Amas@Nançay Sensitivity vs t_{int}

> J.E Campagne A. S Torrento 11/07/2012

Data sets

MEMO Nançay/Amas/05.06.12 and

- we focus on a single cluster (Abell1205) for data homogeneity
- We have modified the analysis for a set of 3 days to get finer time sampling (confirm previous analysis with std pipeline)

 Data taken with BAOradio DAQ on the fly at Nançay 18/06/12 ~300 sec (tot., or 100sec real) changing the #packets per fits file

Analysis (brief)

 Use of 512 BAO packets to compute a "time"-median value to perform minimal integration of 0.02sec (real). Notice: std pipeline uses 5120 packets grouped by 5 to get a mean. We have x-checked that the present analysis extends the results of Nançay/Amas/05.06.12.

△med_i=(med_i^{ON} -med_i^{OFF})/Filt_freq(med_i^{OFF}) with i running over the number of 512paq-medians of the same cycle
Mean of the △med_i over [1412,1413]MHz 3

Time sequence $\langle \Delta med_i \rangle_{1MHz}$

4

P (mJy)

Determination of the σ of the distribution of the $\langle \Delta med_i \rangle_{1 MHz}$ over the whole period

Interquartile Range normalized to Gaussian σ

 $\frac{Q_3 - Q_1}{1.349}$

abeli1205 20110415 20110416 20110417 Ch1

σ versus integration time

• We group the $\langle \Delta med_i \rangle_{1MHz}$ to get means over period of time $\Delta t_{int} = nx0.02sec$ and test the scaling

 $\frac{\int_{sys}}{t}$ 1-polar $\Delta t_{\rm int} \Delta v_{band}$

1MHz

ON-OFF/OFF_f

8

Analysis with std pipeline and the whole Abell 1205 data extends at longer integration time

9

Summary

The sigma exhibits a Gaussian scaling up to $\Delta t_{int} \sim 0.5$ sec The Tsys ~24Jy (~35K) in this Gaussian phase is in agreement with NRT continuum confusion RMS @ 21cm Breakdown of the scaling unknown. Slope log-log plot (Allan variance plot) -1: Gaussian, 0 flicker noise, +1/2 random walk drift, +1 steady drift of measurements