Sources X Compton compactes intenses : état de l'art

Marie Jacquet

Laboratoire de l'Accélérateur Linéaire IN2P3,CNRS

Séminaire LAL, 20 mars 2012

- 1. Contexte
- 2. Sources Compton inverse (ICS)
- 3. Caractéristiques/Spécifications d'une ICS compacte
 → Illustration par quelques projets
- 4. Potentiel d'applications

Marie Jacquet

1. Contexte

- 2. Sources Compton inverse (ICS)
- 3. Caractéristiques/Spécifications d'une ICS compacte
 → Illustration par quelques projets
- 4. Potentiel d'applications

Pourquoi une source X "compacte" ?

Dans beaucoup de domaines scientifiques

les sources synchrotron sont actuellement les seules machines en terme de brillance capable de mener à bien les analyses et recherches les plus ambitieuses.

Vincent van Gogh "Un coin d'herbe" (1887) au synchrotron de DESY

Radiographie X & Réflectographie IR conventionnelles

Transmission X

Réflectographie IR

Analyses au synchrotron de DESY

Fluorescence X (38.5 KeV) \rightarrow Identification des pigments

Vermillon

Antimoine

Absorption au seuil K d'un élément pour identifier précisément les composés chimiques (couleurs)

Vincent van Gogh "Un coin d'herbe" (1887) au synchrotron de DESY

Reconstruction colorée

Oeuvre peinte quelques années avant

Paléontologie : morceaux d'ambre (100 MA avant JC) à l'ESRF

(Microscopy & Microanalysis, 14, 2008, 251-259)

Morceaux d'ambre (100 MA avant JC)

Analyses à l'ESRF

X monochromatiques + cohérence transverse

→ éléments piégés dans l'ambre

Paléontologie : morceaux d'ambre (100 MA avant JC) à l'ESRF

(Microscopy & Microanalysis, 14, 2008, 251-259)

Morceaux d'ambre

Reconstruction 3D

Pourquoi une source X "compacte" ?

Dans beaucoup de domaines scientifiques

les sources synchrotron sont actuellement les seules machines en terme de brillance capable de mener à bien les analyses et recherches les plus ambitieuses.

Sources synchrotron :

- peu "pratique" pour certaines applications
- temps d'accès limité,
- trop chères pour être reproduites suffisamment alors que les besoins dans beaucoup de domaines scientifiques sont importants.

Avec des sources compactes :

Les méthodes actuellement utilisées aux synchrotrons, (la diffraction, l'absorption, la diffusion, l'imagerie, la spectroscopie...) pourraient être largement développées dans un environnement de la taille d'un laboratoire (hôpitaux, labos, musées).

Les sources X compactes aujourd'hui

Tubes rayons X :

Les plus performants sont les anodes tournantes

- $\sim 10^{10}$ ph/sec , polychromatique
- \simeq 200 μm taille faisceau

Sources plasma :

Pulses ultra-courts ~ fs, mais très bas flux.

→ Ces sources ne permettent pas d'exploiter des techniques utilisées aujourd'hui aux synchrotrons.

Les sources X compactes aujourd'hui et demain

Tubes rayons X :

Les plus performants sont les anodes tournantes

- $\sim 10^{10}$ ph/sec , polychromatique
- \sim 200 μ m taille faisceau

Sources plasma :

Pulses ultra-courts ~ fs, mais très bas flux.

→ Ces sources ne permettent pas d'exploiter des techniques utilisées aujourd'hui aux synchrotrons.

Sources Compton Inverse (ICS) :

- → Compacité (surface ~ 100 m²)
 - → Intégration dans hôpitaux, labos, musées
- \rightarrow Haut flux
- → Faisceau de haute qualité
- → Bas coût (comparé aux synchrotrons)

ICS compactes

Champs d'application

- Science biomédicale
- Préservation de l'héritage culturel
- Science des matériaux, industrie
- → Environnement de travail pratique et accessible
 (= environnement de laboratoire)
- → Plus de contraintes de coût ou de dangers liés au transport dans les synchrotrons d'œuvres d'art précieuses ou de cristaux dans des conteneurs refroidis à l'azote liquide.
- → Combler le grand manque de sources intenses de laboratoire.

1. Contexte

2. Sources Compton inverse (ICS)

- 3. Caractéristiques/Spécifications d'une ICS compacte
 → Illustration par quelques projets
- 4. Potentiel d'applications

Diffusion Compton → diffusion photon / particule chargée

Diffusion Thomson / Compton

- → L'électron est initialement au repos
- "Régime Thomson / Compton (Klein-Nishina)"
- → E_{ph} photon diminue (ou inchangée si E_{ph} << m_e)
 Une partie de son énergie est transmise à l'électron

Diffusion Compton Inverse

→ L'électron n'est plus au repos

Séminaire LAL, 20 mars 2012

Séminaire LAL, 20 mars 2012

Sources Compton Inverse : principe

Faisceaux Compton Inverse : distributions spectrale / angulaire

- **1. Contexte**
- 2. Sources Compton inverse (ICS)
- 3. Caractéristiques/Spécifications d'une ICS compacte
 → Illustration par quelques projets
- 4. Potentiel d'applications

Caractéristiques/spécifications d'une ICS compacte haut flux

- Compacité (surface ~ 100 m²)
 - → Intégration dans un hôpital, un labo, un musée
 - **Energie des X accordable**
 - Polarisation des X controlée
 - **Flux** ~ 10¹² 10¹⁴ ph / sec
 - **Brillance** $\sim 10^{12} 10^{15}$ ph / sec / mm² / 0.1% bw / mrad²
 - Durée des pulses ~ ps , sub-ps
 - Cohérence transverse

$$E_X \sim E_e^2 E_{ph}$$

L'énergie maximum des X (Compton edge) peut "facilement" être accordée en changeant l'énergie des électrons et/ou du laser.

Contrôle de la polarisation des X

- La polarisation des X est déterminée par celle du laser.
- Le degré de polarisation est maximum au Compton edge (sur l'axe) où les photons diffusés retiennent la polarisation initiale du laser.

Intensité et qualité du faisceau d'X

Cohérence transverse

La qualité du faisceau d'X dépend

- des caractéristiques du faisceau d'électrons et du laser,
- est essentiellemnent dominée par la cinématique des électrons

Flux

Flux =
$$N_x / \sec = L \sigma_{compt}$$

6.6 10⁻²⁹ m²
 $L \sim \frac{N_e N_\gamma f_{rep}}{2\pi (\sigma_e^2 + \sigma_\gamma^2)}$ (collisions frontales)
 $N_e \rightarrow nb d'e^c par bunch$
 $N_\gamma \rightarrow nb de photons par pulse$
 $f_{rep} \rightarrow fréquence de répétition de l'interaction$
 $\sigma_e \rightarrow taille transverse des bunches d'e^c$

 $\sigma_{\gamma} \rightarrow$ waist du laser (~ taille transverse à l'IP)

Haut flux \rightarrow bcp de photons, bcp d'électrons, petites tailles de faisceaux, grande f_{rep}

Flux \rightarrow augmenter $f_{rep} \rightarrow 2$ schémas de base

Brillance

(= la qualité du faisceau)

$$Br_{x} \sim \frac{Flux}{(mm^{2} \text{ source}) (dE_{x}/E_{x}) (mrad)^{2}}$$

 $(dE_x/E_x = largeur de bande spectrale des X)$

$$\frac{dE_x/E_x}{Divergence} \rightarrow \begin{bmatrix} Dispersion en énergie \\ Divergence \end{bmatrix} du laser et du faisceau d'e^-$$

Laser :

Divergence
$$\rightarrow \quad \theta_{ph} + d\theta_{ph} \rightarrow dE_x / E_x \sim \frac{1}{4} (d\theta_{ph})^2 \sim \frac{1}{4} \left(\frac{\lambda}{\pi w}\right)^2$$
 (frontales)
 $\lambda = 1 \mu m$, $w = 40 \mu m \rightarrow dE_x / E_x \sim 10^{-5}$

Laser :

Dispersion en énergie
$$\rightarrow$$
 $E_{ph} + dE_{ph} \rightarrow dE_x / E_x \sim dE_{ph} / E_{ph}$
Laser de haute qualité $\rightarrow dE_x / E_x \sim 10^{-3}$

Divergence
$$\rightarrow \quad \theta_{ph} + d\theta_{ph} \rightarrow \quad dE_x / E_x \sim \frac{1}{4} (d\theta_{ph})^2 \sim \frac{1}{4} \left(\frac{\lambda}{\pi w}\right)^2$$
 (frontales)
 $\lambda = 1\mu m$, $w = 40 \ \mu m \rightarrow \quad dE_x / E_x \sim 10^{-5}$

Electrons :

Dispersion en énergie \rightarrow	$\gamma + d\gamma \rightarrow$	dE_x / E_x	~ 4	2 dγ/γ
	e ⁻ de haute d	qualité	\rightarrow	$dE_x / E_x \sim 10^{-3}$

Divergence
$$\rightarrow \sigma_{e}' \rightarrow dE_{x}/E_{x} \sim (\gamma \sigma_{e}')^{2}$$

Emittance :

 $\begin{array}{l} \epsilon \ _{\sim} \ \sigma_{e} \ \sigma_{e}' \ (\text{m.rad}) \ _{\sim} \ (\ \text{taille transverse} \) \ . \ (\ \text{divergence} \) \qquad \rightarrow \ dE_{_{X}} / E_{_{X}} \ \sim \ (\ \epsilon_{_{N}} / \sigma_{_{e}} \)^{2} \\ \epsilon_{_{N}} \ = \ \gamma \epsilon \quad (\ \text{accélérateurs standards} \ : \ \epsilon_{_{N} \ \sim} \ \text{qq} \ 10^{\text{-6}} \) \end{array}$

Paquets d'e⁻ 20
$$\mu$$
m • $\varepsilon_N \sim 1.10^{-6}$ m.rad $\rightarrow dE_x / E_x \sim 2.5 10^{-3}$
• $\varepsilon_N \sim 3.10^{-6}$ m.rad $\rightarrow dE_x / E_x \sim 2.2 10^{-2}$

Electrons :

Dispersion en énergie \rightarrow $\gamma + d\gamma \rightarrow$ $dE_x / E_x \sim 2 d\gamma / \gamma$ e^- de haute qualité \rightarrow $dE_x / E_x \sim 10^{-3}$

Divergence
$$\rightarrow \sigma_{e}' \rightarrow dE_{x}/E_{x} \sim (\gamma \sigma_{e}')^{2}$$

Emittance :
 $\epsilon \sim \sigma_{e} \sigma_{e}' \text{ (m.rad)} \sim \text{ (taille transverse). (divergence)} \rightarrow dE_{x}/E_{x} \sim (\epsilon_{N}/\sigma_{e})^{2}$
 $\epsilon_{N} = \gamma \epsilon \text{ (accélérateurs standards : } \epsilon_{N} \sim qq \ 10^{-6}\text{)}$
Paquets d'e⁻ 20 µm $\epsilon_{N} \sim 1.10^{-6} \text{ m.rad} \rightarrow dE_{x}/E_{x} \sim 2.5 \ 10^{-3}$
 $\epsilon_{N} \sim 3.10^{-6} \text{ m.rad} \rightarrow dE_{x}/E_{x} \sim 2.2 \ 10^{-2}$

L'émittance du faisceau d'électron est un paramètre crucial pour la brillance

→ Petites tailles de faisceaux pour produire un haut Flux

→ MAIS pas aux dépends de la divergence pour ne pas diminuer la brillance

Flux spectral (vs) taille faisceau d'e

Brillance

(spectre sur l'axe)

- collisions frontales
- e⁻ 50 MeV
- laser λ = 1030 nm

A émittance fixée :

Diminuer la taille transverse des bunchs d'e-

 \rightarrow augmentation du flux

MAIS

→ Augmente aussi la divergence du faisceau d'e

 \rightarrow Elargissement de la distribution spectrale des X

Marie Jacquet

Spectre angulaire : dépendence (vs) émittance

- \rightarrow La brillance du faisceau d'X est la convolution entre
 - le spectre théorique venant de la cinématique du processus Compton d'un photon X généré par un électron parfait
 - et l'émittance du faisceau d'électrons

Durée des pulses

Cohérence transverse

Pour que les fronts d'onde A et B arrivent en phase

 $\rightarrow \ell \sim \lambda$

$$\begin{array}{ccc} d_{tc} \sim \ell / \Delta \theta \\ \Delta \theta \sim \sigma / L \end{array} \rightarrow \quad d_{tc} \sim \frac{\lambda L}{\sigma} \end{array}$$

$$d_{tc} \sim \frac{L}{\sigma E_x (KeV)}$$
 (1.23 10⁻⁹)

• X de 40 KeV

• 20 m source - échantillon

 \rightarrow $\sigma_{\sim} 20 \,\mu m \rightarrow d_{tc} \sim 30 \,\mu m$

Ordres de grandeurs

Flux ~
$$\frac{N_e N_\gamma f_{rep} \sigma_{compt}}{2\pi (\sigma_e^2 + \sigma_\gamma^2)}$$

$$Br_{X} \sim \frac{Flux \cdot \gamma^{2}}{\varepsilon_{N}^{2}}$$

Typiquement, pour obtenir - Flux $\sim 10^{12}$ - 10^{14} - Br $\sim 10^{12} - 10^{15}$ - Cohérence transverse $\begin{bmatrix} N_e \rightarrow 0.01 - 1 \text{ nC} \\ \varepsilon_N \rightarrow 0.5 - 10 \text{ mm.mrad} \\ \sigma_e \rightarrow 5 - 100 \text{ }\mu\text{m} \end{bmatrix}$ N_γ → > 10 mJ / pulse σ_{γ} → 10 - 100 µm

Ordres de grandeurs

Machines ICS (flux < 10¹⁰ ph/sec)

Experiment		Type	Energy	ph/sec	Source size	Pulse
*JAEA	(Kyoto, Japan)	Microtron	$0.4 \mathrm{MeV}$	10^2 (10 Hz)	$80~\mu{ m m}$	$10 \mathrm{~ps}$
*SPring-8	(Japan)	Ring	$10 {\rm MeV}$	10^{3}		
*TERAS/AIST	(AIST, Japan)	Ring	1-40 MeV	10^{4}	2 mm	
*Soft Xrays	(Univ. of Waseda)	Linac	$0.2\text{-}0.5~\mathrm{KeV}$	10^4 (5 Hz)	$200~\mu{ m m}$	10 ps
$+_{\rm CXS}$	(SLAC, Standford)	Linac	$20-85 {\rm ~KeV}$		$95~\mu{ m m}$	$_{\rm ps}$
*LSS	(BNL/ATF, Brookhaven)	Linac	7 KeV	10^5 (0.03 Hz)	$40 \ \mu m$	4 ps
*LUCX	(KEK, Japan)	Linac	33 KeV	10^5 (12.5 Hz)	$40 \ \mu m$	14 ps
*TTX prelim.	(Tsinghua)	Linac	4.6 KeV	10^5 (5 Hz)	$800~\mu{ m m}$	6 ns
*FESTA/AIST	(Tsukuba, Japan)	Linac	2.3-4.6 KeV	10^{5-6} (10 Hz)	$100 \ \mu m$	0.3-3 ps
*LCS/AIST	(AIST, Japan)	Linac	$20-40 {\rm ~KeV}$	10 ⁶⁷ (10 Hz)	$40~\mu{ m m}$	0.2-3 ps
T-REX/MEGa-ray	(LLNL, Livermore)	Linac	0.1-0.9 MeV	10^{6} (10 Hz)	$36 \ \mu m$	16 ps
*PLEIADES	(LLNL, Livermore)	Linac	40-140 KeV	10^8 (10 Hz)	$30~\mu{ m m}$	0.3 - 5 ps
*Vanderbilt/MXI	(Tennessee)	Linac	15-50 KeV	10 ⁸ (0.01 Hz)	$30 \ \mu m$	$10 \mathrm{~ps}$
*COBALD	(Daresbury)	ERLinac	15-30 KeV	10^{7} (10 Hz)	$35~\mu m$	0.1-0.4 ps
TTX	(Tsinghua)	Linac	$60 { m KeV}$	10^8 (10 Hz)	$60~\mu{ m m}$	1 ps
⁺ Univ. Tokyo	(UTNL, Japan)	Linac	10-40 KeV	10 ⁹ (12.5 Hz)	$100 \ \mu m$	10 ns
+Multi $-$ LCS/AIST	(AIST, Japan)	Linac	10-40 KeV	10^9 (10 Hz)	$40~\mu{ m m}$	0.2-3 ps
+PLASMON X	(INFN, Italy)	Linac	$20500~\mathrm{KeV}$	10 ¹⁰ (10 Hz)	$10 \ \mu m$	20 ps
MXI	(MXI System)	Linac	8-100 KeV	10 ¹⁰ (10 Hz)		

* Machines in operation

+ Machines in construction

mais :

La faisabilité du processus de production de rayons X par effet Compton inverse a déjà été démontrée par des expériences actuellement en fonctionnement

Flux < 10¹⁰ ph/sec et souvent installations de grande taille

projets a ics	s compactes (f	lux > 1011 p	h/sec)			
Experiment		Type	Energy	ph/sec	Source size	Pulse
* LTI	(Lycean Tech.)	Ring	10-20 KeV	10^{11} (80 MHz)	$50~\mu{ m m}$	
TTX	(Tsinghua)	Ring	20-80 KeV	10^{12} (25 MHz)	$50~\mu m$	10 ps
LEXG	(Moscow, Russia)	Ring	33 KeV	10 ¹²	20 µm	10 ps
+ NESTOR	(NCS KIPT, Kharkov)	Ring	10-900 KeV	10^{13} (20 MHz)	$80 \ \mu m$	10 ps
+ ThomX	(Orsay, LAL)	Ring	20-90 KeV	10^{13} (20 MHz)	70 μ m	10 ps
+ Quantum Beam	(KEK/STF, Japan)	Linac (SC)	$\sim~35~{ m KeV}$	10 ¹³ (160 MHz)	$10 \ \mu m$	40 fs
+ ICS/CSR	(KEK/cERL, Japan)	Linac (ERL)	0.04-4 KeV	10 ¹³⁻¹⁴ (1.3 GHz)		0.1-1 ps
+ ICS/laser	(KEK/cERL, Japan)	Linac (ERL)	< 115 KeV	10 ¹³ (130 MHz)	30 µm	3 ps
MIT project	(MIT, Cambridge)	Linac (SC)	3-30 KeV	10 ¹⁴ (100 MHz)	2 µm	$1 \mathrm{\ ps}$
+ IGS	(RadiaBeam, California)	Linac (SC)	10.8 MeV	1014	7.4 μ m	10 ps

• D - - 11

> * Machines in operation + Machines in construction

Projets a ics	b compactes (f	10^{11} p	n/sec)			
Experiment		Type	Energy	ph/sec	Source size	Pulse
* LTI	(Lycean Tech.)	Ring	10-20 KeV	10^{11} (80 MHz)	$50~\mu{ m m}$	
TTX	(Tsinghua)	Ring	20-80 KeV	10^{12} (25 MHz)	$50~\mu m$	10 ps
LEXG	(Moscow, Russia)	Ring	33 KeV	10 ¹²	20 µm	10 ps
+ NESTOR	(NCS KIPT, Kharkov)	Ring	10-900 KeV	10^{13} (20 MHz)	$80 \ \mu m$	10 ps
+ ThomX	(Orsay, LAL)	Ring	20-90 KeV	10^{13} (20 MHz)	$70~\mu m$	10 ps
+ Quantum Beam	(KEK/STF, Japan)	Linac (SC)	$\sim~35~{ m KeV}$	10 ¹³ (160 MHz)	$10 \ \mu m$	40 fs
+ ICS/CSR	(KEK/cERL, Japan)	Linac (ERL)	0.04-4 KeV	10 ¹³⁻¹⁴ (1.3 GHz)		0.1-1 ps
+ ICS/laser	(KEK/cERL, Japan)	Linac (ERL)	< 115 KeV	10 ¹³ (130 MHz)	$30 \ \mu m$	3 ps
MIT project	(MIT, Cambridge)	Linac (SC)	3-30 KeV	10 ¹⁴ (100 MHz)	2 µm	$1 \mathrm{ps}$
+ IGS	(RadiaBeam, California)	Linac (SC)	10.8 MeV	1014	7.4 μm	10 ps

10

4011

* Machines in operation + Machines in construction

Duciate d'ICS compact

Anneau de stockage : ThomX design

- 1 nc / bunch , 50 Hz inj. freq.
- Anneau, 20 MHz frep.
- σ_e ~ 70 μm
- $\varepsilon_{\rm N} \simeq 2-20$ mm.mrad
- $\tau_e \sim 10-20 \text{ ps}$

Système Laser / Cavité :

- Laser ~ 1W
- Amplification par fibres optiques (100 W) 2-3 μJ/pulse
- Amplification cavité optique gain 10000
- 1 MW stocké à l'intérieur de la cavité (20-30 mJ/pulse)

Anneau de stockage : ThomX design

- 1 nc / bunch , 50 Hz inj. freq.
- Anneau, 20 MHz frep.
- σ_e ~ 70 μm
- $\epsilon_{\rm N} \simeq 2-20$ mm.mrad
- $\tau_e \sim 10\text{--}20 \text{ ps}$

Flux	10 ¹³
Brillance	1011
Pulse	10-20 ps
Source	70 µm

Système Laser / Cavité :

- Laser ~ 1W
- Amplification par fibres optiques (100 W) 2-3 μJ/pulse
- Amplification cavité optique gain 10000
- 1 MW stocké à l'intérieur de la cavité (20-30 mJ/pulse)

Linac : MIT design (supra)

- 0.01 nc / bunch , 100 MHz inj. freq.
- σ_e ~ 2 μm
- $\epsilon_{N} \simeq 0.1 \text{ mm.mrad}$
- $\tau_e \simeq 0.1 \text{ ps}$

Système Laser / Cavity :

- Laser ~ 10W
- Amplification par fibres (cryogenic) (1 KW) 10 μJ/pulse
- Amplification cavité optique gain 1000
- 1 MW stocké à l'intérieur de la cavité (10 mJ/pulse)

IIIii

Linac : MIT design (supra)

- 0.01 nc / bunch , 100 MHz inj. freq.
- σ_e ~ 2 μm
- $\epsilon_{N} \simeq 0.1 \text{ mm.mrad}$
- $\tau_e \simeq 0.1 \text{ ps}$

Système Laser /Cavity :

- Laser ~ 10W
- Amplification par fibres (cryogenic) (1 KW) 10 μJ/pulse
- Amplification cavité optique gain 1000
- 1 MW stocké à l'intérieur de la cavité (10 mJ/pulse)

IIIii

Linac + ERL design (supra)

<u>Collisions frontales</u> (2-3 µJ/pulse, FP gain 3000)

- 0.01 nC / bunch , 130 MHz inj. freq.
- σ_e ~ 30 μm
- $\epsilon_{\rm N} \simeq 0.1$ mm.mrad
- τ_e ~ 3 ps

Flux	10 ¹³
Brillance	10 ¹⁵
Pulse	3 ps
Source	30 µm

<u>90° collisions</u> (10 mJ/pulse)

- 0.1 nc / bunch , 1 KHz rep. freq.
- $\sigma_e \sim 20 \, \mu m$
- $\epsilon_{N} \sim 1 \text{ mm.mrad}$
- $\tau_e \sim 1 \text{ ps}$

Flux	107
Brillance	10 ⁷
Pulse	0.1 ps
Source	20 µm

Machines type Linac \rightarrow supra \rightarrow Principaux challenges techniques

- **Construction/validation d'un canon e** supra fournissant :
 - une émittance extrêmement petite
 - une très haute fréquence de répétition (~ 100 MHz 1 GHz)
 - des pulses ultra-courts (~ 100 fs)

Construction/validatation du système d'amplification des pulses laser par fibre refroidi (~ 1kW puissance moyenne)

Difficultés liées à la radioprotection :

MIT : 0.01 nc / bunch , 100 MHz, 40 MeV \rightarrow 40 KW (ThomX : 1 nc / bunch , 50 Hz, 50 MeV \rightarrow 2.5 W)

- **1. Contexte**
- 2. Sources Compton inverse (ICS)
- 3. Caractéristiques/Spécifications d'une ICS compacte
 → Illustration par quelques projets
- 4. Potentiel d'applications

Potentiel d'applications

- Science biomédicale
- Préservation de l'héritage culturel
- Science des matériaux, industrie
 - → Des spécifications du faisceau d'X sont requises pour une technique d'analyse donnée sur un échantillon donné
 - Flux sur l'objet (œuvre d'art, cristaux, animaux ...)
 - bw ∆E/E
 - Cohérence transverse
 - Durée des pulses

Techniques d'analyse 1. Imagerie / Tomographie

2. Spectroscopie (diffraction)

(Phénomènes d'absorption, diffusion, fluorescence)

Méthodes non destructives

1. Imagerie

Interactions onde/matière décrites par l'indice de réfraction

Radio conventionnelle

<u>Tubes X</u>

- faisceau polychromatique
- x-ray < 15 KeV absorbés par la peau et les tissus \rightarrow dose reçue augmentée
- x-ray haute énergie \rightarrow diffusions \rightarrow qualité de l'image réduite

Contraste d'absorption

Radio conventionnelle

Sources ICS

- faisceau "monochromatisable"
- énergie accordable \rightarrow réduction de la dose reçue et qualité de l'image \uparrow

Images obtenues à partir d'un seul pulse de 8 psec (MXI / Vanderbilt)

- Tissus mous bien visible
- Os opaque

- Os transparents aux rayons X, révélant le cortex
- Tissus mous moins distincts

Contraste d'absorption

K-edge absorption

Imagerie au seuil K d'un élement

(ou agent de contraste) Iode : 33.2 KeV Gadolinium : 50 KeV

 \rightarrow La différence des 2 augmente le contraste

K-edge ESRF

Marie Jacquet

Séminaire LAL, 20 mars 2012

Contraste d'absorption

Magnification

 \rightarrow Faisceau divergent

Source de taille finie \rightarrow flou

Contraste de phase

Interactions onde/matière décrites par l'indice de réfraction

Conditions pour détecter le maximum (frange) principal

- $\Delta z_M / z_M \sim \Delta \lambda / \lambda \ll 1$
- $(r_0 / \rho_0) \sigma \ll z_M$

Phase-contrast-imaging au synchrotron ELETTRA

(image d'un mimosa)

[Phys. World 11, 1998, 28]

Contraste de phase

Phase-contrast-imaging au synchrotron ELETTRA

(image d'un mimosa)

Phase-contrast imaging avec l'ICS Lycean Tech.

(R. Ruth, en fonctionnement depuis 2006)

standard absorption

phase-contrast

13.5 KeV 10^9 ph/sec $\Delta E/E = 3\%$ $\sigma = 165 \ \mu m$

dark field

[Synch. Rad. 16, 2009, 43-47]

2. Spectroscopie

Analyses structurelles 3D

Spectroscopie

Structure 3D de macro-molécules (protéines)

Connaissance de la structure d'une protéine \rightarrow accéder à sa fonction dans la cellule

Première détermination de la structure 3D d'une protéine à l'ICS Lycean Tech.

5.10⁶ ph/sec Faisceau : 120 μm sur le cristal

Protéine MytuGCSPH (taille du cristal : 250 X 250 X 100 μ m)

Fig. 6 Structure and electron density of MytuGCSPH. a Overview of the structure for MytuGCSPH in ribbon representation. b Electron density from the MytuGCSPH CLS data set at 2.0 Å resolution centered around Trp 14

 $\Delta E/E = 1.4\%$

J. Struct. Funct. Gen. 11, 2010, 91-100]

Spectroscopie

Expériences "Pompe-Sonde"

Etudes de systèmes dynamiques

- Visualisation en temps réel de processus atomiques/moléculaires
- Exp. "pompe-sonde"
 Actuellement : résolution ~ 100 ps)

Visualisation "en direct" de l'interaction entre une protéine et un ligand (ESRF, Résolutions 2Å, 100 ps)

[Science 300, 1944, 2003]

- Echelle de temps des mvts chimie moléculaire
 - → 10 -100 fs
 - → ICS compactes pulses ultra-courts, LEL

Conclusion

Les ICS compactes combinent - Compacité

- Haut flux, haute brillance
- Energie accordable
- Cohérence
- Pulses ultra-courts

→ Brillance ~ 10¹¹⁻¹² (~ synch 1^{ère} gén.)

... et de demain \rightarrow Machines (canons) supra

- → Brillance ~ 10¹⁵ (~ synch 2^{ème} gén.)
- Ces sources vont ouvrir une nouvelle approche dans la recherche et le développement de techniques et d'applications jusque-là réservées aux synchrotrons.

Conclusion

Imagerie /Tomographie (conventionnelle, K-edge, magnification, contraste de phase)

- Médecine → dépistage, thérapie
- Héritage culturel
 - → Informations sur les techniques utilisées, sur l'état et sur l'histoire d'une œuvre, peinture, objet archéologique ...
 - → Caractérisation des surfaces d'objets et de leur structure interne
 (→ restauration)

Spectroscopie (fluorescence, diffraction matériaux cristallisés, poudres ...)

- **Biomédical** → structures des protéines, nouveaux médicaments ...
- Minéralogie, géologie, mé talurgie, chimie ...
- **Expériences "pompe-sonde"** (pulses ultra-courts ~ 10-100 fs)
 - \rightarrow Visualisation en temps réel de processus atomiques/moléculaires

Avec les ICS compactes : utilisation de ces techniques ambitieuses dans des labos, des hopitaux, des musées.

Merci de votre attention

Séminaire LAL, 20 mars 2012