ: full width half maximum Similarity to classical mechanics: resonance



lifetime too short to be measured directly: measure mass via decay products  $q\bar{q}$  cross section measurement

イロン イロン イヨン イヨン

## • Particles: plane waves $\psi(\vec{x}, t) \sim \exp -im_0 t$

• 
$$m_0 \rightarrow m_0 - i\Gamma/2$$
  
 $N(t) = N_0 \cdot \exp(-t/\tau)$   
 $\Gamma = 1/\tau$ 

Fourrier transform to momentum space:

$$egin{array}{rcl} A & \sim & rac{1}{(m-m_0)+i\Gamma/2} \ |A|^2 & \sim & rac{1}{(m-m_0)^2+\Gamma^2/4} \end{array}$$

Γ: full width half maximum Similarity to classical mechanics: resonance

## Example $pp \rightarrow H \rightarrow \gamma \gamma$



Beware: the width here has nothing to do with  $\Gamma \sim 5 MeV!$ The experimental resolution is the origin (error propagation):

$$m_H = \sqrt{(\mathbf{p}_1^{\gamma} + \mathbf{p}_2^{\gamma})^2} \\ = \sqrt{2E_1^{\gamma}E_2^{\gamma}(1 - \cos\theta)}$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Suppose that we have two (and exactly two) possible decays for the particle *a*:

| а | $\rightarrow$ | b + c |
|---|---------------|-------|
| а | $\rightarrow$ | d + e |

then:

$$\Gamma = \Gamma_{bc} + \Gamma_{de}$$

If a particle of a given mass can decay to more final states than another one with the same mass, it will have a shorter lifetime

Branching ratio

 $\mathcal{B}(a \to b + c) = \Gamma_{bc}/\Gamma$ The branching ratio: Of *N* decays of particle *a*, a fraction  $\mathcal{B}$  will be the final state with the particles *b* and *c*.  $\Gamma_{bc}$  is a partial width of particle *a*.

Remember: for the calculation  $\Gamma$  ALL final states (partial widths) have to be considered.

< ロ > < 同 > < 回 > < 回 > < 回 >

What do we know?

- Names of particles
- Kinematic description of interactions
- Definition of cross section and decay width

What is next?

- Electromagnetic interactions (QED)
- Strong interaction (QCD)
- Electroweak interactions

< □ > < □ > < □ > < □ > < </p>