21cm - optical correlation I

R Ansari, AS Torrentó Tianlai teleconf, 14/06/2012

Introduction

- Goal: perform a simulated 21-cm sky map to compare to measurements
 - To estimate the 21-cm HI emission we need to (know) estimate the HI mass
 - We can do it using optical observables
 taken from galaxy survey catalogs

Starting point

- "HI content and optical properties of field galaxies from the ALFALFA survey. II multivariate analysis of a galaxy sample in *low density environments*", Toribio etal. 2011. arXiv:1103.0990.
- Uses the Arecibo Legacy Fast ALFA (ALFALFA) blind extragalactic survey data and finds the optical counterparts in SDSS catalog (DR7 release).
- Selects a LDE-High Quality sample of 1624 nearby objects ($z \le 0.6$).
- A correlation is made between $log(M_{HI}/M_{\odot})$ and:
 - $Log_{10}(D_{25})$: isophotal major-axis diameter in r-band (6165 Å)
 - M_r: absolute Petrosian magnitude in r-band
 - (g-r): color from model magnitudes (g-band: 4686 Å)
 - $Log_{10}(W_{50})$: 21-cm linewidth at 50%-peak level

Red: direct regression fits; Black: orthogonal fits; Solid: 1/V_{max} weight; Dotted: unweighted.

Weighting	X_1	X_2	a_0			a_1			a_2			Residual
$1/V'_{ m max}$	$\log D_{25,r} \ M_r$		$8.72 \\ 6.44$	± 0.06 ± 0.20	± 0.06 ± 0.21	$\begin{array}{c} 1.25 \\ -0.18 \end{array}$	$\pm 0.06 \\ \pm 0.01$	± 0.07 ± 0.01				$0.23 \\ 0.25$
	$\log W_{50}$		6.54	± 0.27	± 0.20	1.30	± 0.11	± 0.09				0.28
	(g-r)		8.84	± 0.11	± 0.12	1.81	± 0.29	± 0.40				0.33
	$\log D_{25,r}$	M_r	7.26	± 0.12	± 0.04	0.66	± 0.03	± 0.01	-0.10	± 0.006	± 0.002	0.22
None	$\log D_{25,r}$		8.85	± 0.04	± 0.03	1.37	± 0.04	± 0.03				0.21
	M_r		6.44	± 0.09	± 0.08	-0.20	± 0.004	± 0.002				0.23
	$\log W_{50}$		7.17	± 0.14	± 0.16	1.21	± 0.05	± 0.06				0.28
	(g-r)		9.61	± 0.04	± 0.04	1.10	± 0.08	± 0.07				0.32
	$\log D_{25,r}$	M_r	6.89	± 0.05	± 0.02	0.61	± 0.01	± 0.005	-0.10	± 0.002	± 0.001	0.23

Table 3. Coefficients of $M_{\rm H\,{\scriptscriptstyle I}}$ Predictions from Single and Multiple Linear Regression Models

 Table 4.
 Coefficients of Orthogonal Fits between Pairs of Variables

Weighting	Y	X										
		log I	$D_{25,r}$	1	M_r	log	W_{50}	(g-r)				
		a_0	a_1	a_0	a_1	a_0	a_1	a_0	a_1			
$1/V'_{ m max}$	$\log M_{\rm HI}$	$8.55 {\pm} 0.05$	$1.55 {\pm} 0.06$	$5.36 {\pm} 0.19$	$-0.24{\pm}0.010$	5.01 ± 0.30	$1.99{\pm}0.13$	$8.45 {\pm} 0.12$	2.99 ± 0.29			
	$\log D_{25,r}$			$-2.05{\pm}0.09$	$-0.16 {\pm} 0.004$	-2.28 ± 0.21	$1.29 {\pm} 0.14$	-0.06 ± 0.06	$1.93 {\pm} 0.15$			
	M_r					$1.46{\pm}1.14$	$-8.15{\pm}0.48$	-12.8 ± 0.40	$-12.2{\pm}0.98$			
	$\log W_{50}$							1.73 ± 0.06	$1.50{\pm}0.13$			
None	$\log M_{\rm HI}$	$8.58 {\pm} 0.03$	$1.66 {\pm} 0.03$	$5.24{\pm}0.08$	$-0.26 {\pm} 0.004$	$5.30{\pm}0.11$	$1.98 {\pm} 0.04$	9.06 ± 0.04	$2.28 {\pm} 0.07$			
	$\log D_{25,r}$			$-2.02{\pm}0.03$	$-0.16{\pm}0.002$	$-1.98{\pm}0.08$	$1.19{\pm}0.03$	$0.29 {\pm} 0.02$	$1.38{\pm}0.03$			
	M_r					$-0.24{\pm}0.42$	$-7.57 {\pm} 0.16$	-14.6 ± 0.13	$-8.74{\pm}0.26$			
	$\log W_{50}$							1.90 ± 0.01	$1.15 {\pm} 0.04$			

 Table 5.
 Central Slopes of Scaling Laws between Fundamental Galaxian Properties

 Reported by Different Authors

Reference	Scaling law							
	$M_{\rm HI} \sim R^{lpha}$	$M_{\rm H{\scriptscriptstyle I}} \sim L^{\beta}$	$L \sim V^\gamma$	$R \sim L^{\delta}$	$R \sim V^\epsilon$			
<u>HG84 (1984)</u>	1.8	0.66	2.6					
Salpeter & Hoffman (1996)	2.0	0.74	3.7	0.37	1.4			
<u>Courteau et al.</u> (2007)			3.4	0.32	1.1			
This work	1.6	0.60	3.3	0.40	1.3			

This work

- Take ~6200 paired ALFALFA-SDSS galaxies (by Toribio2011)
- Try the correlations $\log(M_{HI}/M_{\odot})$ and: M_{g} , (r-g) and $\log_{10}(D_{25})$
- We correct magnitudes from Galactic extinction but not for inclination (it will not be available for higher-z objects)

$\log(M_{HI}/M_{\odot})$ vs. M_{g}

- We obtain a correlation "by eye": $logMsun = 9.35 + \frac{(-M_g + 12.4)}{4}$
- $\log(M_{HI}) \propto M_g/4 \sim 2.5/4 \log(L) \Rightarrow M_{HI} \propto L^{0.625}$ (Toribio: $M_{HI} \propto L^{0.6}$)

$\log(M_{HI}/M_{\odot}) + M_{g} vs. (r-g)$

Mass-luminosity scaling with color:

 $\log(M_{\rm HI}/L^{0.25}) \sim 0.4 \times 2.5 \times \log(L_{\rm r}/L_{\rm g}) \Rightarrow M_{\rm HI}/L^{0.25} \sim L_{\rm r}/L_{\rm g}$

- Distance for closer objects is misestimated due to peculiar velocities \Rightarrow affects differently M_{HI} and $M_q/4 \Rightarrow$ spread of residuals distribution
 - $M_{HI} \propto \text{Dist}^2 \times F_{HI} \Rightarrow \log(M_{HI}) \sim 2 \times \log(\text{Dist})$
 - $M_g/4 \sim 5/4 \times log(Dist)$

$\log(M_{HI}/M_{\odot})$ vs. $\log(D_{25})$

logMsun - log(D25) - 8.73

- Best correlation, but not too far from the others
- The measurement of D₂₅ for distant objects might not be precise/available

Conclusions

- We find correlations between $\text{log}(M_{\text{HI}}/M_{\odot})$ and some optical observables
 - $\log(M_{\rm HI}/M_{\odot})$ vs. Mg, $\sigma_{\rm res} \sim 0.255$
 - $\log(M_{\rm HI}/M_{\odot})$ +M_g vs. (g-r), $\sigma_{\rm res}$ ~ 0.252
 - $\log(M_{\rm HI}/M_{\odot})$ vs. D₂₅, $\sigma_{\rm res} \sim 0.235$
 - and find a scaling $M_{HI} \propto L^{0.62}$

which are not far from Toribio2011 results

- For more precise coefficients ⇒ determination of the correlation matrix
- We can make a first estimation of 21-cm sky map