# Test Beam Results: Trigger and Energy Calibration

# Jérémy ROUËNÉ CALIIMAX Meeting

Laboratoire de l'Accélérateur Linéaire, Orsay

September 09, 2012







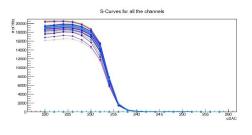
1 / 11

### Outline


1 The Trigger Calibration

2 Calibration Procedure

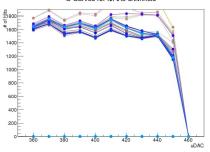
Conclusion and Outlook



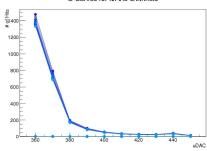

#### S-Curves



- To start the data taking we should set the trigger threshold just above the noise.
- To choose the good DAC value link to this threshold we plot S-Curves.
- We choose the DAC value in order to not trigger on the noise.


#### S-Curves




- We plot the S-Curve for all the channel.
- The criteria to choose the DAC value was:
  N(uDAC) < 1 % × N(220)</p>
- Like the channel by channel adjustment is to small we had to

choose one DAC value by ASIC.

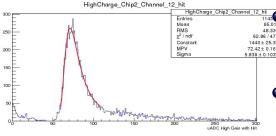
# S-Curves for higher gain S-Curves for all the channels



#### S-Curves for all the channels



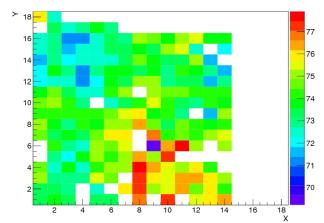
For higher gain value (0.4 pF) the variation of the threshold between DIFs was to high to take data.


#### The MIP Calibration

#### Goals of the MIP Calibration

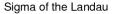
The calibration process goal is to equalize the response of all the pads.

- For that we want to find the relation: electronic signal (ADC units) energy units (MIP units).
- First the pedestal is subtracted from the results to have the actual signal value.
- We can take all the events because at the test beam energy electrons act like MIP particles.


# MIP Calibration Algorithm



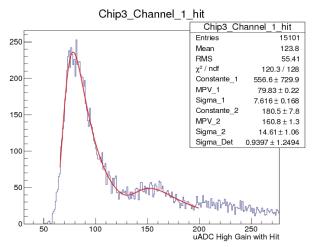
- Each pad is fitted by a Landau distribution.
  - The MPV of the Landau defines the calibration constant.
- The fitting range is fixed (60 - 120 ADC units).
- For each pad the pedestal value is subtracted.


### The MPV map





The mean MPV for the dif0 is  $74 \pm 4(5\%) \, uADC$ . From the simulation  $1 \, MIP = 0.095 \, MeV$ .


The Sigma map





The mean Sigma for the dif0 is  $5.8 \pm 1(17\%) uADC$ .

# Fitting the MIPs



We also fit the second MIP pic, but calculate the convolution of two Landaus is very long  $\dots$ 

September 09, 2012

#### Conclusion

- We have the calibration constants of the SiW-ECAL prototype for each pads.
- 2 But we use a fast method.
- We can make a better method by using only the MIP-like events (straight line) and fitting with a Landau convoluted with a Gaussian.
- But this take more time and need more statistics.