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Disclaimer
• This will not be a general statistics course: 

– I will deal mostly with topics relevant to Higgs 
searches at LHC (already a big task)

– Most of the concepts will be introduced in the 
context of these searches, rather than in full 
generality

– I won't be talking about Bayesian methods. 
The focus will be entirely on likelihood-based 
frequentist techniques.

• Focus on H to introduce concepts, 
then generalize.
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Outline

What are the goals ?

Setting up the problem : Maximum likelihood 
and Likelihood ratios

Discovery

Additional wrinkles (NPs, categories)

Limit setting

Further topics
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The starting point
Statistical treatment starts when the 
analysis is already 99% done:
We have identified variables which are 
useful for our search : for Higgs analysis: 
mass (or mT) spectra
We have already taken the data
We have already processed the data 
and reconstructed the quantities of 
interest

However still need to quantify  
observations:
maybe we an see peaks by eye (or 
not)
need to understand chances that 
this comes from a real signal.

PLB 716 (2012) 1-29
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The challenge: what we want

p0 (p-value) : if there is no Higgs, probability to still get a fluctuation 
at least as large as this one.

How do 
we get 
there ?

PLB 716 (2012) 1-29
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Outline

What are the goals ?

Setting up the problem : Maximum likelihood 
and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics
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What do we need ?
Measurements! (observables)

A theoretical model to test (the SM 
or some extension)

An experimental model that describes 
how the measurements are obtained 
from the theory

Lots of randomness involved!
Quantum uncertainty
Measurement errors

=> Need a Statistical Model
http://www.phdcomics.com/comics/archive.php?comicid=1489
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How to describe it
In general use P(m; )

m = measurements (observables): random variables
  = parameters, with fixed (but often unknown!) values

Measurements can be
Discrete observables : e.g. Event counts  i P(mi; ) = 1
Continous observables : (e.g. m) 

     => probability density function,  P(m; ) dm = 1

Pbkg(m; c1, c2, c3, c4)Psignal(m; mH, , ...)
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Likelihood
Defined simply as  

L(; mobs) = P(mobs; )

Where L is now a function of  with the measured mobs as 
parameter

The meaning is different: 
P : probability to observe m for a given 

(useful e.g. For MC generation) 
L : likelihood of  given that mobs has been observed

           sets up the problem of determining .

...But the information content is exactly the same.

Defining the correct likelihood is the hard part! The rest is just 
turning the crank.
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Common likelihood definitions
Method Observable Likelihood

Cut-and-
count

n : measured number 
of  events

Poisson

b : expected background

Binned 
shape 
analysis

ni, i=1..Nbins : 
measured events in 
each bin.

Multi-Dimensional Poisson

fi : fraction of signal in each bin
bi : expected background in each bin

Unbinned 
shape 
analysis

mi, i=1..Nevents :  
observable value for 
each event

Extended Likelihood

PS, PB : PDFs for x in signal and 
background
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The (unbinned) likelihood for H

P s(mγ γ)

Pb(mγ γ)

P (mγ γ)=
N s

N s+Nb

P s(mγ γ)+
N b

N s+Nb

Pb(mγ γ)

e−(N s+N b)
(N s+Nb)

N obs

N obs !

L(mγ γ ,1 ..mγ γ , N obs
)=e−(N s+N b) Π

i=1

N obs

N sP s(mγ γ , i)+Nb Pb(mγ γ , i)

One observable: m

How is it distributed ?

For signal

For background

So in total
(1 event)
 

For Nobs events:  
Nobs can fluctuate, so include 
a Poisson (“extended”) term : 

Finally:

“Unbinned Extended Likelihood”
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Maximum likelihood
Idea: estimate  by picking the most 
likely value, where L is maximal

Maximum likelihood (ML) estimates 
denoted by “hat” : 

Good properties:

Asymptotically Efficient: 
Maximum information (=> smallest 
error) for large N

Asymptotically Gaussian for large N

Unbiased : correct on average 
even for small N.

Single-event Gaussian 
example

Note that errors on data points 
don't influence the fit – 

uncertainties come from the 
model.

^
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H-inspired example
Simple template fit using fixed shapes for signal and background
Free parameters: Nbkg and =Nsignal/Nsignal

SM

Size of -2logL=1 contour 
gives +/-1 sigma (68%) error

Check 3 mass points, scan over  
for each one

Compute -log L for each, find 
minimum (=max of L) => ̂
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“Blue band” plots

So, do we have a discovery ?

Same principle for the “Blue band” 
plots:
Scan over mH values
For each mH, find  and its error
Done for each channel and 
combination (details later)

^

ATLAS-CONF-2012-093
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Outline

What are the goals ?

Setting up the problem : Maximum likelihood 
and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics
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Hypothesis testing

Two ways to make a mistake:
Type I : 
qobs is H1-like (Higgs?), but actually H0 was true (no Higgs) 
=> wrongly claim a discovery (bad!). 
Probability is the p-value. For a discovery, need <2.9E-7
Type II: 
qobs is H0-like but H1 was true 
Leads to missed discovery: less bad, but still to be 
avoided! Probability is 1-power.

Hypothesis = a region of parameter space.
We will use: “SM without Higgs” :  = 0
Define:
A “null” hypothesis H0 to reject (here =0)
An alternate hypothesis H1 ( Higgs)

Strategy:
Define some function q of the observables
Find the distributions for H0 and H1

See where is the value qobs  from the data

H1H0

qobs

p-value

Type-II 
error

Goal: find q 
with max 

power for a 
given p-value 

(=> max 
separation)

power
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Neyman-Pearson lemma
Define q from likelihoods:
Compute L(data; H1) = L(data; (H1)) for H1

Compute L(data; H0) = L(data; (H0)) for H0

Then   = L(data; H1)/L(data; H0) obviously carries information on 
the hypothesis test:
If data is H0-like, L(data; H0) is large, L(data; H1) small => small 
If data is H1-like, L(data; H1) is large, L(data; H0) small => large 

Neyman-Pearson lemma: 
Use >A as the test. This is actually optimal (carries the 

maximum available information)

In practice use: 
q = -2 log(L(data; H0)/L(data; H1)
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Simple Gaussian Example

H0 H1

q

Assume  is Gaussian for both 
H0 (=0) and H1 (=1).

Then q = (1-2)/   ~

Neyman-Pearson lemma: 

use q>A as selection, i.e. >X

What if we were to use 
another test ?

For the same p-value, we 
would have less power  

qobs

power

q
H1

H0

qobs

power

Same p-values

^

^ ^

^
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Profile-likelihood Statistic
H0 H1

=1=0

H0 H1

Setup of previous example sometimes called “Tevatron-
style” : 2 “simple” (single  value) hypos.

At LHC usually use a different definition: H0 :=0, H1 : >0.
Why ?more general definition of discovery: clearly =2 
still counts.

Now H1 is composite (range of  values). What  to use for L(data; H1) ? 
=> The one that maximizes the likelihood (“give H1 its best shot”)

Use:        q0 = -2 log L(data; =0)/L(data; )

Closely related to :
Small  (no signal seen) => L()  ~  L(=0) => small q0

Large  (signal!)              => L() >> L(=0) => large q0

q0>0 since best-fit L always larger than fixed L(=0).
For simple Gaussian case, q0 = (/s)2.
For a one-sided test (>0), still optimal although H1 is composite

Tevatron

LHC

^

^
^
^^

^

^
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Distributions for q0
Asymptotically, q0 is distributed as:
= 0 : a 2(ndof=1) distribution
  0 : non-central 2(ndof=1, ),   = /

This is Wilks' theorem 

=> Can easily convert a q0 value to a p-
value:

The key property for this is that  is Gaussian-
distributed ( = Gaussian width) 

If this is not true (small stats, LEE issues), 
need to determine distribution “by hand”:
Generate toys (pseudo-data) for some .
For each pseudo-dataset, compute q0 
and histogram the results
May need many toys to populate the tails!  
    (5  2.9 10-7 !)

p0=∫q0

+∞

χ
2
(q ,ndof=1)dq

^
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One-sided or Two-sided ?

As defined, we have
 ~ 0 => small q0

Large  > 0 => large q0

But also
“Very negative”  < 0 
       => also large q0

However we know these cases are not 
evidence for signal!

Since we also compute , use this extra 
information to improve the procedure



q0

^
^

^

^

^

q0=−2 log
L(μ=0 ;data)
L (μ̂ ;data)
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Uncapped q0

q0={−2 log
L (μ=0 ;data)
L (μ̂ ;data)

μ̂≥0

+2 log
L (μ=0 ;data)
L (μ̂ ;data)

μ̂<0

Uncapped p0: 
If <0, give q0 a negative sign:

Distribution: “double half-2”
For >0, p-values are half those of the two-
sided case: (adding more information gives a 
better result). 
p0 < 0.5 For >0, 
0.5 < p0 < 1 for  < 0

Capped p0: same but set q0=0 for all <0
Simpler, but negative fluctuations not shown
Used in Higgs results before Summer 2012



q0

^

^

^

^

^

^



23

In practice

Free  at mH=118 GeV Background 
only

Signal, 
mH=125 GeV Background

An almost-real-life example: 
Hgg with fixed templates.

Free  at mH=126 GeV

Fit =-1.5 Fit =+1.2

q0 = -4.66 for mH=120 GeV
p0 = 98% or -2.2

q0 = 3.13 for mH=126 GeV
p0 = 4% or +1.8
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Nuisance parameters
Usually Likelihood involves more 
parameters than just the ones of 
interest:
 nuisance parameters: PDF 
parameters, backgrounds, 
efficiencies…

e.g background slope and Nbkg. 

Good cases: parameter can be reliably estimated from the data: "profiling”
Compute q0 using the ML estimates of  within the hypothesis:

Wilks' theorem: this q0 still asymptotically distributed as a 2(ndof=1) !

Best-fit of  in H0 (=0 fixed)

Best-fit of  in H1 ( floating)
q0=−2log

L(data ; μ=0, ̂̂θ)
L(data ; μ̂ , θ̂)

^̂
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Note: this isn't exactly new…

Kendall and Stuart, The Advanced Theory of Statistics, 

vol. 2 (1961)
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Inclusive H
Scan over110 < mH < 150 GeV

For each value compute q0 using  
The signal template for this mH

A free 4th-order polynomial shape 
for the background
also add systematics, but little 
effect here

Convert q0 to p-value using the 
asymptotic distribution

Convert p-value to significance :
For uncapped:  Z =  -1(1 – p0)  

( = Gaussian cumulative  distribution)

3.3

Expected p0

Generate toys (usuallly for =0)
Compute p0, histogram results
Report median of distribution

ATLAS-CONF-2012-91
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Outline

What are the goals ?

Setting up the problem : Maximum likelihood 
and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics
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Look-elsewhere effect

No: finding a fluctuation at any mass is much 
more likely than finding one at a given mass.

p0
float = p0

fix x N

N the “trials factor” = number of independent 
regions in mass range, ~ [mH,max-mH,min)/(2peak)

As the search interval increases, probability to 
find fluctuations of arbitrary size becomes large

Technically, the problem is that  plays a role 
only in the >0 hypothesis; for =0,  is irrelevant
=> Wilks' theorem not valid.

Search for a particle with unknown mass:
Scan p0 as a function of mass, find minimum
Better: include mass in the statistic:

Wilks' theorem: should be 2(ndof=2) ? 

q0=−2log
L(μ=0, ̂̂mH ;data)

L( μ̂ , m̂H ;data)
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Look-elsewhere effect (2)

 E. Gross and O. Vitells, Eur. Phys. J. C70 (2010) 525–530
 R. B. Davies, Biometrika 74 no. 1, (1987) 33–43

Solution: get distribution of floating-mass q0 from toys – expensive in CPU for 5
Another  approach: note that

p(q0>X in [mH,min, mH,max)) = p(q0>X @ mH,min) + p(q0<X @ mH,min) p(q0 crosses > X)
(To be >X somewhere, you either start >X or you cross into it at some point)

For large X, p(upcrossing above X) ~  <Nc(X)>, the average # of upcrossings,

p(q0>X with floating mass) = p(q0>X at fixed mass)  + <Nc(X)> 

Interesting since <Nc(X)> has known 
dependence on X (for large enough X) : 

<N c(X)> ~ e-X/2.
So we can use toys to compute <Nc(X)> for 
small values of X (which is cheap), then 
extrapolate to 5   



30

Categories

L=Π
i=1

N cat

Li(μ ,θ;datai)

Dataset contains “good” regions: Higher 
S/B, better resolution, etc.

There is a tradeoff: 
Select good regions only: gain on 
performance, lose on statistics (fewer events)
Select everything: more events, but good 
regions get diluted.

Categories : split dataset into subsets. For 
instance “good region” and “the rest”
Each subset modeled separately, so can 
take advantage of better regions

Fits are done simultaneously, so some 
parameters can be common ( , mH)
Fitted values are automatically 
“combined” across categories.

Technically

High S/B, low S

Low S/B, high S



31

Categories: purity example
Good Bad All

Good category
NS = 3

NB = 50
 = 1 GeV

Z1 = 1.4

Bad category
NS = 50

NB = 10000
 = 1 GeV

Z2 = 1.9

Inclusive
NS = 53

NB = 10050
 = 1 GeV

ZI = 2.0

2-category result
ZC = 2.4

Dilution : cat1 adds little to inclusive result
Categories give the expected C  
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Categories: resolution example
Good Bad All

Good category
NS = 25

NB = 1000
 = 1 GeV

Z1 = 2.9

Bad category
NS = 25

NB = 1000
 = 5 GeV

Z2 = 1.2

Inclusive
NS = 50

NB = 2000
 = 1,5 GeV

ZI = 2.6

2-category result
ZC = 3.1

Dilution : Inclusive result worse than 1 alone
Categories give the expected C  
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H Category results
Per-category  from fits to 

individual categories

H->: separate “good” regions:
Central s (better S/B, resolution)
Unconverted s (resolution)
High pT(t) : higher S/B
2-jet “VBF” topology : higher S/B
=> 10 categories

Significant improvement in overall 
performance

Global  from simultaneous fit 
with single  for all categories

ATLAS-CONF-2012-91

^

^

ATLAS-CONF-2012-091
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Another common approach  is the binned  
likelihood, based on histograms:

Define a binning in the variable(s) of interest, 
say mi, i=1..Nbins

The model gives the bin contents, for instance:
Nmodel,i = Ns,i() + Nb,i() 

The per-bin likelihood just describes Poisson 
fluctuations around these values

And the full likelihood is

Binned ML

L(mγ γ ,1 ..mγ γ , N obs
;μ)=e−(μN s

SM
+N b) Π

i=1

N obs

μN s
SM Ps (mγ γ , i)+N bPb(mγ γ ,i)

P (N data ,i ;μ ,θ)=e
−Nmodel ,i(θ) Nmodel ,i(θ)

N data,i

Ndata , i !

So far we have discussed  the unbinned case, with parametrized PDFs, e.g.

L(N data ,1..N data, N bins
;μ ,θ)= Π

i=1

N bins

P(N data, i ;μ ,θ) ∝ e−(μN s
SM

+N b) Π
i=1

N bins

Nmodel , i(θ)
N data , i
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Binned vs. Unbinned
Binned Unbinned

Not dependent on binning (!)

Can use histogram templates directly Need to fit templates to an analytic 
shape, include modeling error

Usually faster (Nbins<Nevents)

Sensitive to statistical fluctuations of 
templates

Fits to analytic shape usually removes 
effect of fluctuations

Which one to use: it depends!
Do we have high-statistics templates ?
Is there a convenient/simple analytic shape to use ?
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Results : 2012 HWWll

ATLAS-CONF-2012-098

Category splittings:
Association with 0,1,2 jets 
ee,e

Analysis techniques:
Binned likelihood in 0, 1-jet categories
Counting analysis in 2-jet catgories

ATLAS-CONF-2012-098
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Results : HZZ4l

ATLAS-CONF-2012-092

Categories: 
4e, 2e2, 22e,4
2011, 2012

Use binned ML model 
everywhere

4
22e 4e

4e

22e

2e2

4

ATLAS-CONF-2012-092
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Combination
To combine channels together: just use 
categories
Each channel is one category (or 
    several)
Share parameters:
Common physics parameters (, mH....)
Common systematics

Global Higgs model:
78 categories in all, each 
separately parametrized

Below: part of 1 category (of 20) 
of the H component of the 
combined model (each node is a 
parameter or a PDF)
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Combination results
Global  value 

from simultaneous 
fit to all channels 
(with common  

for all) 

^

ATLAS-CONF-2012-093
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Interlude: why didn't we need this before ?

Logbook of J. Rohlf, 1983-05-30

 discovery: large 
signal!

 
Note log scale : S/B~50 

with several 1000 
signal events... 

Z discovery: 
O(1) signal 

events, but no 
background
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More examples

First hints of top at D0: O(10) signal 
events, a few background events, 

0.78% p-value

' : discovered online by the 
(lucky) shifters, similar story to ...
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Why we need this now
The high-signal, low-background experiments 
have been done already (but a surprise at 5 TeV 
would be welcome...)

At LHC:

High background levels, need precise modeling

Large systematics, need to be treated correctly

Small signals: need optimal use of available 
information :
      shape analyses instead of counting
      Isolation of signal-enriched regions (categories)
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Outline
What are the goals ?

Setting up the problem : Maximum likelihood 
and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics
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Limits ?
Do we still need them ?
Yes, need to find out if there are  other bosons out there!

The goal:

“Set upper limit on ” = Try to exclude the S+B hypothesis for  
above some value. Similar situation to discovery, can reuse the same 
tools. 

Actually for other 
bosons need limits 

on , not /SM. 
But not available 

yet ... 
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Statistic for limit-setting

q̃μ={
−2 log

L(μ;data)
L( μ̂ ;data)

0< μ̂<μ

0 μ̂≥μ

−2 log
L(μ;data)

L(μ=0 ;data)
μ̂<0

Also separate <0 for 
"technical" reasons: fits can 
be unstable. In this case, use 
the value of q for =0

Following our usual procedure, use q = -2 log L(data; )/L(data; ) to 
exclude the S+B hypothesis.
If <<, this is large (bad agreement, good exclusion) 
If ~, this is small (good agreement, bad exclusion)

Problem: if >>, large as well. But too-large  shouldn't give good upper 
limit! => again, use a one sided version

Again, Wilks' theorem gives the distribution
(need to measure one parameter () separately...)

^
^

^

^

^

^
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The inversion problem

qµMore signal-like Less signal-like

  Every statistic q 
has the same 
distribution, 

assume it known

Common PDF 
for all q

~

µ1 : ps+b = 11%, 
exclusion not 

good enough, 
1 too low

q1(data)~

µ95: 
ps+b=5%, 

as 
desired

q95(data)~

µ2 : ps+b = 
1%, exclusion 
too good, 2 

too high

q2(data)~

~

For each , we can compute the q,obs of our data and the p-value.

However what is usually needed is instead the value of  which yields a given 
p-value, usually p=0.05 (95% exclusion) 
=> need to solve for 



47

Inversion in practice
In practice, inversion procedure 
done as follows:

Define a set of values to scan 
(here 0-12 with varying step 
sizes)

Compute ps+b for each value, 
find crossing with 95%

Expected: Generate toys 
(usually for =1) and histogram 
values of 95. Report median 
and +/- 1,2  quantiles.

95
%

For illu
stration 

only!

qµ(data)~

median 
expected

95
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Asimov datasets
Cases when toys are needed:
Compute expected p0, upper limits
Compute  parameter of q asymptotic 
distribution

In both cases, goal is to determine a quantity 
in a given  scenario. Need to run toys to 
average over statistical fluctuations.

Another approach: Asimov dataset = 
“perfect” dataset with no statistical 
fluctuations. (technically such that ML 
estimate of all parameters are equal to 
predefined values)
=> Get quantities from a single determination
For limit quantiles, get bands from value of 
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Systematics
H   


Zee

L( data; ) L(Z data; )

Good case: parameter constrained 
by data:  use profiling.

Bad case: parameter not 
constrained by data.
e.g. signal efficiency, energy scale…  
           "Systematic error"

Assume an auxiliary measurement 
constrains it (e.g. Zee)
In the combined experiment,  is 
constrained and we can fit its value.

L(εmes ; ε , σ ε)=exp [−(εmes−ε)2

2σε
2 ]

Dragging Z data into fit is not practical!
What we care about is the measured 
value mes ±  . so parameterize the 
auxiliary measurement as 
L(Z data;) = L(mes; ; )

And usually:

Then profile  like .

Slope 

L(  data; ) L(Z data; )
=

L(+Z data; )

Constrained 
by H

Constrained 
by Zee

L(  data; ) L(Z data; )

L(  data; ) G(emes;  )
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Choice of constraints

f (θ;θ0,κ)=
1

θ√2π log κ
exp [−1

2 ( log (θ/θ0)

log κ )
2

]

Ideally, choice driven by properties of 
the auxiliary measurement.

In practice, often use Gaussians:
Implement systematic effects as 
X   X(1 + ) where  ~ G(0,1)
Reasonable approximation to most cases
Computationally efficient

Other choices
Bifurcated Gaussian: for asymmetric errors

Log-normal: for corrections on positive 
numbers (normalizations).

Represents a multiplicative uncertainty. 
e.g. =1.50 represents an errors by x/ 1.50
Can implement as XX exp() with ~G(0,1)



51

Systematics example

In fit with fixed =4, can now drag  down => fit  = -24.6%. 
Mitigates tension between fixed =4 and best-fit =0.85 => =4 not excluded

Systematic parameter gives more freedom for the fixed hypothesis, makes it 
easier to reconcile hypo with data =>decreases exclusion potential.

q̃4=−2 log
L(μ=4 ;data)
L(μ̂ ;data)

q̃4=−2 log
L(μ=4,δ ̂̂ε ;data)
L(μ̂ , δ ε̂ ;data)

LS(μ ,δε; data)=L(μexp(σ δϵδ ϵ); data)exp [−δε2

2 ]

Use again the toy H setup with fixed templates, just  as free parameter

Look at mH=120 GeV, =4 hypothesis
Best-fit is =0.85 (<<4), q4 = 3.14 => ps+b= 4%
=4 excluded at 95% CL

Again mH=116 GeV,=4 hypothesis
Best-fit  = 0.85 (<< 4) still, now q4 = 2.17, ps+b=7% 
=4 not excluded at 95% CL

Now add a systematic on efficiency, say 
= 0(1 +  ) and Gaussian constraint on 
For dramatic effect, use = 30%

^

^

^
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Sensitivity issues

So far, use CLs+b limits
asymptotically, 95 ~  + 1.64
Problem: 
for negative , get very good (too 
good) limits. 
For  sufficiently negative, can have 
limit < 0! 

What is happening ?
Remember this is a 95% limit. 
In other words, 5% of the time, the 
limit wrongly excludes the true 
value.

What can we do ?
Live with it ? Move to 99% ? 
Understand what happens and fix it

^

^

^
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Sensitivity issues

q95

B-only 
( =0)

95S+B

B-only ( =0)

95S+B

q95(data)

5%

q95(data)~

~

~

Usual situation: data is 
consistent with background-
only hypothesis

Pathological case: we end up 
in the tails of B as well as most 
S+B, e.g. because data 

fluctuated below expected 
background
   Intuitive conclusion: we have 
no sensitivity on B vs. S+B
 But what the method tells us: we 

can set an excellent upper limit! 

Symptom of sensitivity problems: 
Power (a.k.a. CLb) becomes small

q95
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A real-life example

Expected Limit Observed Limit
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Solution: CLs
Since we can identify these cases, try to 
correct for them to avoid spurious 
exclusion claims.

CLs

use CLs = CLs+b/CLb to set the limits.

For data compatible with bkg hypo, 
CLb ~1 and nothing changes

if CLb << 1, then CLs>>CLs+b and 
prevents too-good limits.

CLs is frowned upon by some statisticians:
Not well-motivated in theory
A side effect is overcoverage (e.g. 95% 
CL is in fact 98%) but can't be avoided.

In HEP it is the de facto standard

B-only

qµ95(data)

qµ95

=ps+b

~

CLb

=power

CLs+b
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Limit Results

As before, used 
combined model (78 

categories) for the 
limit combination

PLB 716 (2012) 1-29
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Outline
What are the goals ?

Setting up the problem : Maximum likelihood 
and Likelihood ratios

Discovery

Additional wrinkles (categories, LEE)

Limit setting

Further topics
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Spin measurement

What is the spin of “the boson” ? 
Could be 0, could be 2. Less likely 3+.

Strategy:
Simple hypotheses, so LLR is optimal. 
Use e.g. 
q = -2 log L(spin 2; data)/L(spin 0; data).

Of course L should now include spin-
sensitive information (decay angles, 
etc.) to have discrimination.

No results yet...

Spin 2 Spin 0
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Mass measurement
λ(μ ,mH)=−2log

L(μ ,mH)

L(μ̂ , m̂H)

Scan (, mH) plane, compute 
 at each point
Max at the best-fit value
Make contours of equal 
Use asymptotic formula to 
convert values to CL (68%, 
95%)

Could also do a 1D profile in 
mH only
However error on mH 
depends on , so a bit 
sensitive to chosen value of 

Can leave mass free when fitting for 
Define a 2D version of the profile likelihood:
Wilks' theorem: l distributed as 2(ndof=2)

In practice (both at =1 and at ) 
MH = 126.0  0.4 (stat) 0.4 (syst) 

ATLAS-CONF-2012-127

^
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Couplings measurement

category ggH VBF WH+ZH

low-pTt 93% 4% 3%

high-pTt 66% 16% 16%

2-jets ~30% ~70%

H category breakdown at 8 TeV

λ(μt ,μV)=−2log
L(μt ,μV )

L(μ̂t , μ̂t)

Idea: consider separately Higgs 
production modes: ggH, VBF, WH, 
ZH, ttH

Different contributions to categories:
2-jet category is enriched 
in VBF production
High-pT categories enriched 
in VBF, VH
=> Can “solve” for separate 
productions

Technically:

Instead of a single , allow 2 separate :
t which scales the numbers of ggH and ttH
V which scales VBF, WH and ZH
Define a profile-likelihood statistic to test (t, V) hypotheses
By Wilks' theorem, distributed as a 2(ndof=2)
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Coupling measurement (2)

ATLAS-CONF-2012-127

Scan (t, V) plane, draw contours of 
(t, V). 
Max at best-fit value
Use 2(ndof=2) quantiles totranslate  
values to CL (68%, 95%)
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Coupling measurements (3)

λ(κF ,κV)=−2log
L(κF ,κV )

L(κ̂F , κ̂V )

∫
0

2.3

χ
2
(Λ ; ndof=2)dΛ≈0.68

∫
0

6.0

χ
2
(Λ ; ndof=2)d Λ≈0.95

ATLAS-CONF-2012-127

 not directly linked to couplings, since Couplings also affect H decay rates 
Better parametrization: define
F : correction to Higgs fermion couplings
v : correction to Higgs vector boson couplings
SM : F=V=1

Express t, V as functions of F, 
V , including both production 
and decay.Use

Since validity of Wilks' theorem 
not checked here, show  
values not CL:
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Outlook

The last few years have seen significant 
developments in statistical methods used in HEP

Moving towards:
Standard methods that are well-suited to many HEP 
situations. 
Standard tools, e.g. RooFit, RooStats, distributed with 
ROOT. 

Hopefully to be used for many discoveries to come!
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Further reading
F. James, Statistical Methods in Experimental Physics, 2nd ed., World 
Scientific, 2006;

G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.

R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical 
Sciences, John Wiley, 1989;

L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.

See also this lecture series by G. Cowan:
https://indico.cern.ch/conferenceDisplay.py?confId=173726
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