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1. What to expect from GigaZ and m; @ the LC

(Sad) Reality: LC will start in 2020 earliest

World of High Energy Physics in the year 2020:

Both LHC detectors will have accumulated ~ 300fb—1

Initial LHC physics goals are accomplished:

— state compatible with a Higgs found
corresponding couplings measured to 10—30%
— SUSY-like signatures observed (if realized at the EW scale)

(or not ...7?77?
— EXxtra dimensions or ... -like signatures observed
(or not ...7?77?

LHC may await luminosity upgrade

What can LC/GigaZ add?
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Important test for any model:
Comparison of observables with theory:

Precision data: T heory:
My, sin? Ogs, ay, < | SM, MSSM , ...

Y

Test of theory at quantum level: Sensitivity to loop corrections, e.g. X

SM: limits on My

Very high accuracy of measurements and theoretical predictions needed
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Important: three different types of errors:

Experimental error (= included in the figure):

— current error

— future expectations

= sets the scale, has to be matched by other errors

Theory error:

= error due to missing higher order corrections
— only estimates possible

— even more complicated for the future

Parametric error:

— current uncertainty in the prediction due to error in the input parameters
— future uncertainty

= focus on SM parameters

= derive information about (unknown) SUSY(?) parameters
(BSM parametric uncertainties highly model dependent)
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Precision observables: My, sin?ferr, My, (g9 —2)u, b physics, . ..

A) Theoretical prediction for My, in terms

of My, o, G, Ar:

MV2V< ——W>: 2 (144

loop corrections
Evaluate Ar from p decay = My,

One-loop result for My, in the SM:
[A. Sirlin '80] , [W. Marciano, A. Sirlin '80]

2

A7“1—I00|o — A« - ET://VVAP +  Arrem(Mpg)
M
~ 6% ~ 3.3% ~ 1%
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Precision observables: My, sin?ferr, My, (g9 —2)u, b physics, . ..

A) Theoretical prediction for My, in terms
of Mz, o, Gy, Ar:
M?2 T
Mz (1 - = 1+ Ar
W( M%) V2G, A
)

loop corrections

B) Effective mixing angle:
o 1 Re g/
Sin2 Heff = —|1— g‘f
4 |Qf| Re gy

Higher order contributions:

gxf/ —>g‘f/+Ag€, gff; —>9£+Ag£
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Experimental errors of the precision observables:

today | Tev./LHC | LC GigaZ
§sin? 0r(x10°) | 16 16 -~ 1.3
SMyy [MeV] 15 <15 10 7
dmy [GeV] 0.9 <1 0.2 0.1

Relevant SM parametric errors: 6(Aapsg) =5 x 1072, §M, = 2.1 MeV

5mt =2 5mt =1 (5mt = 0.1 5(Aahad) 5MZ
§sin? Oaer [107°] 6 3 0.3 1.8 1.4
A My [MeV] 12 6 1 1 2.5
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Current and future errors:

Current:

ém; P = 0.9 GeV,
sMEEY M~ 44 Mev,

Sme:  SME® ~ +£5.5 MeV,
§(Aanag) : M &~ +6.5 MeV,

SMyP ~ +£15 MeV,

Future:

SMIOY > +2 MeV,

Sme:  OMp; @~ +1 MeV,
5(Aozhad) : 5M‘[/)Vara ~ +t1 MeV,

(GigaZ]:  §My,° ~ £7 MeV,

§(Aapag) = 3.5 x 1074

. 2 ntheory
d sin eeff

. D
dsin Qeff

para

~+10x 107>

~+7 x 10°°

§sin?023@ ~ +£13 x 107>

- 2 nexp
dsin Geff

5 Sin2 etheory

eff

~+16 x 107°

> +2x107°

§sin? P2 ~ +0.4 x 1072

. 2 npara
dsin Gefr

§sin?o

exp
eff

~+1.8x 10>

~+1.3x 107>
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The top is guaranteed at the LC = sure physics case

Top-quark mass is a fundamental parameter of the electroweak theory

By far the largest quark mass,
largest mass of all known fundamental particles
Window to new physics?

LLarge coupling to the Higgs boson; physics of flavor;
prediction of m; from underlying theory?

Radiative corrections

— non-decoupling effects proportional to powers of my

= Need to know my; very precisely in order to have
sensitivity to effects of new physics

Sven Heinemeyer — “Top quark physics at lepton colliders”, Paris, 14.05.2012



New Physics

EWSB: just a heavy quark?

EWSB
\ anomalous /
" couplings /
~ Agw
Top Physics
't > Agep
dmy ~ 100 MeV
:
\

special role for t in EWSB?
strong constraint on any model

Precision physics:

Precision Physics

smy P leading parametric uncertainty
— could obscure new physics

SUSY': ms crucial input parameter
drives SSB/unification

Little Higgs: heavier top

Tevatron: “rough” measurements
of mass, couplings, BRs

LHC: the same (but better!) & more

LLC: high precision of everything
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What is the top mass?

Particle masses are not observables
one can only measure cross sections, decay rates, . ..

Additional problem for the top mass:
what is the mass of a colored object?

Top pole mass is not IR safe (affected by large long-distance
contributions), cannot be determined to better than O(Agcp)

Measurement of my:

e At Tevatron, LHC:
kinematic reconstruction, fit to invariant mass distribution
= “pole” mass

e At the LC:
mainly from threshold behavior = threshold mass = SAFE!
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2. Implications for the SM

Current status of knowledge: the Standard Model (SM)

= Last remaining free parameter: My
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Comparison of SM prediction of My, with direct measurements:

80.5 =
1102 &2 Y, _ —LEP2 and Tevatron
Ar = — 922 3\2,\, log (—H> ---- LEP1 and SLD
96 T4 ¢ My, 68% CL

general for EWPO:

My > M?%
A\ ~ lO
72 [ 7 (MW> +92Mv2v

-
-®
-®
-
-

m,, [GeV]
S
+

leading term: log(Mpy)

-
-
-
-------

first term ~ M7 with g5 80.3 -

155 175 195

m, [GeV]
[LEPEWWG '09]

= light Higgs boson preferred
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Global fit to all SM data:

[LEPEWWG '09]
29
= My = 94127 Gev

My < 152 GeV, 95% C.L.

Assumption for the fit:
SM incl. Higgs boson

= no confirmation of
Higgs mechanism

(5)
Mrﬂa -
— 0.027504+0.00033
=== 0.0274910.00010
== incl. low CF data

6 lll'l.'.l'IEI-;IE .

5_

4_

3 -

2_

1 -
1 LEP

0 exclulded
40

My gy = 152 Qe

LHC
excluded

m, [GeV]

200

= Higgs boson seems to be light, My < 160 GeV
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GigaZ: Improvement in the Blue Band plot:

o 10 1 e I B T 1 T _]
x — NS . ]
— N g _
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(note: artificially MM = 120 GeV)
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GigaZ: = Improvement in My determination:

MH
300

200

100

50

[GeV]

— sinzeeff

IVIW
now (1o errors)
mmmm GigaZ (10 errors)

SM@GigaZ

165 | | | | 1%0
m, [GeV]

1
175

180
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3. Implications for SUSY

e Precision observables to test the MSSM

e tOp Mass measurement for the MSSM Higgs sector

e discriminate between SM and MSSM

e |[imits on MSSM extensions
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Example: Prediction for My, in the SM and the MSSM

[S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '12]

8060 [ | [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
a . MSSM band:
I M, =123 .. 127 GeV. | SCan over
80.50 — h
SUSY masses
S
)
O, overlap:
= . .
= SM is MSSM-like
80.40 . .
MSSM is SM-like
SM band:
L — . . SM
80.30 |- MMy, =127 GeV MSSM, M, = 123..127 GeV variation of Mg
I SM, MSSM
Heinemeyer, Hollik, Stockinger, Weiglein, Zeune ’12
_I | | | | | | | | | | | | | | | | | | | | | | I_

168 170 172 174 176 178
m, [GeV]
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Example: Prediction for My, in the SM and the MSSM :

[S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '12]

8060 [ | I I I | I I I | I I I | I I I I I I I [
- experimental errors 68% CL.: ]
i LEP2/Tevatron: today i
- . MSSM band:
I M, =123 .. 127 GeV. | SCan over
80.50 — h
SUSY masses
S
)
O, overlap:
= : :
= SM is MSSM-like
80.40 . i
MSSM is SM-like
SM band:
L — . . SM
80.30 |- MMy, =127 GeV MSSM, M, = 123..127 GeV variation of My
i SM, MSSM
Heinemeyer, Hollik, Stockinger, Weiglein, Zeune ’12
_I | | | | | | | | | | | | | | | | | | | | | | I_

168 170 172 174 176 178
m, [GeV]
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Example: Prediction for My, in the SM and the MSSM :

[S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '12]

8060 [ | I I I | I I I | I I I | I I I I I I I [
- experimental errors 68% CL.: ]
LEP2/Tevatron: today i
- . MSSM band:
| — LHC: future |
M_=123..127 GeV, . sCan over
80.50 — h
SUSY masses
S
()
S overlap:
= . .
= SM is MSSM-like
80.40 . :
MSSM is SM-like
SM band:
B - . . SM
80.30 L SMIM,, =127 GeV MSSM, M, = 123.127 GeV variation of My

Heinemeyer, Hollik, Stockinger, Weiglein, Zeune ’12

SM, MSSM [

168 170

172 174 176 178
m, [GeV]
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Example: Prediction for My, in the SM and the MSSM :

[S.H., W. Hollik, D. Stockinger, G. Weiglein, L. Zeune '12]

80.60

80.50 —

M,, [GeV]

80.40

80.30

B
- experimental errors 68% CL.:

LEP2/Tevatron: today

— LHC: future

— |LC/GigaZ

M, =123 .. 127

| SM|M,, =127 GeV

MSSM, M, =123..127 GeV

SM, MSSM
Heinemeyer, Hollik, Stockinger, Weiglein, Zeune ’12

168 170 172 174 176 178
m, [GeV]

MSSM band:
scan over
SUSY masses

overlap:
SM is MSSM-like
MSSM is SM-like

SM band:
variation of M3V
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Prediction for sin? 6. in the SM and the MSSM :
[S.H., W. Hollik, A. Weber, G. Weiglein '07]

0-2335 B [ [ [ [ [ [ [ [ | [ [ [ [ | [ [ [ [ | [ [ [ [ ]
B experimental errors 68% CL.: ]
0.2330 - LEP2/Tevatron (today) —
- Tevatron/LHC i MSSM bana:
0.9395 N —— ILC/GigaZ b SCan over
] SUSY masses
220.2320 = |
“c . overlap:
n

0.2310

= SM
1 MSSM
both models

0.2305

SM is MSSM-like
MSSM is SM-like

SM band:
variation of Mj%'v'

Heinemeyer, Hollik, Weber, Weiglein '09

0.2300 ] ] ] ] | ] ] ] ] |

160 165 170 175 180 185

m, [GeV]
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Prediction for My, and sin?fgs in the SM and the MSSM

0.2330

0.2325

0.2320

6eff

Sin

0.2315

0.2310

0.2305

experimental errors 68% CL.:
LEP2/Tevatron (today)
Tevatron/LHC

—— ILC/GigaZ

m, =165 .. 175 GeV

both models

0.230g02' ——

Heinemeyer, Hollik, Weber, Weiglein 08 7

M,, [GeV]

MSSM band:
scan over
SUSY masses

overlap:
SM is MSSM-like
MSSM is SM-like

SM band:
variation of MM
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Possible future scenario:

SM: My = 115 GeV

MSSM: SPS 1b
all SUSY parameters varied
within realistic errors

omy = 0.1 GeV vs. omy = 2 GeV

= SM: improvement by a factor ~ 10
= MSSM: improvement by a factor ~2 — 3

T T T T | T T T T | T T T T
- predictions for M,,, and sin26eff .
0.2318 P =2.0GeVv —
i “P=0.1 GeV i

-5

B m, =115 GeV, dAa, , =510 /\ i
_ SN

MSSM | \
0.2316 |- (SPST / | -
o i . | T

” sm Y -l
0.2314 — I —
I prospective exp. errors 68% CL.: \ / ]
- — — LHC/LC \ /

0-231 2 | | | | | | | | | | | | | |

80.30 80.35 80.40 80.45

M,, [GeV]
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Scenario with no SUSY particles at the LHC:

— sin? Ofr investigation

— SPS 1a with heavy scalars

SM prediction F
VS Somul /)
MSSM (SPS 1a) prediction |
VS. 023131
LC resolution squarks & gluinos: M =6 (M, )" A, =6 (A, )™ me=b (rmg)spS
0.2312 i sleptons, neutralinos & charginos: MLYE=scale (ML’E)SPS; A =scale (AT)SPS; M1’2=scale (MLZ)SPs

100

para-ILC

SM(MHSM = Mthsm) *

02316}

0.2315

superpotential: u = scale (M)SPS

scale = (SUSY mass scale varied)

200 300 400 500 600

mﬁ [GeV]

700 800 900

= the LC(1000)/GigaZ could detect SUSY directly/indirectly

1000
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T heoretical prediction of the lightest MSSM Higgs boson mass: My,

Contrary to the SM: M;, is not a free parameter

MSSM tree-level bound: m; < My, excluded by LEP Higgs searches

LLarge radiative corrections:

- - 2 A
Dominant one-loop corrections: AM7 ~ Gpmy In >
t

The MSSM Higgs sector is connected to all
other sector via loop corrections
(especially to the scalar top sector)

Measurement of M;, Higgs couplings = test of the theory

LHC: AM,;, ~ 0.2 GeV
LC: AM), ~ 0.05 GeV

= M;, will be (the best?) electroweak precision observable
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Example of application: M; prediction as a function of A;

130 I I I I I I I I | I I I I | I I I I

I . . SPS1b:

B extraction of A (N SPS 1b )

i sm > =2.0 GeV mg,, Mg, My, Mg, Known,
125 6mteXp =0.1 GeV At un KnOWn

tan 3, M 4 known,
realistic experimental

120 errors assumed

m_[GeV]

= extraction of A; possible

115
but theory errors

neglected!
110
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Example of application: M; prediction as a function of A;

130

125

120

m_[GeV]

115

110

SPS1b:
mfl’ mgQ, mgl’ mBQ known,

extraction of A . in SPS 1b

Am® =2.0 GeV |
Am7® = 0.1 GeV A Ag unknown

tan 3, M 4 known,
realistic experimental
errors assumed

= extraction of A; possible

= Am"®° has to be

under control

1 = crucial for SUSY fits

-1000 -500 0 500 1000

A, [GeV]
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4. Implications for other models

Precision observables in BMSSM:

Problem: Theorists are lazy ...
No “real” precision observables are calculated

At most: S, T, U (with U =0 ...)
[M. Peskin, T. Takeuchi '92]

Ap ~ —aTl
1 >7(0)  Xw(0)
P—= T ~ _ Ap = 5 5 APSM ~ mt2
1 —Ap Mz M,
(leading, process independent terms)
Ap gives the main contribution to EW observables:
M 2 2 2
AMy ~ =W WA, Asin? o8 - WA
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Example for SM4:
SM4 = SM + 4th generation of quarks and leptons

0.4r
- U=0
o3
100 ; : : : ‘ ‘ - T '
80 * / 03 :
0.1
S , 0.2 B
© 60 - B
o -
=, o
E-c 0.1 |
| 40 . B
S 0.15 [
€ | -0.1
B m, =200 GeV
20 1 0.2 m, =300 GeV
: mh =1TeV
0 L . i i . . ) _0 3 T | l l l l | l l l l | l l l l | l l l l | l l l l | l
100 200 300 400 500 600 700 " -0.2 -0.1 0 0.1 0.2 0.3
(m, + my)/2 [GeV] S

= to play this game requires LC precision for my!
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Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

t

|

= one-loop corrections AMZ ~ G mi

= My depends sensitively on m; in all models where My can
be predicted (SM: My is free parameter)

SUSY as an example: Am; ~ +1 GeV = AM; =~ +1 GeV
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Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

t

|

= one-loop corrections AMZ ~ G mi

= My depends sensitively on m; in all models where My can
be predicted (SM: My is free parameter)

SUSY as an example: Am; ~ +1 GeV = AM; =~ +1 GeV

= Precision Higgs physics needs precision (LC!) top physics
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Tricky scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the LC with GigaZ~
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Tricky scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the LC with GigaZ~

A: Of course!
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Tricky scenario:

The LHC finds only a SM-like Higgs and nothing else
Q: Do we still need the LC with GigaZ~
A: Of course! Or better: even more!

The LC+GigaZ provides:

— precise Higgs coupling measurements (LC)
— precision observable measurements (GigaZ)
— precise top mass measurement (LC/GigaZ)

= Only the LC+GigaZ can find deviations from the SM predictions via
the various precision measurements

= Only the LC+GigaZ can point towards extensions of the SM
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5. Conclusions

e What does LC/GigaZ add to the LHC measurements?
— The LC will add a precise m; measurement (4+ much more)
— GigaZ will add precise measurements of My, sin? 0. and my

= crucial for indirect model testing
e SM: precise indirect determination of Mgy

e VISSM: strong constraints on the parameter space:

— possibly: discriminate between SM and MSSM

— precise my crucial for precision Higgs physics
— extraction of A; (crucial for SUSY fits)

e Other models: much less advanced, mostly S,7T,U

— My is not a free parameter (as in nearly any BSM):
precise my crucial for precision Higgs physics

— “only” a SM-like Higgs at the LHC: LC+GigaZ are the only option!
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