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Classical hyperparameter tuning

Algorithm Hyperparameters
2
SVM, k(x,y) = exp ( M) 0, C
MLP learning rate, batchsize,
size of hidden layer, penalties, ...
Boosting Number of iterations, hyper-
parameters of the weak classifiers.
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Classical hyperparameter tuning

Algorithm Hyperparameters
2
SVM, k(x,y) = exp ( M) 0, C
MLP learning rate, batchsize,
size of hidden layer, penalties, ...
Boosting Number of iterations, hyper-
parameters of the weak classifiers.

ExHAUSTIVETUNING (D, H C H, A)

1 for x € H, > Outer loop

2 Train A on D with hyperparameters x, > Inner loop
3 Compute validation error f(x) = R(A(D, x)),
4

return arg min,c,, f(x).
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Sequential model-based optimization

SMBO(f, Mo, T, S)
1 O 0,

Fort<— 1to T,

x* «— argmax, S(x, M;_1),

O — OU(x* f(x%)),

2

3

4 Evaluate f(x*), > Erpensive step
5

6 Fit a new model M; to O,

7

return arg ming, f(x).

» SMBO is useful when target evaluation is costly.
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Gaussian Processes and Expected Improvement
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» GPs are priors over functions that are closed under sampling.
> El(x) :=E((min; f(x;) — f(x)) AO|Fp).
» There are other choices [6, 10, 8].
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Sequential model-based tuning in ML

» SMBO was successfully applied to deep learning [1],

» Since then, advances were made in methodology [8],
benchmarking [9], software [2].
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Sequential model-based tuning in ML

» SMBO was successfully applied to deep learning [1],

» Since then, advances were made in methodology [8],
benchmarking [9], software [2].

All experiments have been based on single datasets, while humans
have a memory of past experiments on similar datasets.

» Is there something to gain by using information obtained on
other datasets?

» Does the SMBO framework extend to several datasets?
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© A ranking-based latent structure
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A common latent structure
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» Validation errors on 2 datasets can differ arbitrarily in scale.
» We need a target
f4:DxH—-R
that conveys information such that

if f4(D1,x1) < fa(D1,x2) and Dy is similar to Dj,
then probably fo(Da,x1) < f4(Da2, x2),
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A common latent structure

R(AdaBoost(lymph, (m,T))
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A latent ranker

» SVMrank [5] tries to find a smooth function g that is
monotone in the input rankings: x <y = g(x) < g(y)-
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» A new SMBO paradigm: define
(D,x1) < (D,x2) & R(A(D,x1)) < R(A(D, x2)),

and repeatedly

© give all available rankings to SVMrank,
Q fit a GP to SVMrank's output g,

© maximize El : H — R,

@ evaluate new point.
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A latent ranker

» SVMrank [5] tries to find a smooth function g that is
monotone in the input rankings: x <y = g(x) < g(y)-

» A new SMBO paradigm: define
(D,x1) < (D,x2) & R(A(D,x1)) < R(A(D, x2)),

and repeatedly

© give all available rankings to SVMrank,
Q fit a GP to SVMrank's output g,

© maximize El : H — R,

@ evaluate new point.

» The latent ranker of SVMrank carries all information provided
by the validation errors across datasets.

» The choice of SVMrank is not unique [4].
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The surrogate tuning algorithm

ST(D,T,0 = (D,H,R), A,B)
Oy «— O,

Fort«—O0to T —1,

Compute rankings P; defined by < from Oy,

f — surrogate model built by B called on
(D¢, H¢) with rankings Py,

M;_1 < Posterior GP on ?t knowing
((De, He), Fo),

x* « argmax,cg E/(D,x),

R* — R(A(D, x*)), > Run learning algo.

O¢y1 — O U (D, x*, R¥),

return Or.

© 0 N O Ut =W N

[ G —
]
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The surrogate collaborative tuning algorithm

SCOT((Dl,...,DM), T,0=(D,H,R), A, B)
1 Oy < O.
2 Fort«—0to T —1,
3 For i «+— 1 to M,
4 Compute rankings P; defined by < from Oy,
5 /f\t « surrogate model built by B called on
6 (D¢, H:) with rankings P,
7 M, _1 « Posterior GP on ?t knowing
8 ((De, He), Fr),
9 x* «— argmax,cy EI(Dj,x),
10 R* — R(A(D;, x*)), > Run learning algo.
11 Oi1 — O U(Dj, x*, R*),
12 return Or.
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© A case-study on AdaBoost
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» AdaBoost with decision products as weak learners [7] has two
hyperparameters: number of iterations T and number of
product terms m.
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» AdaBoost with decision products as weak learners [7] has two
hyperparameters: number of iterations T and number of
product terms m.

» The small number of hyperparameters allows to set a grid on
H and pre-compute all validation errors.

» We downloaded 29 classification problems from Weka, and
instantiated D with the following features:

o Number of classes K,

o dimension d,

o number of samples n,

e p=d’'/d, where d’ is the smallest integer such that the first
d’ principal components of the dataset explain 95% of its
variance.
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PCA in D
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Comparing tuning strategies

We used a 5-fold CV on the 29 datasets and compared the
following strategies:

Global default Always use the hyperparameter that minimizes the
average error over the meta-train problems.
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Comparing tuning strategies

We used a 5-fold CV on the 29 datasets and compared the

following strategies:

Global default Always use the hyperparameter that minimizes the
average error over the meta-train problems.

Collaborative default Do one iteration of SCoT only: fit a GP on
the meta train problems and take, for each meta-test
problem, the hyperparameter with the best posterior
mean.

Separate surrogate tuning Use independent two-dimensional GP
for each meta-test problem,

SCoT Use all available information in a single GP.

Random search It was shown to perform well in such settings [3].
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Comparing average meta-test errors
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Comparing average meta-test rankings
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Conclusions

» SCoT performs hyperparameter tuning using information
gathered with the same algorithm on other datasets.

» It is a novel Bayesian optimization algorithm, which targets a
function up to a monotone transformation.

» We are currently performing experiments with MLPs and more
statistical features.

» Future work should address asynchronous tuning, feature
construction, and scalable surrogate models, closing the gap
to a fully automatic collaborative tuner!
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