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The period of transition
of IGM from neutral to
ionised state is known as
EoR.

Through the EoR, al-
most no H 1 left in IGM;
all of H 1 is in ISM of
galaxies.

Hence, it is important to
know the amount and
distribution of cold gas
at these redshifts.
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Observation Front
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Observation Front

HIPASS : Estimates Qp; ~ 3.5 % 10_4h7_51 in the local Universe
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Observation Front

HIPASS : Estimates Qp; ~ 3.5 % 10_4h7_51 in the local Universe
ALFALFA : Extends the survey to lower mass galaxies. Updates
the Schecter fit and predicts an order of magnitude more galaxies
at high mass end than HIPASS. Estimates of Q; is 16% larger
than HIPASS.

At High redshifts a quantitative estimate of the total H 1 content
in DLAs indicate the neutral hydrogen content of the universe to
be almost constant with a density parameter of Q4 ~ 0.001.
Future H 1 surveys will have deep impact on our understanding of
galaxy formation and evolution, hence it is theoretically important
to understand the outcome of currently favoured galaxy formation
models w.r.t. H I in high redshift Universe.
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Galaxy Formation

Objects like galaxies form when gas collapses at the center of dark
matter halos after radiative cooling of baryons.(see e.g. White &
Rees, 1978). There are mainly three methods to study formation
and Evolution of galaxies and hence H I in ISM:

Jaswant Yadav



Galaxy Formation

Objects like galaxies form when gas collapses at the center of dark
matter halos after radiative cooling of baryons.(see e.g. White &
Rees, 1978). There are mainly three methods to study formation
and Evolution of galaxies and hence H I in ISM:

@ Hydrodynamic simulation

Jaswant Yadav



Galaxy Formation

Objects like galaxies form when gas collapses at the center of dark
matter halos after radiative cooling of baryons.(see e.g. White &
Rees, 1978). There are mainly three methods to study formation
and Evolution of galaxies and hence H I in ISM:

@ Hydrodynamic simulation

@ Halo Occupation Distribution (HOD) model

Jaswant Yadav



Galaxy Formation

Objects like galaxies form when gas collapses at the center of dark
matter halos after radiative cooling of baryons.(see e.g. White &
Rees, 1978). There are mainly three methods to study formation
and Evolution of galaxies and hence H I in ISM:

@ Hydrodynamic simulation

@ Halo Occupation Distribution (HOD) model

@ Semi Analytic Modelling : In this technique we take
advantage of high resolution N-Body simulation and simple
prescription for evolution of baryons in dark matter halos
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N- Body Simulations

Lbox Npart Mpart z Nsnap
23.04 5123 67x10° 5.0 24
51.20 5123 7.0x10" 3.0 29
76.80 5123 23x10® 1.0 19
1536 5123 75x10° 00 23

FoF algorithm used to identify halos.

@ Index of the central particle of each halo, which is the
most-bound particle in the halo.

@ The virial mass of the halo
Myir = Mpart X Npart,Han

@ The virial radius of the halo
Ryir = (GM,;;/100H?)1/3,

@ The circular velocity of the halo at virial radius

Ve = (GMVir/Rvir)l/z-

> Results JJ» Model |
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SAM Calibration : Local TF Relation
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Figure: Local Tully-Fisher Relation for model galaxies compared with
observation of Giovanelli et al. 1997 (Kulkarni,JKY,Bagla; Submitted)
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SFR density
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Figure: Data points with error bars are from a compilation of
observations as in Springel & Hernquist 2003
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The black hole M - ¢ relation
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Figure: The My — o relation of our model galaxies compared to
observations by Kayhan et. al 2009
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Luminosity function (without dust extinction)
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Figure: The B-Band Luminosity function
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Cold gas versus Circular Velocity
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Cosmic density of H 1
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Figure: Evolution of HI mass density
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Cold gas fraction of haloes in our simulation
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Figure: Model comparison with previous works
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Power Spectrum and Bias
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Figure: Power spectra in our model at z = 3.34. Black solid is dark
matter and red dashed is HI. Right panel is HI bias

Jaswant Yadav



Power Spectrum and Bias Evolution
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Figure: Blue is z=1.3, black is z=3.34 and red is z=5.1
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Conclusions

@ An improved and self consistent calculation of H I in galaxies
is presented using a semi analytical code of galaxy formation
(Kulkarni,JKY & Bagla, Submitted )

@ We find that the clustering of HI at small scales is very
strong, stronger than what was found in simple models
presented earlier.

@ This reinforces the point that direct detection of rare peaks in
the HI distribution may require less time that statistical
detection at larger scales.

@ Further studies are required to refine strategies for Hl
detection in the post-reionization epochs.

(> End |
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SAM Implementation

@ A merger tree is constructed by connecting DM Halos across
different epochs of simulation.

@ Starting from the highest redshift, on each branch of merger
tree the simple recipes of SAM are applied.

@ The main processes to model are Cooling,SFR and Feedback
mechanisms.
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Gas Cooling

Before the structure forms the gas has the same distribution as
DM.
T, = 35.9(V./kms~1)?K (1)

© Cooling by IC scattering of CMB photons by electrons. Not
effective at late times.

@ T, < 10*K : Deexcitation of fine structure lines of heavy
elements and rotational levels of molecules.

@ 10°K < T, < 10"°K : Decay through the recombination of
electron and ions. Much dependent on metallicity.

Q@ T, > 10"°K : Bremsstrahlung emmision. Cooling dominated
by free-free transition in elctron-ion collision.

Cooling efficiency also depends on size of Halos.
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Star Formation

M* = aMcold/tdyn (2)
In Spherical Collapse Model
Ryir o< V(1 + z)_3/2
@ Halos are smaller and Denser at
Earlier Epochs

@ SFR is higher in Halos at Earlier
z, even for same cold gas
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Feedback From Supernovae

Supernovae reheat the cold gas and
may drive a wind.
AMicheated = €galAmy  (3)
Energy in SN ejecta
AEsx = 0.5epa0Am, iy, (4)
Change in thermal Energy of halo

AEy; = 0.5AMeheated V2 (5)

vir*

Condition for reheated gas to eject
from the hot component

AEexcess = AESN - AEhot- (6)
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Feedback From AGN

Increase in mass of BH in mergers

f]éH Meold
14 (200kms™1/V,4,)2

AmBH’Q =

(7)

Accretion due to Radio mode of feedback

o — o [ _MBH Frot Viir 3
BH 108Mg, /) \ 0.1 ) \ 200 kmps

Mechanical heating generated by this mode

Lgn = nmpuc?, (8)

This modifies the cooling rate to

méool = Mcool — 2LBH/VV211» (9)
(> Results )
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Thank You for your Attention.
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