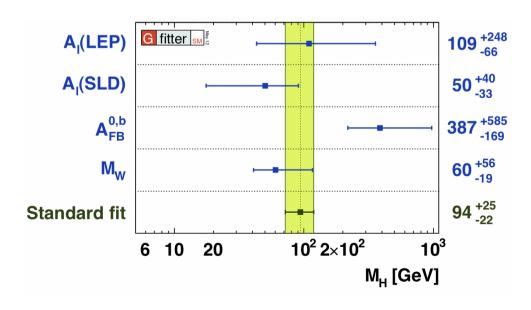


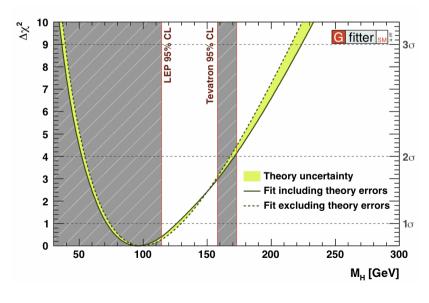
Run: 203602 Event: 82614360 Date: 2012-05-18

# Higgs boson searches at the LHC from discovery to property measurements

A few selected topics

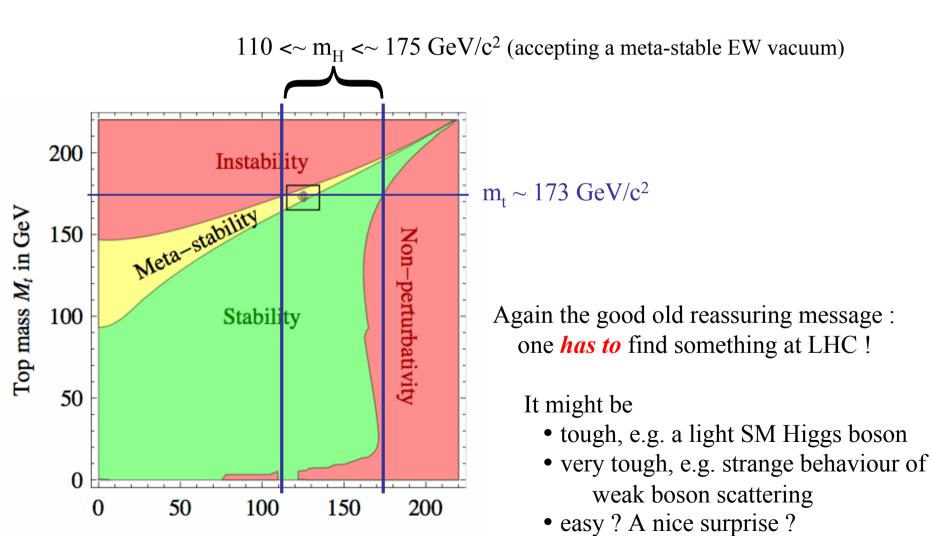
# Outline:


- > Context
- ➤ Discovery
- > Characterisation


Completely biased towards ATLAS results Apologize to CMS!

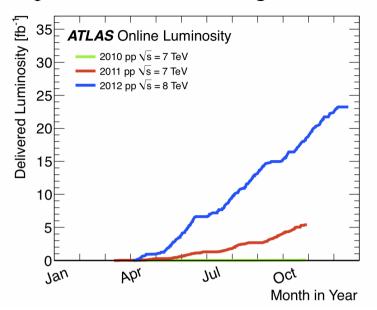
Before 2011... Standard model almost complete but still misses its *Clé de voûte* the SM Higgs boson H<sub>SM</sub>

The least elegant sector of the SM: a scalar particle (not natural), no gauge principle to dictate its dynamic, linked to 15 out of the 19 free parameters and yet it is a mandatory consequence of the mechanism that triggers electroweak symmetry breaking


If  $H_{SM}$  exists, most measurements point to a low mass  $m_H < 150 \text{ GeV/c}^2$ 

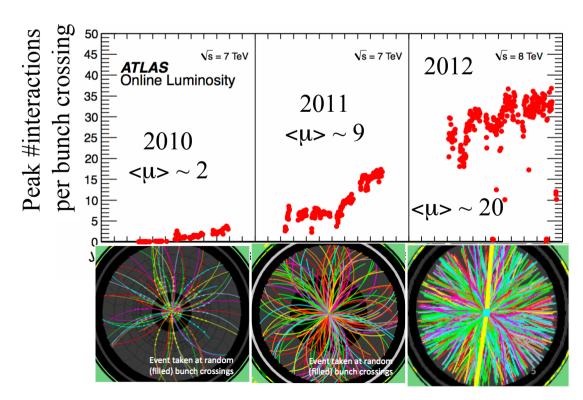


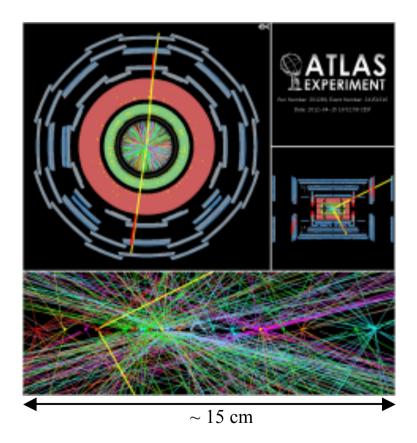



### A light $H_{SM}$ is also favoured by theory :

- → needed to regularize longitudinal weak boson scattering (not that constraining :  $m_H <\sim 800~GeV/c^2$  but gave the reference energy scale for high energy colliders :  $\sim TeV$ )
- → if the SM is to be valid (perturbative) up to a very high scale :

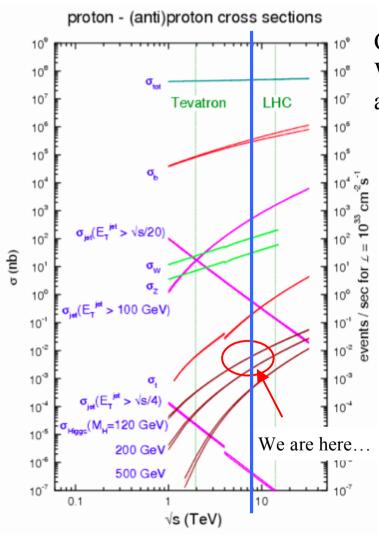



Higgs mass  $M_h$  in GeV


### Rare processes $\Rightarrow$ Needs high luminosity:



Peak instantaneous lumi in  $2012 \sim 7 \cdot 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ 


- ~ 23 fb<sup>-1</sup> delivered at 8 TeV
  - + data taking efficiency
  - + data quality
  - $\Rightarrow$  90 % usable for physics

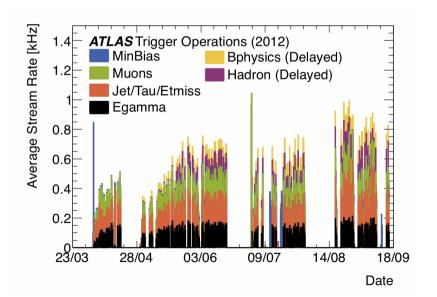




A  $Z \rightarrow \mu^+\mu^-$  event with 25 reconstructed vertices

Small cross-section  $\sim 22.3$  pb @ 125 GeV/c<sup>2</sup> on top of a huge background  $\Rightarrow$  only  $\sim 15\%$  of the cross-section is observable with manageable backgrounds

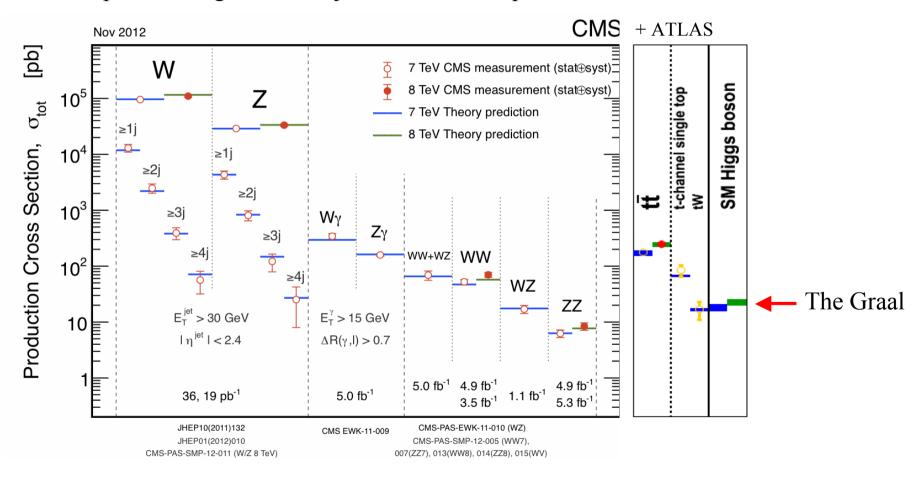



Can only record ~ 400 Hz Wants to keep most of this observable cross-section and get rid of not interesting events

⇒ maintain **good trigger performance**in a harsh pile-up environment
keeping thresholds as low as possible

e.g. inclusive electron (muon)  $p_T > 24 \text{ GeV/c}$ : 70(45) Hz di-photon ( $p_T > 35/25 \text{ GeV/c}$ ): 10 Hz

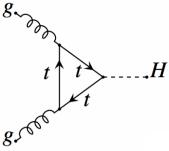
 $E_T^{mis} > 80 \text{ GeV} : 18 \text{ Hz}$  @ .


 $(a) L = 5 \cdot 10^{33} \text{cm}^{-2} \text{s}^{-1}$ 



Many "interesting" SM processes have been measured with great precision

- $\rightarrow$  standard candles for calibration and alignment (e.g.  $Z \rightarrow e^+e^-, \mu^+\mu^-$ )
- → control backgrounds to searches (and Monte Carlo tunings)
- → validate search techniques

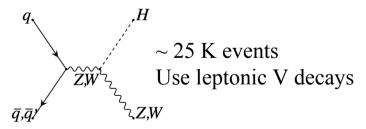

Examples for single boson + jets, di-bosons, top :



+ many more : QCD, photons, ...

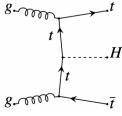
### The Higgs Quest

(Numbers @  $m_H = 125 \text{ GeV/c}^2$ , 25 fb<sup>-1</sup> at  $\sqrt{s}$  8 TeV)



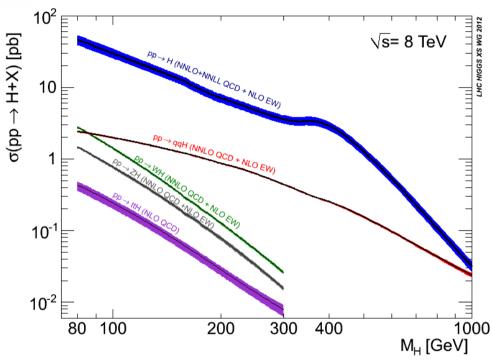

#### Weak boson fusion VBF:

~ 40 K events  $q_{i}$   $W,Z_{i}$   $W,Z_{i}$   $W,Z_{i}$  Q


Distinctive event topology : forward medium  $p_T$  jets + rapidity gap

### Associated production with a W/Z (V)




Associated production with a top pair ~ 3.3 K Important to directly access the top Yukawa coupling.

However very tough...



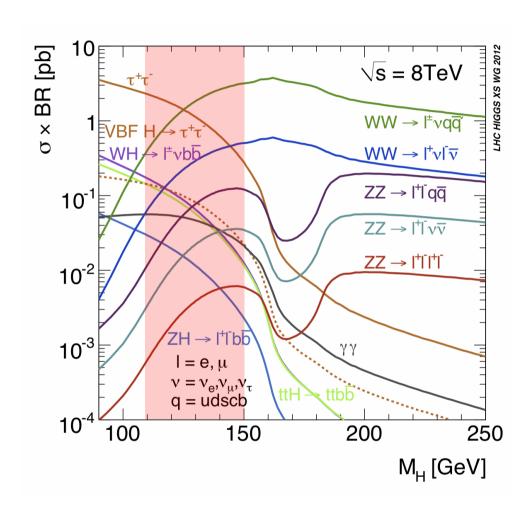
### gluon fusion ggF:

largest yield with  $\sim 0.5$  M event produced! but needs clean (lepton, photon) H decays



Cross-sections known at NNLO QCD + NLO EW (except ttH, NLO QCD only) theory uncertainties from 5% to ~ 20%

### 125 GeV/c<sup>2</sup> is a nice value!


With 2011 + 2012 data, ATLAS and CMS are sensitive to 4 out of 5 production processes

#### Search channels:

The low mass region  $\sim$  [ 120,150 ] GeV/c<sup>2</sup> is also nice from the decay point of view

- ✓ Dominant bb decays : accessible via VH (and ttH) production (background much too large in ggF and VBF)
- $\checkmark \tau^+\tau^-$ : also VBF, VH
- ✓ WW → lvlv ~ clean, but ~ no mass reconstruction
- ✓ γγ : clean, large background (bkg) but narrow mass peak
- ✓ ZZ → Illl: Golden!

  Small background, narrow mass peak
  but tiny yield



The variety of search channels at low mass will allow interesting measurements in the coupling and spin/parity sector already with the 2011 and 2012 data set...

### Summary of the considered search channels

(dedicated to the low mass domain; other channels at high mass)

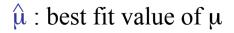
| channel             | ggF | VBF      | VH       | ttH | Mass range (GeV/c²) | Signal<br>yield* | S/B (%)                           | Mass resolution (GeV/c²) |
|---------------------|-----|----------|----------|-----|---------------------|------------------|-----------------------------------|--------------------------|
| γγ                  | ✓   | ✓        | <b>√</b> | ✓   | 110-150             | ~ 250            | 1 → 20%                           | 1.6                      |
| ττ                  | ✓   | <b>✓</b> | ✓        |     | 110-140             | ~ 240            | $0.5 \rightarrow 10\%^{\ddagger}$ | ~ 20                     |
| bb                  |     |          | ✓        | ✓   | 110-130             | ~ 60             | 0.3 → 3%‡                         | ~ 15                     |
| $ZZ \rightarrow 41$ | ✓   |          |          |     | 120-500             | ~ 8              | ~ 1.3                             | 2.2                      |
| WW → lvlv           | ✓   | ✓        |          |     | 120-600             | ~ 111            | 10%                               | Very poor                |

<sup>(\*</sup> At 125 GeV/c<sup>2</sup>, for ~ 13 fb<sup>-1</sup> at  $\sqrt{s} = 8 \text{ TeV}$ 

<sup>\*</sup> not completely fair since there is some crude information in the mass)

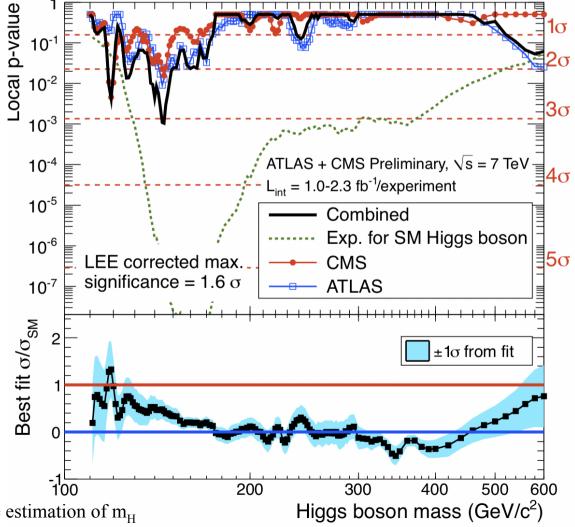
### Discovery

### Panorama in November 2011:


Basically, want to *measure* the *signal strength* or Parameter of Interest (poi) Or test some hypothesized values :  $\sigma(nn -$ 

 $\mu = \frac{\sigma(pp \to H)BR}{[\sigma(pp \to H)BR]_{SM}}$ 

- $\mu \le 0$ , no signal
- SM Higgs :  $\mu = 1$
- $\mu >> 1$ : more fun!


 $p_0$ : compatibility of the observation with bkg only: test  $\mu = 0$ 

- ~ fraction of toy bkg experiments that are less bkg-like than the data
- 5 sigmas discovery  $\Leftrightarrow$  p<sub>0</sub> = 2.85 10<sup>-7</sup>



it is *not* an accurate cross-section measurement

the mass at which it is maximum is **not** an accurate estimation of m<sub>H</sub>



### Discovery

### Panorama in November 2011:

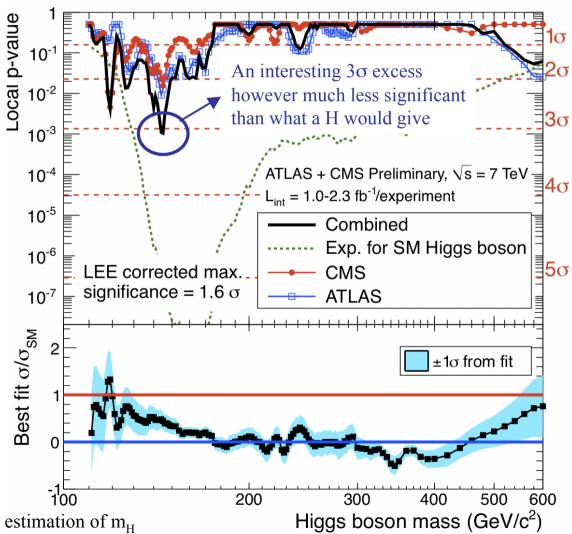
Basically, want to *measure* the *signal strength* or Parameter of Interest (poi) Or test some hypothesized values:  $\mu = \frac{\sigma(pp \to H)BR}{[\sigma(pp \to H)BR]_{SM}}$ 

•  $\mu \le 0$ , no signal

• SM Higgs :  $\mu = 1$ 

•  $\mu >> 1$ : more fun!

p<sub>0</sub>: compatibility of the observation with bkg only : test  $\mu = 0$ 


~ fraction of toy bkg experiments that are less bkg-like than the data

5 sigmas discovery  $\Leftrightarrow p_0 = 2.85 \ 10^{-7}$ 

 $\hat{\mu}$ : best fit value of  $\mu$ 

it is *not* an accurate cross-section measurement

the mass at which it is maximum is **not** an accurate estimation of m<sub>H</sub>



Basically, want to measure the signal strength or Parameter of Interest (poi)

Or test some hypothesized values:

- $\mu \le 0$ , no signal
- SM Higgs :  $\mu = 1$
- $\mu >> 1$ : more fun!

 $A \sim 2.5$   $\sigma$  excess, larger than what can be expected from H at that mass correlated to a measured  $\mu$  of  $\sim 1.4$ 

 $p_0$ : compatibility of the observation with bkg only: test  $\mu = 0$ 

- ~ fraction of toy bkg experiments that are less bkg-like than the data
- 5 sigmas discovery  $\Leftrightarrow$  p<sub>0</sub> = 2.85 10<sup>-7</sup>

 $\hat{\mu}$ : best fit value of  $\mu$ 

it is *not* an accurate cross-section measurement

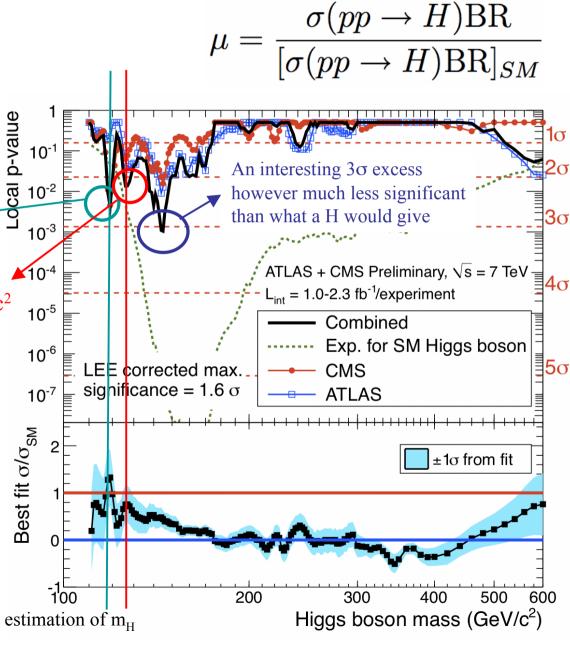
the mass at which it is maximum is **not** an accurate estimation of m<sub>u</sub>



Basically, want to measure the signal strength or Parameter of Interest (poi)

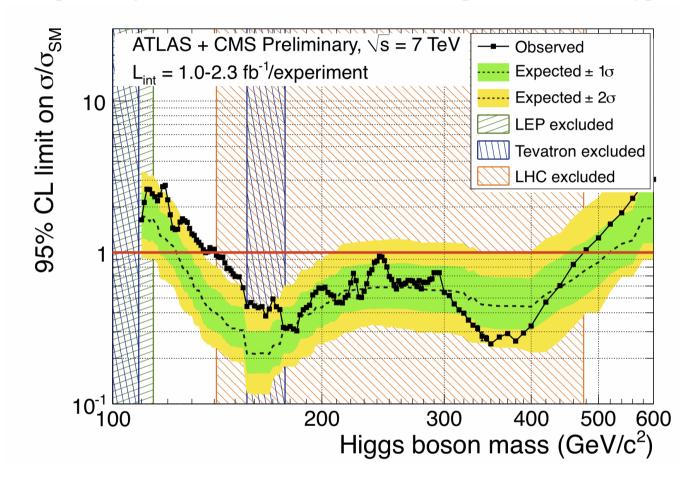
Or test some hypothesized values:

- $\mu \le 0$ , no signal
- SM Higgs :  $\mu = 1$
- $\mu >> 1$ : more fun!


 $A \sim 2.5$   $\sigma$  excess, larger than what can be expected from H at that mass correlated to a measured  $\mu$  of  $\sim 1.4$ 

 $A \sim 2.1 \ \sigma$  excess, similar to what can be expected from H at  $m_H \sim 126 \ GeV/c^2$ 

- $p_0$ : compatibility of the observation with bkg only: test  $\mu = 0$ 
  - ~ fraction of toy bkg experiments that are less bkg-like than the data
  - 5 sigmas discovery  $\Leftrightarrow$  p<sub>0</sub> = 2.85 10<sup>-7</sup>
- $\hat{\mu}$ : best fit value of  $\mu$

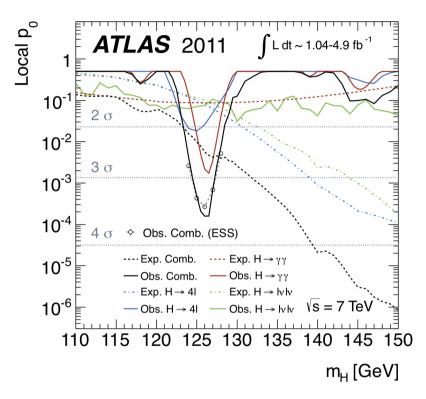

it is *not* an accurate cross-section measurement

the mass at which it is maximum is **not** an accurate estimation of  $m_{\mu}$ 

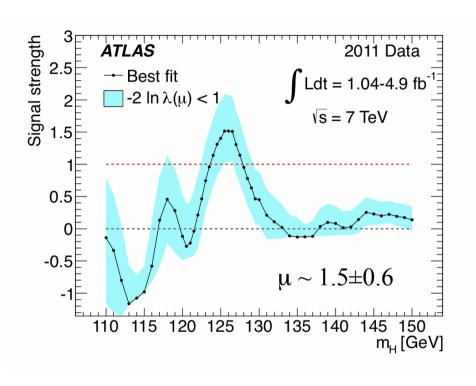


- ⇒ Some relatively small excesses at low mass, all compatible with bkg fluctuations
- $\Rightarrow$  Set limits on  $\mu$ :

compatibility of the observation with S+B experiments : test hypothesized  $\mu$  values




Most of the interesting range covered, two not excluded domains


- → [115,141]  $GeV/c^2$
- $\rightarrow$  High mass (less motivated) > 476 GeV/c<sup>2</sup>

Concentrate on the low mass region, where some  $\sim 2~\sigma$  excesses are observed

### The December 2011 update and winter 2012 results: evidence (?) for a new boson

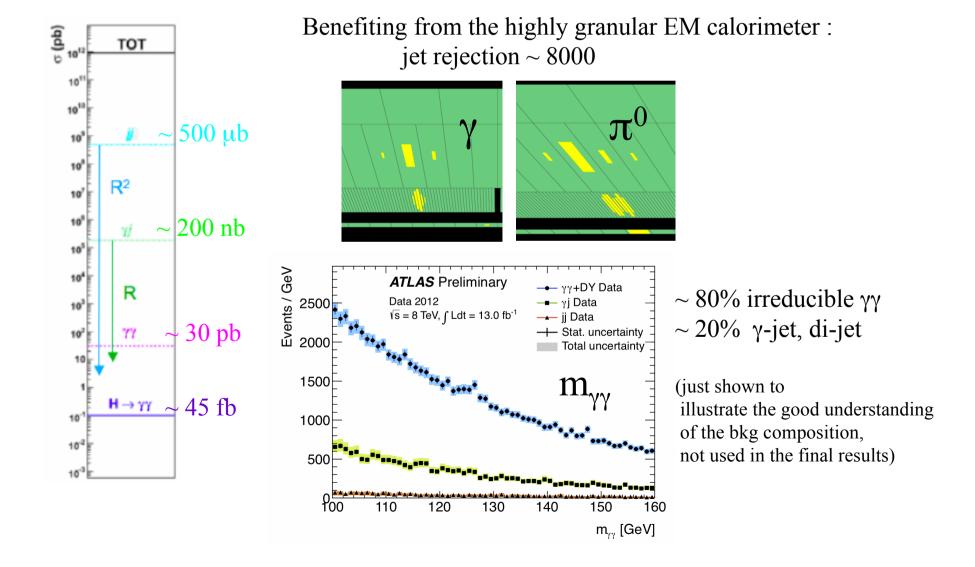


At 
$$m_H \sim 126 \text{ GeV/c}^2$$
  
 $local^{(*)} p_0 \sim 3 \cdot 10^{-4} \Leftrightarrow 3.5\sigma$ 



Something is emerging at a mass  $\sim 126~GeV/c^2$  with a *global* significance of  $\sim 2.2\sigma$ 

e.g. intuitively but very roughly:

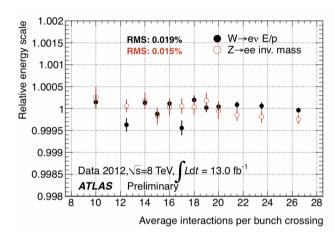

<sup>\*</sup> OK, you get an excess, but it's likely to find one because your search region is large! Rescale by the probability to find an excess *anywhere* in this mass region,

### The two most powerful channels



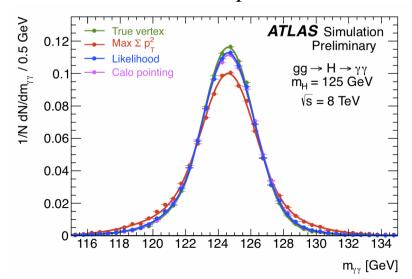
Large bkg but narrow mass peak: key ingredients

- **Y** Photon precise energy and direction measurements for  $m_{yy}$  estimation




Back to the m<sub>yy</sub> estimation  $m_{\gamma\gamma}^2 = 2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta_{12})$ 

 $\rightarrow$  accurate photon energy scale : from  $Z \rightarrow e^+e^-$  data and extrapolation  $e \rightarrow \gamma$  require excellent material budget knowledge


(+ control from radiative decays  $Z \rightarrow e^+e^-\gamma$ , limited by statistics and to low energy)

Also very good stability w.r.t. Number of interactions / bunch crossing



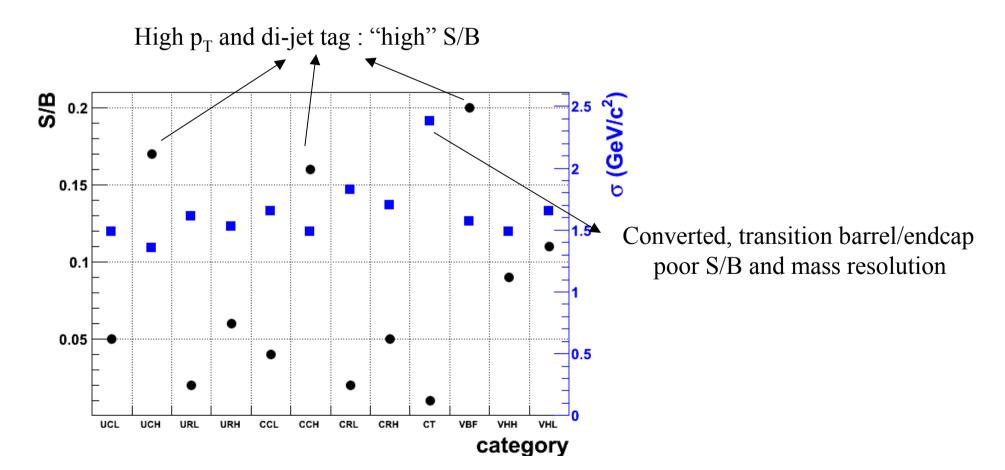
#### → accurate direction :

pile-up! ~ 20 soft interactions overlaid and longitudinal beam spot size ~ 45 mm have to choose the right interaction point (PV)... calorimeter pointing (longitudinal segmentation) + photon conversion (if any) + recoiling tracks



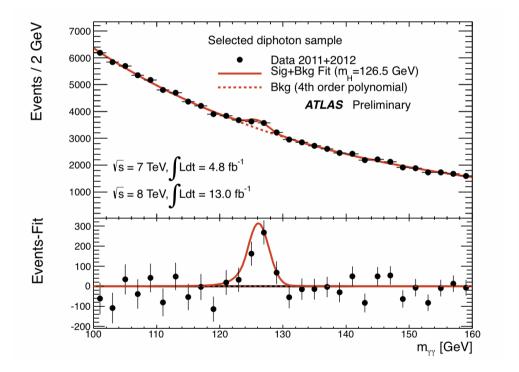
If no measured PV, would add  $\sim 1.3 \text{ GeV/c}^2$  to the mass resolution

instead : negligible contribution from direction to mass resolution driven by energy resolution (sampling term  $\sim 10\%/\sqrt{E}$  + constant term  $\sim 1\%$  not at design yet)


Improving inclusive search with *categorisation* 

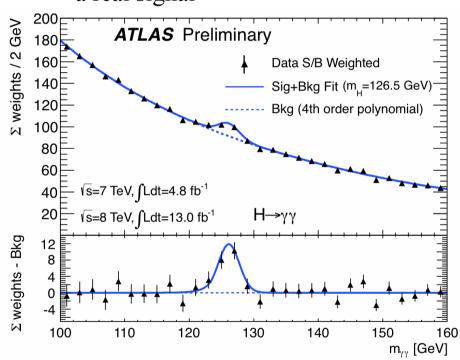
Events with rather different purity are mixed together

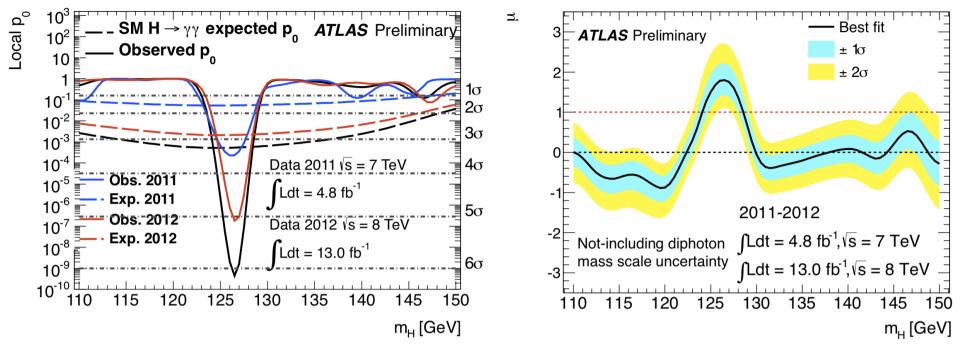
⇒ sorting them in different categories can increase the sensitivity


From 9 categories (central/forward and converted/not converted photons,  $p_{Tt}$  ( $\gamma\gamma$ )) for Winter 2012 to 10 (+ tagging jets, better S/B, disentangling VBF) for Summer 2012 to 12 (+low mass di-jet, +lepton, better S/B, disentangling VH) for Fall 2012

Final analysis : 10 (2011) + 12 (2012) categories



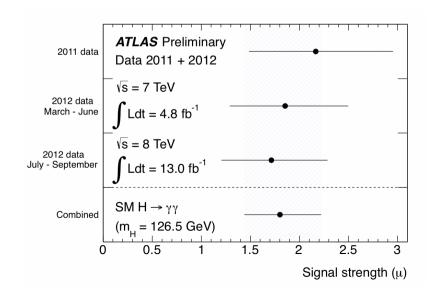

### Final "mass plots":


Only  $m_{\gamma\gamma}$  far from the full power of the categorisation bump clearly visible anyway



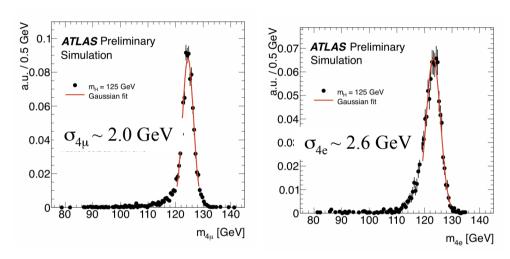
Weighting events by category  $w_i = \ln(1+S_i/B_i)$ 

bump clearer, as it should if it is a real signal

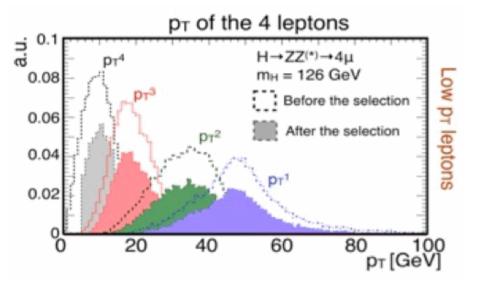




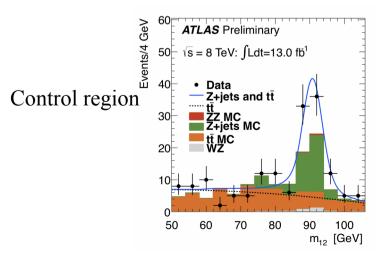

 $\sim 6\sigma local significance (3.3\sigma expected)$  at  $m_H = 126.5 \text{ GeV/c}^2 \Rightarrow \text{first standalone discovery}$ !

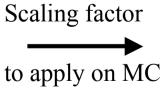

$$\hat{\mu} = 1.80 \pm 0.30 (stat.)^{+0.21}_{-0.15} (syst.)^{+0.20}_{-0.14} (theo.)$$
 @ 126.6 GeV/c<sup>2</sup>

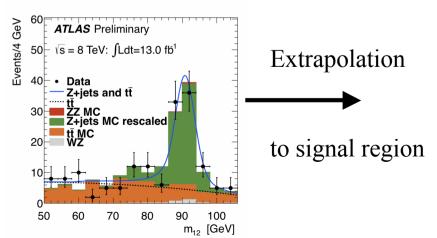
Best fit value of  $\mu \sim 2.4\sigma$  above the SM hypothesis, a feature  $\sim$  constant in time




# $H \rightarrow ZZ^* \rightarrow 4\mu / 2\mu 2e / 4e$

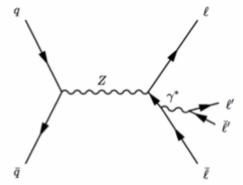

- ► Small yield : < 1 evt / fb<sup>-1</sup> but small bkg
- ★ Excellent mass resolution (tracking+calo)
- **∀** Key ingredient : low p<sub>T</sub> lepton identification

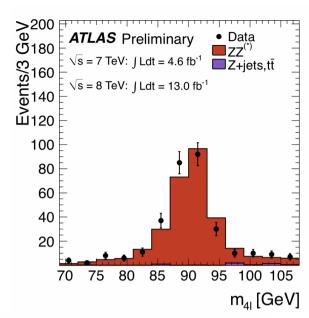




4 leptons, one pair OS-SF compatible with an on-shell Z



Reducible bkg from b/c  $\rightarrow$  1: isolation (pile up !) + impact parameter Data driven estimation: example for tt and Z+jets determination in ll + $\mu$ + $\mu$ -



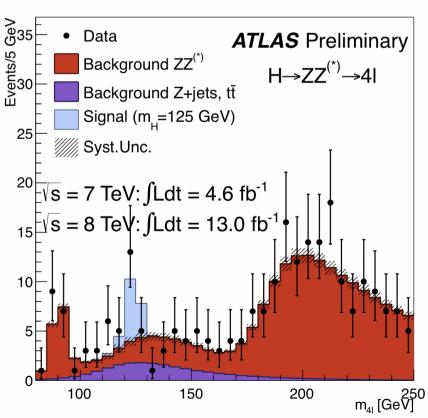


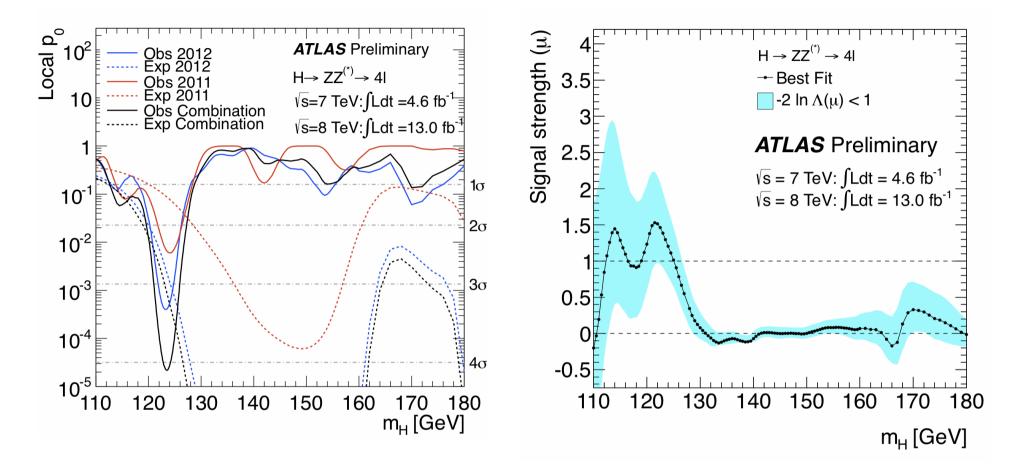

#### Dress rehearsal:

Dealing with very low  $p_T$  leptons to search for a known resonance decaying to 4 leptons : the Z!






### $\Rightarrow$ Final mass plot :


In the range [120,130]  $GeV/c^2$ 

$$S = 9.9 \pm 1.3$$
  
(40%/40%/20% 4\mu/2\mu2e/4e)

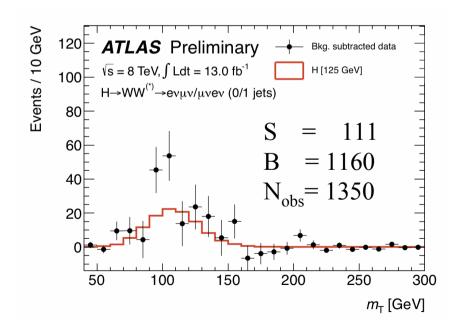
$$B = 8.3 \pm 0.5$$

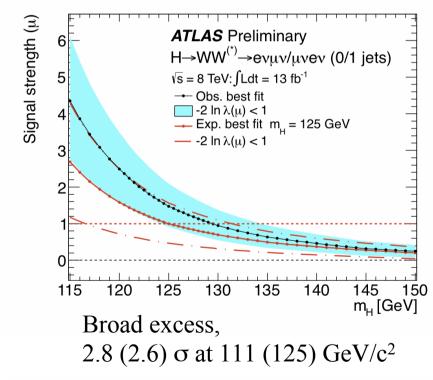
$$N_{obs} = 18$$
  
(8/6/4 4\mu/2\mu/2\epsilon/2e/4e)





4.1 $\sigma$  local significance (3.1 $\sigma$  expected) at  $m_H = 123.5 \text{ GeV/c}^2$ 


$$\hat{\mu} = 1.3^{+0.5}_{-0.4}$$

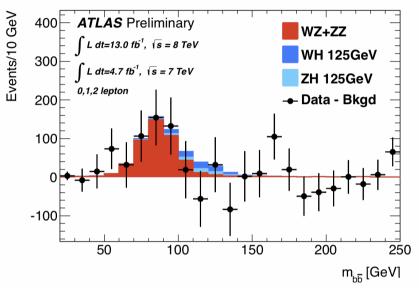

### WW, bb and $\tau\tau$ in two slides!

# $H \rightarrow WW \rightarrow e\nu\mu\nu$

Large yield and S/B, but no mass peak

- → Need good understanding of missing transverse energy (pile-up!)
- → Good control of bkg : data driven with different control regions (e.g. same sign leptons : W+jets; b-tagging : top)
- → Spin correlation used to define the signal region : model dependence (spin 0) (leptons preferentially emitted in the same direction)
- $\rightarrow$  Two jet bins : 0 or at most 1 jet
- → Some discrimination in the transverse mass



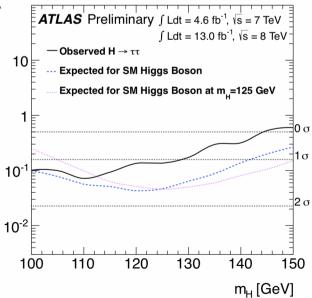



$$\hat{\mu} = 1.48^{+0.35}_{-0.33}(stat.)^{+0.28}_{-0.27}(syst.)^{+0.41}_{-0.36}(theo.)$$

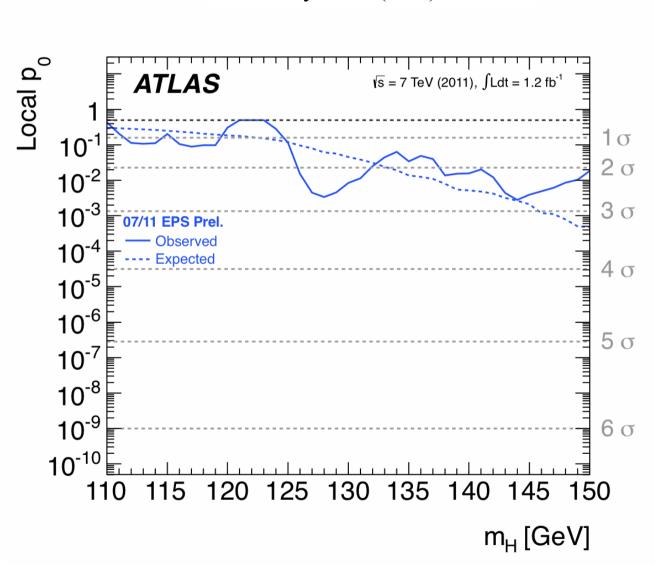
### $VH \rightarrow 11/vv/lv + bb$

Paramount for precise coupling measurements (H → bb drive the total width) but tough! Not yet sensitive to the SM Higgs boson

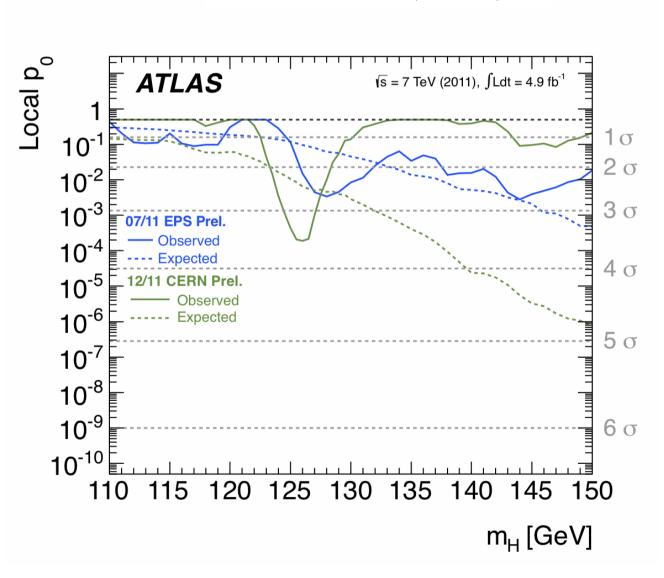
promising  $4\sigma$  observation of the companion processes  $H \leftrightarrow Z, Z \rightarrow bb$ 



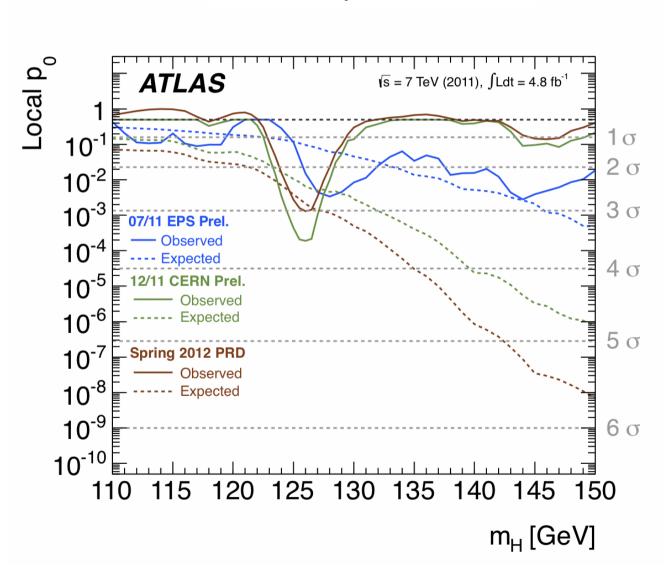

# $H \rightarrow \tau\tau$ (VBF, boosted)

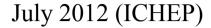

Sensitivity to  $H_{SM}$  almost there :  $\sim 1.2 \text{ x SM}$ Very slight excess :

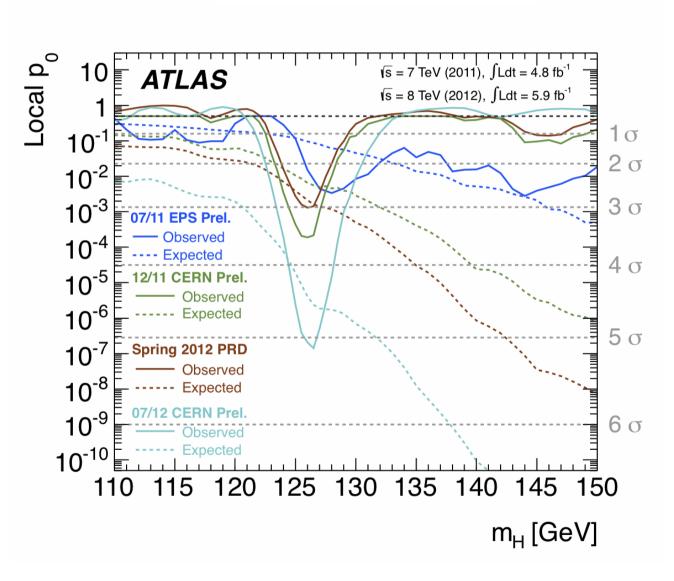
at  $m_H = 125 \text{ GeV/c}^2$ ,  $\sim 1.1\sigma$  local significance


$$\hat{\mu} = 0.7 \pm 0.7$$

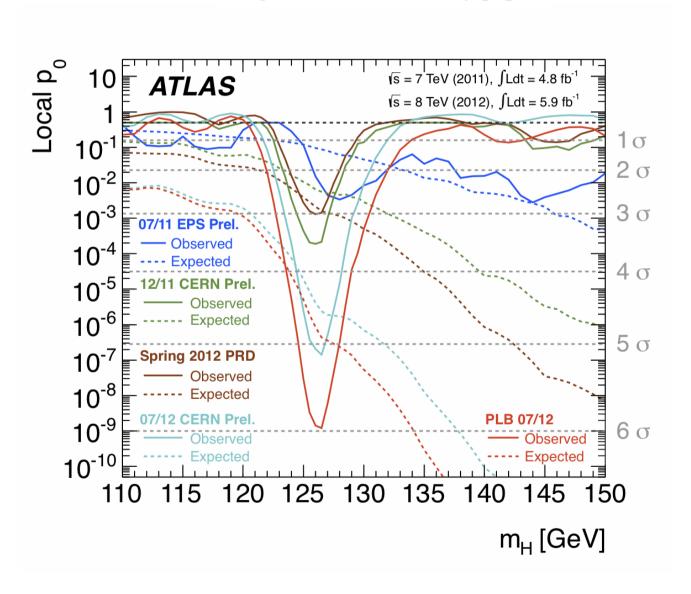


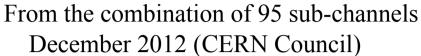


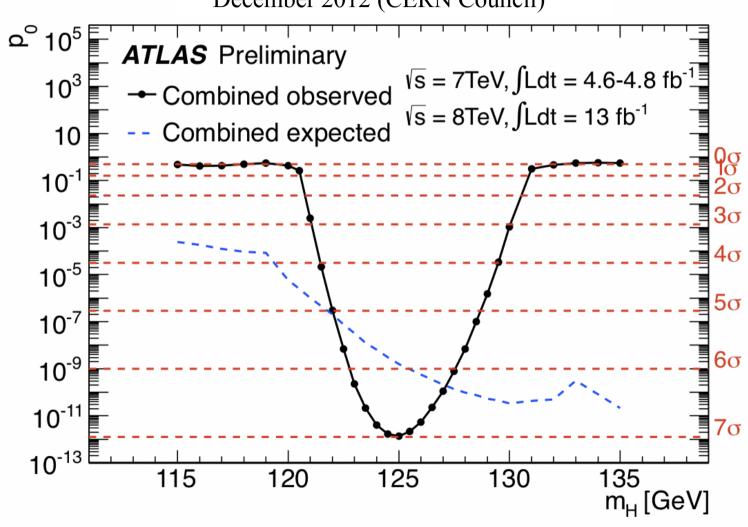



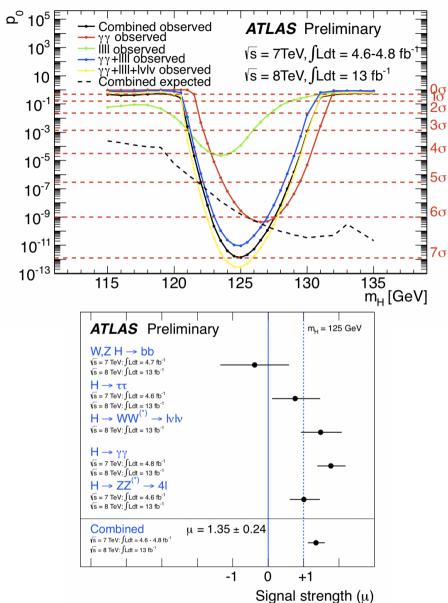




February 2012

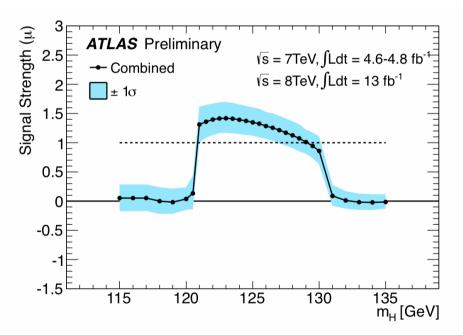






August 2012 : Discovery paper







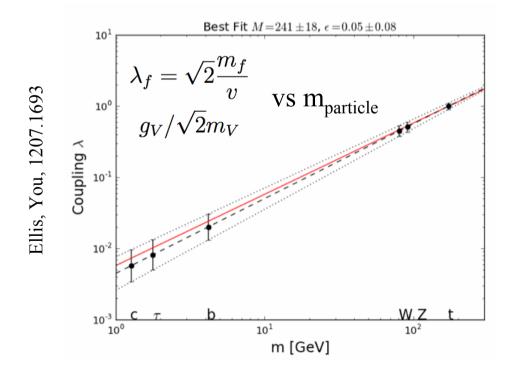

(one of the last  $p_0$  plot in the SM context?)



At  $m_H = 125 \text{ GeV/c}^2$ :  $\hat{\mu} = 1.35 \pm 0.19(stat.) \pm 0.15(syst.)$ CMS:  $0.88\pm0.21$   $7\sigma$  local significance (5.9 $\sigma$  expected) at 125 GeV/c<sup>2</sup>



μ rather stable w.r.t. hypothesised mass


(and illustration\* that this is *definitively not* a mass measurement!)

<sup>\*</sup> with a little help from a conspiracy ;-) see next slides...

- ► Mass ~ 125 GeV/c² very much consistent with the preferred values from EW fits and theoretical prejudices
- $\checkmark$  Is it a neutral boson? Yes: observation of e.g. H → γγ  $\checkmark$

★ Is it J<sup>CP</sup> = 
$$0^{++}$$
? (H → γγ ⇒ C = +)

**У** Does it couple to other SM particles ∝ mass?



Coupling to V = 
$$g_V = 2\frac{m_V^2}{v}$$

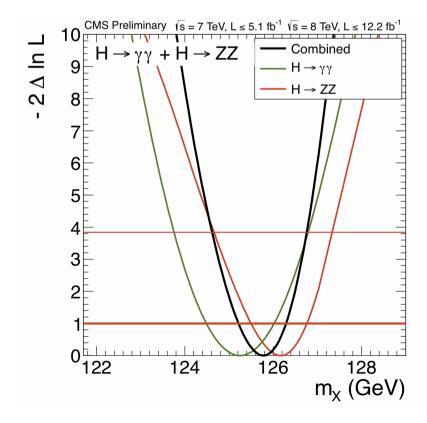
Coupling to fermion = 
$$\lambda_f = \sqrt{2} \frac{m_f}{v}$$

Try that ansatz (SM : M = v,  $\varepsilon = 0$ )

$$\lambda_f' = \sqrt{2} (\frac{m_f}{M})^{1+\epsilon}$$

$$g_V'=2rac{m_V^{2(1+\epsilon)}}{M^{1+2\epsilon}}$$

Fit  $(M,\epsilon)$  with already available data  $M = 241\pm18~GeV/c^2,~\epsilon = 0.05\pm0.08$ 

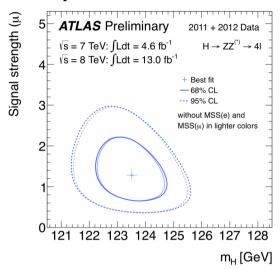

Very consistent with SM...

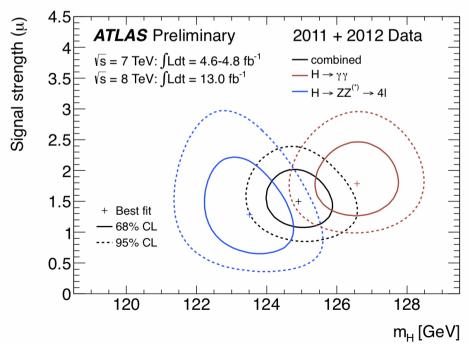
### Mass measurement

Use the two high resolution channels :  $H \rightarrow \gamma \gamma$ ,  $H \rightarrow ZZ \rightarrow 4l$ 

Trying to stay model-independent: the individual signal strengths can be different, and are *profiled away* (let the data choose their preferred values)

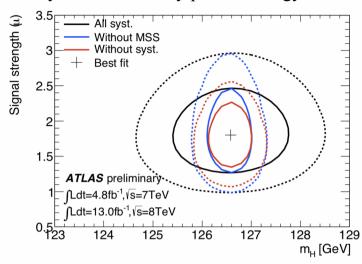
### CMS:





Both channels fully consistent

$$m_H = 125.8 \pm 0.4(stat.) \pm 0.4(syst.) \text{ GeV/c}^2$$

#### **ATLAS**


 $m_H(41) = 123.5 \pm 0.9(stat.) \pm 0.3(syst.)$ Driven by the 8 four muon events





$$m_{H}(\gamma\gamma) = 126.6 \pm 0.3(\text{stat.}) \pm 0.7(\text{syst.})$$

Syst. dominated by photon energy scale



Probability for a single particle to produce mass difference between the two channels larger than observed is 0.8% (2.7 $\sigma$ )

Many checks have been performed to understand the origin of this discrepancy Hopefully the  $\sim 10 \text{ fb}^{-1}$  amount of data still to be analysed will help to clarify this

#### Meanwhile:

$$m_H = 125.2 \pm 0.3 \text{(stat.)} \pm 0.6 \text{(syst.)} \text{ GeV/c}^2$$

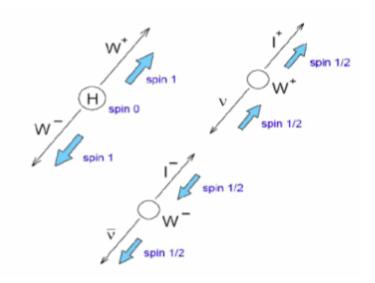
From Resonaances blog (quoted by C. Grojean at HC2012):

Prejudices help!

And... in statistics we trust...

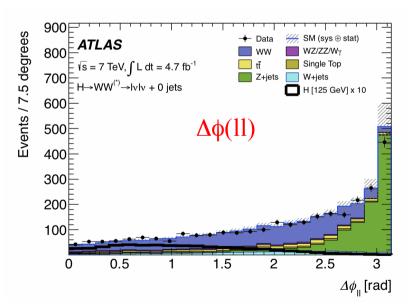
Do not expect a clear visual impression

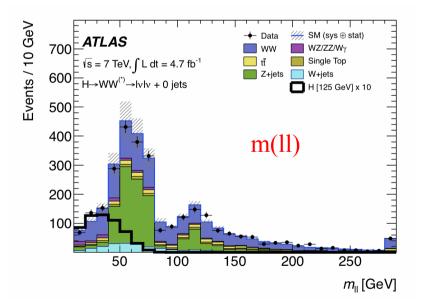
« nice to see progresses on that but


"this question carries a similar potential for surprise as a football game between Brazil and Tonga" »

- The low mass region is not very favourable for  $J^P$  measurement many information in  $H \to ZZ \to 4l$  but tiny yield relatively large yield in  $H \to WW \to lvlv$  but final state not fully reconstructed relatively large yield in  $H \to \gamma\gamma$ , but huge background
- In addition to parity, concentrate on Spin 0 (SM) vs Spin 2:
   Look at *minimal coupling* for the time being ("graviton like", 2<sup>+</sup>) no look at higher spin for simplicity
   Spin 1 forbidden by the Landau/Yang theorem from H → γγ observation
- The analyses are inclusive to stay as model independent as possible

  This is very conservative, e.g. the p<sub>T</sub> spectrum of a spin 2 produced in qq annihilation
  is expected to be much softer than the SM Higgs one. Need to think more about these aspects
- > The signal yield is a nuisance parameter, forget about the fact that μ is not so far away from the SM expectation
- The WW and ZZ observations already suggest  $J^P = 0^+$  as being likely (exclude pure CP odd)

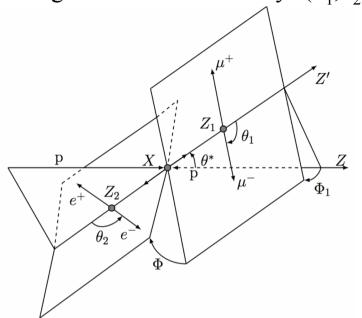

One should keep in mind that if it's not something close to the SM Higgs boson, it is a *very smart impostor* 


H → WW : Spin 0 property already explicitly included in the search analysis (in association with the V-A nature of the charged currents)

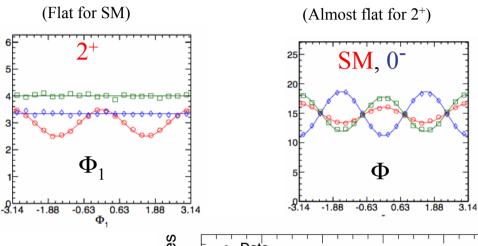


Charged leptons close-by in space

- $\rightarrow$  small azimuthal separation  $\Delta \phi(11)$
- → small di-lepton mass
- ⇒ Change analysis strategy to exploit this kind of variables without selection bias

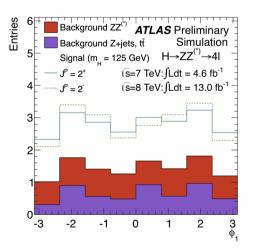






Preliminary analysis hopefully available for Moriond, stay tune...

# The golden four lepton channel (if only its yields were larger!)

4 body final state, fully reconstructed  $\Rightarrow$  many clean variables to disentangle hypotheses 3 angles from the  $Z^{(*)}$  decays  $(\theta_1, \theta_2, \Phi)$ , 2 angles for  $Z^{(*)}$  production  $(\theta^*, \Phi_1)$ , two masses



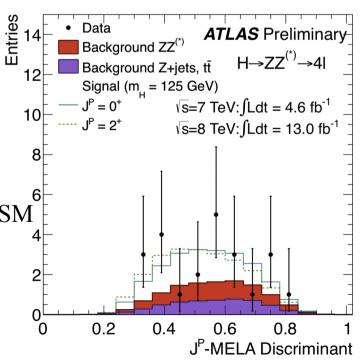

Not very sensitive to SM vs 2<sup>+</sup> yet



How  $\Phi_1$  looks like in ATLAS

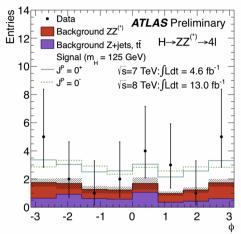
! S and B stacked!




Combine all variables via the matrix element for both production processes (J<sup>+</sup>-MELA)

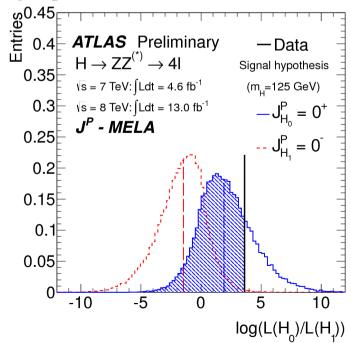
minimal 2<sup>+ (†)</sup> disfavoured w.r.t. SM

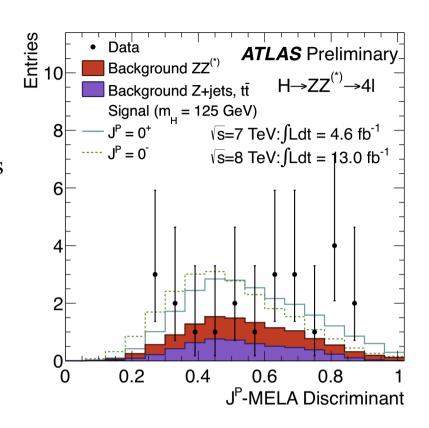
$$(a) \sim 1\sigma$$


(and data fully compatible with SM)

† a very specific spin 2, produced via gluon fusion only




# The four lepton channel is more powerful for parity


e.g.  $\Phi$  angle between the Z decay planes

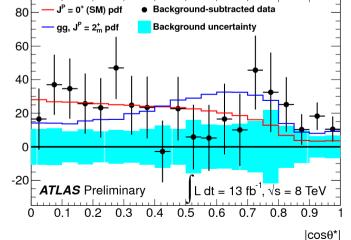


 $\Rightarrow$  5 relevant variables in a 0<sup>P</sup>-MELA

Example of statistical treatment : Ranking experiments with likelihood ratio






Pseudo-scalar disfavoured w.r.t. SM @ 2.7σ (1.9σ expected)

# What does $H \rightarrow \gamma \gamma$ has to say?

Despite large bkg and little information, might contribute where golden channel is less sensitive

Relevant variable : photon production angle  $\theta^*$ Very different shapes between SM and  $gg \rightarrow X(2^+) \rightarrow \gamma\gamma...$ **ATLAS** Preliminary L dt = 13 fb<sup>-1</sup>, √s = 8 TeV (qq annihilation much more SM-like) 0.08 But this is on top of a huge bkg! 0.07 0.06 0.05 0.04 **Background** 0.03 Background 0.02  $J^P = 0^+ (SM)$ 0.01 200 L dt = 13 fb<sup>-1</sup>,  $\sqrt{s}$  = 8 TeV 0.5 0.4 |cosθ\*| 0.3 0.4 0.5 0.6 0.7 0.8  $|\cos\theta^*|$ Events / 0.05 Background-subtracted data

Bkg subtracted:

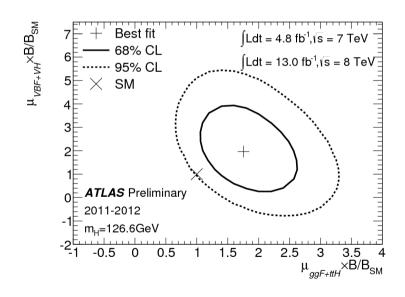


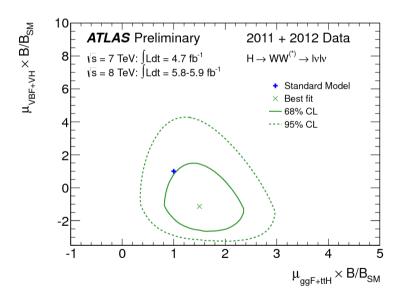
Data favours the SM

w.r.t. to  $gg2^+$ 

p-values : SM :  $0.291 (0.6\sigma)$ 

 $gg2^+: 0.086 (1.4\sigma)$ 


# Measure Cross-section x Branching ratio


But cannot measure total width and all couplings in a completely model independent way make drastic but well motivated assumptions

Simplest departure from the global signal strength model:

Two signal strengths :  $\mu_{ggF+ttH}$  ( $\Leftrightarrow$  coupling to top) and  $\mu_{VBF+VH}$  (\*) ( $\Leftrightarrow$  coupling to W/Z)

Thanks to exclusive categories in  $H \rightarrow \gamma \gamma$  and  $H \rightarrow WW \rightarrow lvlv$  searches





Measurements a little bit high ( $\gamma\gamma$ ) as anticipated from the global  $\mu$  result but still consistent with the SM @ 1-2 $\sigma$ 

<sup>\*</sup> Can also separate  $\mu_{VBF}$  and  $\mu_{VH}$  thanks to the 2 new VH cat. in  $\gamma\gamma$ 

# Going further...

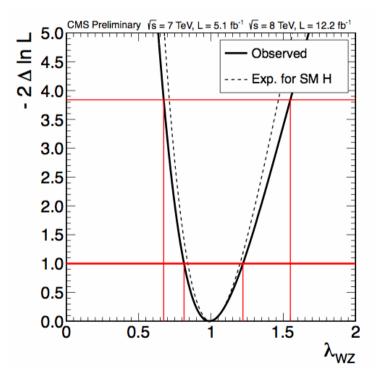
- ✓ Assuming a single narrow resonance at a mass  $m_X \sim 125 \text{ GeV/c}^2$  ( $m_X$  could also be *profiled away* in the fit)
- ✓ Assume the same tensor structure of the SM Higgs boson :  $J^{CP} = 0^{++}$
- ✓ Link to an effective Lagrangian and use scale factors

$$\mathcal{L} = \kappa_W \frac{2m_W^2}{v} W_{\mu}^+ W_{\mu}^- H + \kappa_Z \frac{m_Z^2}{v} Z_{\mu} Z_{\mu} H - \sum_f \kappa_f \frac{m_f}{v} f \bar{f} H + c_g \frac{\alpha_s}{12\pi v} G_{\mu\nu}^a G_{\mu\nu}^a H + c_\gamma \frac{\alpha}{\pi v} A_{\mu\nu} A_{\mu\nu} H$$

$$\kappa_{\rm g}^2 = \sigma(gg \rightarrow H)/\sigma(gg \rightarrow H)_{\rm SM}$$
,  $\kappa_{\gamma}^2 = \Gamma(H \rightarrow \gamma\gamma)/\Gamma(H \rightarrow \gamma\gamma)_{\rm SM}$ ,  $\kappa_{\rm H}^2 = \Gamma_{\rm H}/\Gamma_{\rm H,SM}$ 

 $\kappa_{g,\kappa_{\gamma}}$  and  $\kappa_{H}$  are either free parameter (e.g. contribution from unknown particles in the loop for  $\kappa_{g,\kappa_{\gamma}}$ , or invisible decays for  $\kappa_{H}$ ) or function of the tree level coupling scale factors  $\kappa_{W,Z,f}$ 

Rewrite 
$$(\sigma \cdot BR)(ii \rightarrow H \rightarrow ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$
 with these scale factors, e.g


$$(\sigma \cdot \mathrm{BR}) \left( \mathrm{gg} \to \mathrm{H} \to \gamma \gamma \right) = \sigma_{\mathrm{SM}} (\mathrm{gg} \to \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}} (\mathrm{H} \to \gamma \gamma) \cdot \frac{\kappa_{\mathrm{g}}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\mathrm{H}}^2}$$

... and test different well motivated models

**Y** The custodial symmetry :  $\kappa_W = \kappa_Z$ 

No assumption on total width, main poi =  $\lambda_{WZ} = \kappa_W/\kappa_Z$  (and two other  $\kappa_F/\kappa_Z$  and  $\kappa_Z^2/\kappa_H$ ,  $\kappa_F$  is a common fermion scale factor)

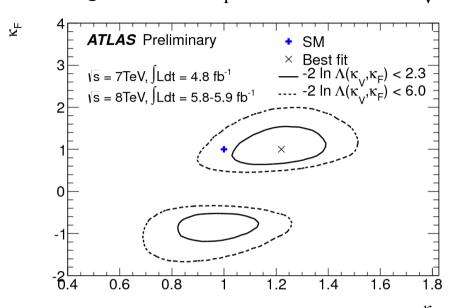
# Example of result from CMS:



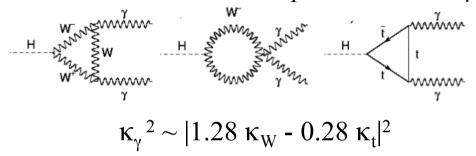
$$\lambda_{\rm WZ} = 1.0^{+0.22}_{-0.19}$$

$$\lambda_{WZ} \in [0.67, 1.55]$$

Similar conclusion in ATLAS


⇒ With the available data:

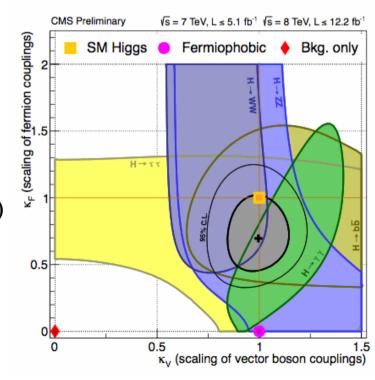
custodial symmetry is also respected
in this newly observed sector


## Fermions and Weak bosons rescaling

(assuming only SM particles in loops)

A single fermion  $\kappa_F$  and weak boson  $\kappa_V$  scale factors




One overall not observable sign, choose  $\kappa_V > 0$ Difference between  $\kappa_F > 0$  and  $\kappa_F < 0$ from interference between top and W in H  $\rightarrow \gamma \gamma$ 



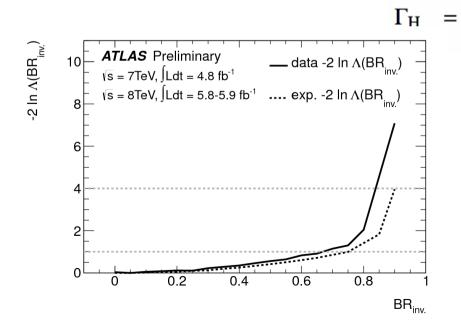
@ 95% CL  $\kappa_F \in [-1.5, -0.5]$  U [0.5,1.7]:  $\Rightarrow$  fermiophobic X strongly disfavoured  $\kappa_V \in [0.7, 1.4]$ 

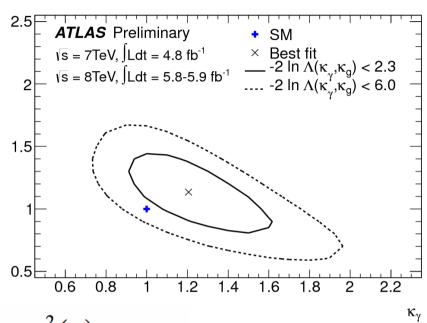
A nice illustration of the interplay between many search channels (CMS) (imposing  $\kappa_F > 0$ )

A negative solution if preferred would be far away from the SM, invalidating a little bit the basic assumption used in this framework that only small deviations can be searched for



# ★ Loop couplings and undetected decays


No significant deviation observed so far : assume all tree level scale factors are 1 and probe  $\kappa_g$  and  $\kappa_v$ 2.5 | ATLAS Proliminary | 2.4 | ASL Proliminary | 2.5 | ATLAS Proliminary | 2.4 | ASL Proliminary | 2.5 | ATLAS P


Assuming no new physics (NP) in decay

$$\kappa_{\rm g} = 1.1^{+0.2}_{-0.3}$$
 $\kappa_{\gamma} = 1.2^{+0.3}_{-0.2}$ 

Compatibility between best fit and SM  $\sim 18\%$ 

Or assuming undetected decays from NP





$$\frac{\kappa_{\rm H}^2(\kappa_i)}{(1-{\rm BR}_{\rm inv.,undet.})}\Gamma_{\rm H}^{\rm SM}$$

$$\kappa_{g} = 1.1^{+1.4}_{-0.2}$$
 $\kappa_{\gamma} = 1.2^{+0.3}_{-0.2}$ 

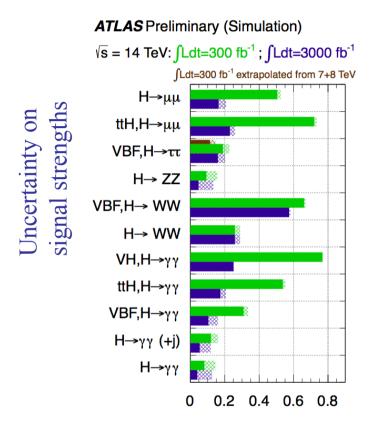
$$BR_{inv,unded} \le 84\% @ 95 \% CL$$

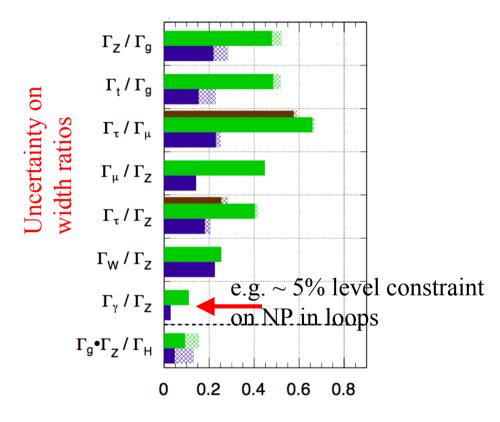
### **⅓** In the fermion sector

- → Test lepton vs quark
- → Test down type vs up type

Before HCP 2012, no direct handle on  $\kappa_{\rm f}$  , only indirect through top quark loop in gluon fusion and di-photon decays

 $H \rightarrow \tau^+\tau^-$  now entering the game (but only very mild excess for the time being)





Eagerly waiting for (better) evidences in

 $H \rightarrow \tau^+\tau^-$  and  $H \rightarrow bb$ !

### What else?

- ✓ Short term (2013): improve all analyses and especially the tough ones H  $\rightarrow \tau^+\tau^-$  / bb
- ✓ Projection in the (more or less far) future :





✓ Determination of the scalar potential, an essential missing ingredient : **self couplings**!

 $\lambda_3 H^3 + \lambda_4 H^4$ : are they as predicted by the SM potential *i.e.*  $\lambda_3 \sim m_H^2/(2v)$ ,  $\lambda_4 \sim m_H^2/(8v^2)$ ?  $\lambda_4$ : hopeless in any planed experiment (?)

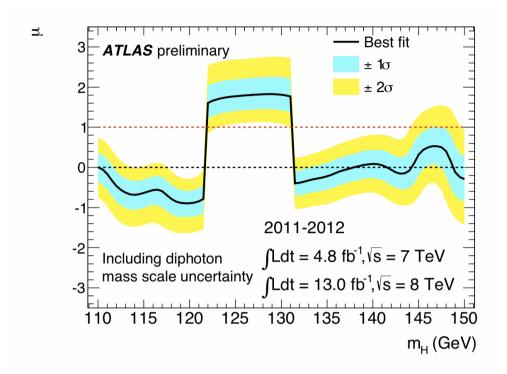
 $\lambda_3$ : very very hard but some hope, e.g.

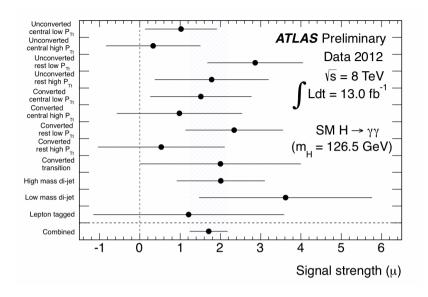
pp  $\rightarrow$  HH  $\rightarrow$  bbyy (S ~ 15, B ~ 21 for 3 ab<sup>-1</sup>! Need to have faith...) bb $\tau^+\tau^-$  (under study)

 $\Rightarrow$  30% measurement of  $\lambda_3$  with ATLAS+CMS combined at 13 TeV and 3 ab<sup>-1</sup>?

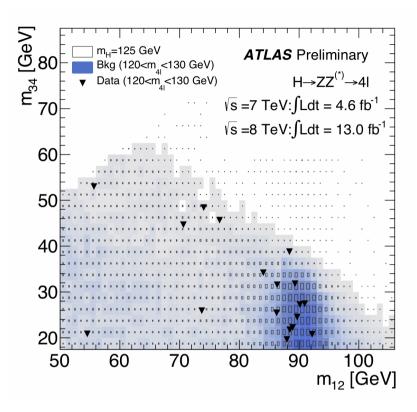
- Thanks to excellent LHC operations (\*) with 25 fb<sup>-1</sup> @ 8 TeV delivered to ATLAS and CMS ...
- \* and excellent performance of CMS/ATLAS ... Trigger/DAQ
  - + "robustification" of reconstruction algorithms to cope with very high pile-up (and also efficient computing!)
- The year 2012 was a fantastic year for Particle Physics!

  At last the discovery of a Higgs-boson like resonance


All measurements up to now are consistent with SM but surprises might occur... (e.g. persistent excess in H  $\rightarrow \gamma\gamma$  in both experiments (waiting for CMS update) actually nice! Could be a portal to New Physics?)


★ Beginning of a new era :
 from searches to "precision" measurements in the Higgs sector

- → Exploit all 2012 data with refined strategies optimized for measurements
- → Consolidate all preliminary measurements
- → Go forward : prepare for 13 TeV collisions after LS1 in 2015


# WE FOUND A NEW PARTICLE

# Backup









Stats: the famous profile likelihood ratio

$$q_L = -2 \ln rac{\mathcal{L}(\mathbf{p}_A, \hat{\hat{ heta}}_A)}{\mathcal{L}(\hat{\mathbf{p}}, \hat{ heta})}$$

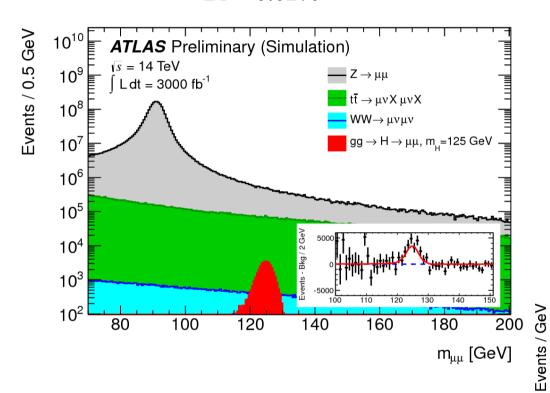
 $\boldsymbol{p}$ : vector of poi, e.g.  $\kappa_F$  and  $\kappa_V$ 

 $\theta$ : vector of nuisance parameter (could be  $m_x$ )

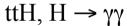
A: label of an hypothesis, e.g.  $\kappa_F = 1 = \kappa_V$ 

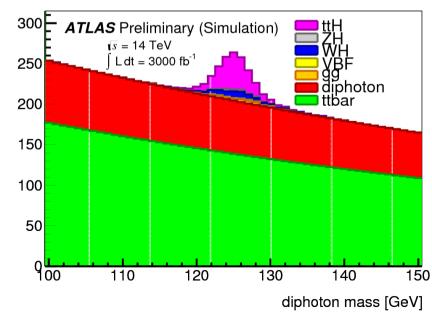
 $\theta_A$ : nuisance parameters that minimize L given A

hat notation: values at the absolute minimum


If some limits (often met)  $q_L$  is distributed at a  $\chi^2$  for dim(p) degrees of freedom

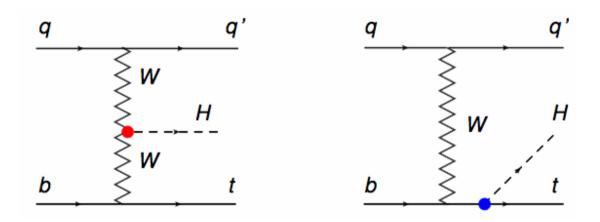
Discover:  $q_0$  and  $p_0$ 


# Less background like or signal likeliness




# Ultra rare : $H \rightarrow \mu^+\mu^-$ ! Br = 0.02%




Top Yukawa coupling





# Probing the "sign" of top quark Yukawa coupling with tH production

Thanks to the interference between two processus



No expected visible signal in SM But already sensitive with 8 TeV data if "wrong" sign