The Top Mass in the SM and MSSM (and BMSSM)

Sven Heinemeyer, IFCA (CSIC, Santander)

Paris, 05/2012

- 1. What to expect from m_t @ the LC
- 2. Implications for the SM
- 3. Implications for SUSY
- 4. Implications for other models
- 5. Conclusions

1. What to expect from GigaZ and m_t @ the LC

(Sad) Reality: LC will start in 2020 earliest

World of High Energy Physics in the year 2020:

Both LHC detectors will have accumulated $\sim 300 \, \text{fb}^{-1}$

Initial LHC physics goals are accomplished:

- state compatible with a Higgs found corresponding couplings measured to 10–30%
- SUSY-like signatures observed (if realized at the EW scale) (or not ...???)
- Extra dimensions or ...-like signatures observed (or not ...???)

LHC may await luminosity upgrade

What can LC/GigaZ add?

Important test for **any** model:

Comparison of observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections, e.g. \boldsymbol{X}

SM: limits on M_X

Very high accuracy of measurements and theoretical predictions needed

Important: three different types of errors:

- Experimental error (\Rightarrow included in the figure):
- current error
- future expectations
- \Rightarrow sets the scale, has to be matched by other errors

Theory error:

- \Rightarrow error due to missing higher order corrections
- only estimates possible
- even more complicated for the future

Parametric error:

- current uncertainty in the prediction due to error in the input parameters
- future uncertainty
- \Rightarrow focus on SM parameters
- ⇒ derive information about (unknown) SUSY(?) parameters (BSM parametric uncertainties highly model dependent)

Precision observables: M_W , $\sin^2 \theta_{eff}$, M_h , $(g-2)_{\mu}$, b physics, ...

A) Theoretical prediction for M_W in terms

Evaluate Δr from μ decay $\Rightarrow M_W$

One-loop result for M_W in the SM: [A. Sirlin '80], [W. Marciano, A. Sirlin '80]

$$\Delta r_{1-\text{loop}} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\text{rem}}(M_H)$$
$$\sim \log \frac{M_Z}{m_f} \sim m_t^2 - \log (M_H/M_W)$$
$$\sim 6\% \sim 3.3\% \sim 1\%$$

 \sim

Sven Heinemeyer – "Top quark physics at lepton colliders", Paris, 14.05.2012

Precision observables: M_W , $\sin^2 \theta_{eff}$, M_h , $(g-2)_{\mu}$, b physics, ...

A) Theoretical prediction for M_W in terms

B) Effective mixing angle:

$$\sin^2 heta_{ extsf{eff}} = rac{1}{4 \left| Q_f
ight|} \left(1 - rac{\operatorname{Re} g_V^f}{\operatorname{Re} g_A^f}
ight)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

	today	Tev./LHC	LC	GigaZ
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16	16	_	1.3
δM_W [MeV]	15	≤ 15	10	7
δm_t [GeV]	0.9	≤ 1	0.2	0.1

<u>Relevant SM parametric errors</u>: $\delta(\Delta \alpha_{had}) = 5 \times 10^{-5}$, $\delta M_Z = 2.1$ MeV

	$\delta m_t = 2$	$\delta m_t = 1$	$\delta m_t = 0.1$	$\delta(\Delta \alpha_{\sf had})$	δM_Z
$\delta \sin^2 \theta_{\rm eff} \ [10^{-5}]$	6	3	0.3	1.8	1.4
ΔM_W [MeV]	12	6	1	1	2.5

Current and future errors:

 $\begin{array}{ll} \hline \label{eq:current:} & \delta m_t^{\text{exp}} = 0.9 \; \text{GeV}, & \delta (\Delta \alpha_{\text{had}}) = 3.5 \times 10^{-4} \\ & \delta M_W^{\text{theory},\text{SM}} \approx \pm 4 \; \text{MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{theory}} \approx \pm 10 \times 10^{-5} \\ & \delta m_t : & \delta M_W^{\text{para}} \approx \pm 5.5 \; \text{MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{para}} \approx \pm 7 \times 10^{-5} \\ & \delta (\Delta \alpha_{\text{had}}) : & \delta M_W^{\text{para}} \approx \pm 6.5 \; \text{MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{para}} \approx \pm 13 \times 10^{-5} \\ & \delta M_W^{\text{exp}} \approx \pm 15 \; \text{MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{exp}} \approx \pm 16 \times 10^{-5} \end{array}$

Future:

$$\begin{split} \delta M_W^{\text{theory}} \gtrsim \pm 2 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{theory}} \gtrsim \pm 2 \times 10^{-5} \\ \delta m_t : & \delta M_W^{\text{para}} \approx \pm 1 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{para}} \approx \pm 0.4 \times 10^{-5} \\ \delta (\Delta \alpha_{\text{had}}) : & \delta M_W^{\text{para}} \approx \pm 1 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{para}} \approx \pm 1.8 \times 10^{-5} \\ & \text{[GigaZ]} : & \delta M_W^{\text{exp}} \approx \pm 7 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{exp}} \approx \pm 1.3 \times 10^{-5} \end{split}$$

The top is guaranteed at the LC \Rightarrow sure physics case

Top-quark mass is a fundamental parameter of the electroweak theory

By far the largest quark mass, largest mass of all known fundamental particles

Window to new physics?

Large coupling to the Higgs boson; physics of flavor; prediction of m_t from underlying theory?

Radiative corrections

- \Rightarrow non-decoupling effects proportional to powers of m_t
- \Rightarrow Need to know m_t very precisely in order to have sensitivity to effects of new physics

EWSB: just a heavy quark? special role for t in EWSB? strong constraint on any model Precision physics: δm_{t}^{exp} leading parametric uncertainty \rightarrow could obscure new physics SUSY: m_t crucial input parameter drives SSB/unification Little Higgs: heavier top Tevatron: "rough" measurements of mass, couplings, BRs LHC: the same (but better!) & more LC: high precision of everything

Particle masses are not observables one can only measure cross sections, decay rates, . . .

Additional problem for the top mass:

what is the mass of a colored object?

Top pole mass is not IR safe (affected by large long-distance contributions), cannot be determined to better than $\mathcal{O}(\Lambda_{QCD})$

Measurement of m_t :

- At Tevatron, LHC: kinematic reconstruction, fit to invariant mass distribution ⇒ "pole" mass
- At the LC:

mainly from threshold behavior \Rightarrow threshold mass \Rightarrow **SAFE!**

2. Implications for the SM

Current status of knowledge: the Standard Model (SM)

\Rightarrow Last remaining free parameter: M_H

Comparison of SM prediction of M_W with direct measurements:

\Rightarrow light Higgs boson preferred

Global fit to all SM data: [*LEPEWWG '09*]

 $\Rightarrow M_H = 94^{+29}_{-24} \text{ GeV}$

 $M_H < 152 \text{ GeV}, 95\%$ C.L.

Assumption for the fit: SM incl. Higgs boson

 \Rightarrow no confirmation of Higgs mechanism

 \Rightarrow Higgs boson seems to be light, $M_{H} \lesssim 160~{\rm GeV}$

GigaZ: Improvement in the Blue Band plot:

[GFitter '09]

(note: artificially $M_H^{SM} = 120 \text{ GeV}$)

GigaZ: \Rightarrow Improvement in M_H determination:

[J. Erler, S.H., W. Hollik, G. Weiglein, P. Zerwas '00]

3. Implications for SUSY

- Precision observables to test the MSSM
- top mass measurement for the MSSM Higgs sector
- discriminate between SM and MSSM
- limits on MSSM extensions

scan over SUSY masses

MSSM band:

overlap: SM is MSSM-like MSSM is SM-like

 $\ensuremath{\mathsf{SM}}$ band: variation of $M_H^{\ensuremath{\mathsf{SM}}}$

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

Prediction for $\sin^2 \theta_{eff}$ in the SM and the MSSM : [S.H., W. Hollik, A. Weber, G. Weiglein '07]

Prediction for M_W and $\sin^2 \theta_{\text{eff}}$ in the SM and the MSSM : [S.H., W. Hollik, A. Weber, G. Weiglein '07]

Possible future scenario:

[S.H., S. Kraml, W. Porod, G. Weiglein '03]

 $\delta m_t = 0.1 \text{ GeV vs. } \delta m_t = 2 \text{ GeV}$ \Rightarrow SM: improvement by a factor ~ 10 \Rightarrow MSSM: improvement by a factor $\sim 2 - 3$

\Rightarrow the LC(1000)/GigaZ could detect SUSY directly/indirectly

Theoretical prediction of the lightest MSSM Higgs boson mass: M_h

Contrary to the SM: M_h is not a free parameter

MSSM tree-level bound: $m_h < M_Z$, excluded by LEP Higgs searches Large radiative corrections:

Dominant one-loop corrections: $\Delta M_h^2 \sim G_\mu m_t^4 \ln \left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2} \right)$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Measurement of M_h , Higgs couplings \Rightarrow test of the theory

LHC: $\Delta M_h \approx 0.2$ GeV LC: $\Delta M_h \approx 0.05$ GeV

 $\Rightarrow M_h$ will be (the best?) electroweak precision observable

Example of application: M_h prediction as a function of A_t

Example of application: M_h prediction as a function of A_t

4. Implications for other models

Precision observables in BMSSM:

Problem: Theorists are lazy ...

No "real" precision observables are calculated

At most: S, T, U (with $U = 0 \dots$) [*M. Peskin, T. Takeuchi '92*]

$$\begin{split} & \rho \sim -\alpha I \\ \rho = \frac{1}{1 - \Delta \rho} \qquad \Delta \rho = \frac{\sum_{Z} (0)}{M_{Z}^{2}} - \frac{\sum_{W} (0)}{M_{W}^{2}} \qquad \Delta \rho^{\text{SM}} \sim m_{t}^{2} \\ \text{(leading, process independent terms)} \end{split}$$

Λ

 $\Delta \rho$ gives the main contribution to EW observables:

$$\Delta M_W \approx \frac{M_W}{2} \frac{c_W^2}{c_W^2 - s_W^2} \Delta \rho, \qquad \Delta \sin^2 \theta_W^{\text{eff}} \approx -\frac{c_W^2 s_W^2}{c_W^2 - s_W^2} \Delta \rho$$

Example for SM4:

SM4 = SM + 4th generation of quarks and leptons

[G. Kribs, T. Plehn, M. Spannowsky, T. Tait '07]

\Rightarrow to play this game requires LC precision for $m_t!$

Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

\Rightarrow Precision Higgs physics needs precision (LC!) top physics

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the LC with GigaZ?

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the LC with GigaZ?

A: Of course!

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the LC with GigaZ?

A: Of course! Or better: even more!

The LC+GigaZ provides:

- precise Higgs coupling measurements (LC)
- precision observable measurements (GigaZ)
- precise top mass measurement (LC/GigaZ)
- ⇒ Only the LC+GigaZ can find deviations from the SM predictions via the various precision measurements

\Rightarrow Only the LC+GigaZ can point towards extensions of the SM

5. Conclusions

- What does LC/GigaZ add to the LHC measurements?
 - The LC will add a precise m_t measurement (+ much more)
 - GigaZ will add precise measurements of M_W , sin² θ_{eff} and m_t
 - \Rightarrow crucial for indirect model testing
- <u>SM</u>: precise indirect determination of M_H
- MSSM: strong constraints on the parameter space:
 - possibly: discriminate between SM and MSSM
 - precise m_t crucial for precision Higgs physics \rightarrow extraction of A_t (crucial for SUSY fits)
- Other models: much less advanced, mostly S, T, U
 - M_H is not a free parameter (as in nearly any BSM): precise m_t crucial for precision Higgs physics
 - "only" a SM-like Higgs at the LHC: LC+GigaZ are the only option!