Summer program project at DESY

Studies of the front-end electronic of the AHCAL

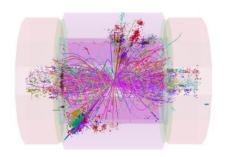
Eldwan Brianne LAL Meeting

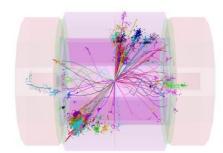
03/10/2012

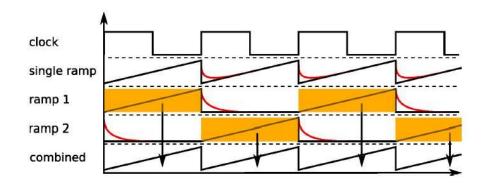
international linear collider

Contents

- > TDC Measurements
- > Time walk effect
- Conclusion
- Outlook
- > Testbeam Results
- > SPIROC2c prototype
- Backup Slides

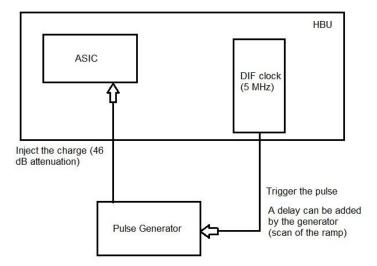



TDC Measurements

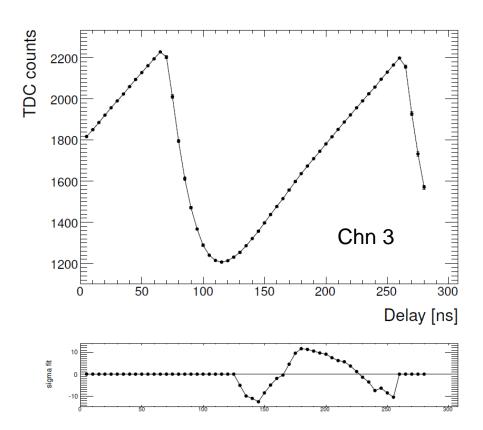


Goal of time measurement and working principle

- Improve the resolution of the detector
- > Time cut for overlapping showers
- Working principle :
 - Dual TDC ramp in SPIROC switch by a multiplexer

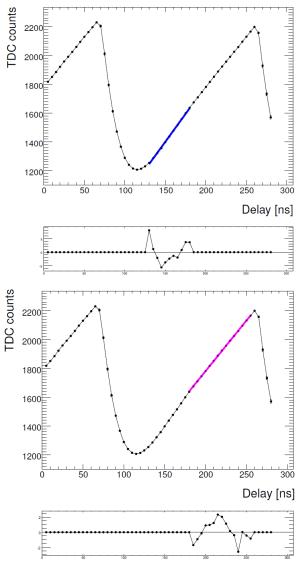


Setup


- One HBU with DIF board, Calib board and Power board
- Charge injection : pulse generator synchronize to the clock
- > LED : use of LCS by Labview software
- > Measurements : 100 cycles and 16 triggers (for good statistics)

ILC mode

- > 5 MHz clock cycle = 200 ns ramp length
- > Design resolution : 100 ps
- > Scan of the ramp by variation of the delay between trigger and pulse output (done by step of 5-10 ns)
- Comparison between channel 3 and 4



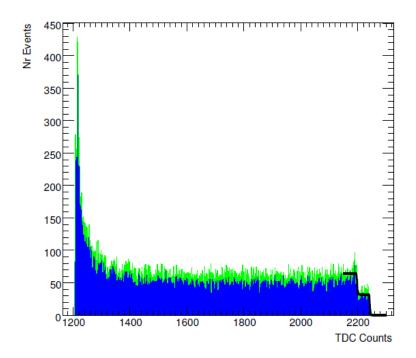
ILC mode

- > Fitting by a 1st polynomial function
- > Resolution :

$$\sigma_{tot} = \frac{\sqrt{\sigma_{histo}^2 + \sigma_{fit}^2}}{slone_{fit}}$$

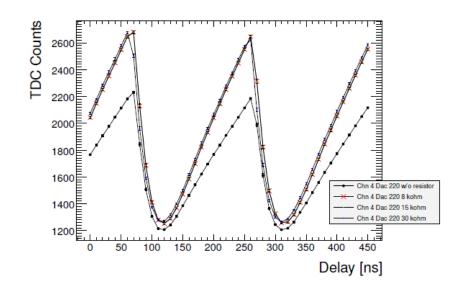
- Several method middle of the ramp :
 - Lower part
 - Upper part
 - All the ramp

Results Table


- > Average Resolution : 150-350 ps
- > Far from design
- Need to improve by increasing the ramp slope

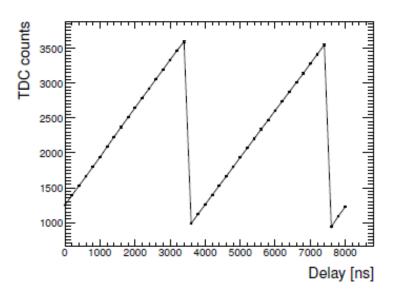
Channel	Ramp	Part	σ_{fit}	Slope	σ_{tot} [ns]
3	1	lower	1.60	7.65	0.21
3	1	upper	1.12	7.03	0.16
3	2	lower	0.87	7.42	0.12
3	2	upper	0.54	6.80	0.08
3	1	all	3.20	7.35	0.436
3	2	all	2.52	7.14	0.354
4	1	all	0.67	6.91	0.1
4	2	all	3.15	7.33	0.43
4	2	lower	2.6	7.75	0.34
4	2	upper	0.76	7.01	0.11

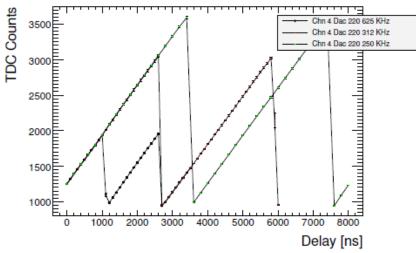
Spectrum


- Fire random pulse with the pulse generator give a TDC Spectrum
- > Characterize the ramps : height and deadtime
- > Deadtime : 35% of the ramp length
- > Height difference : 45 TDC tics

Improvement of the resolution

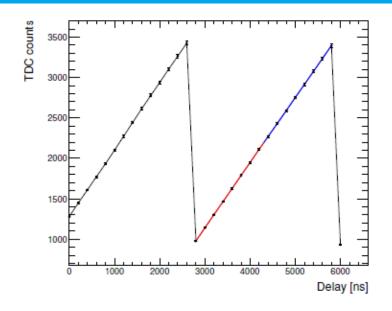
- Soldering resistor on the slope bias point
- > Range from 30 k Ω to 8 k Ω
- > Improvement by factor of 1.2-1.5
- > Results Table : $8 \text{ k}\Omega$ (left) and $30 \text{ k}\Omega$ (right)

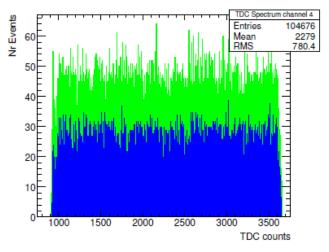

Channel	Ramp	Part	σ_{fit}	Slope	$\sigma_{tot}[ns]$
4	1	lower	0.13	11.33	0.018
4	1	upper	1.87	10.38	0.18
4	2	lower	0.2	10.30	0.02
4	2	upper	2.36	10.24	0.23
4	1	all	2.00	10.84	0.19
4	2	all	3.44	10.46	0.33


Channel	Ramp	Part	σ_{fit}	Slope	$\sigma_{tot}[ns]$
4	1	lower	2.5	11.32	0.22
4	1	upper	2.01	10.22	0.19
4	2	lower	2.95	10.63	0.28
4	2	upper	1.58	10.08	0.16
4	1	all	4.03	10.79	0.37
4	2	all	2.65	10.43	0.25

Testbeam mode

- Different clock frequency (can be chosen
 200 kHz to 625 kHz)
- > Step of 200 ns
- Comparison function of the frequency :
 - Dynamic range (2000 TDC tics at 250 kHz against <1000 TDC tics at 625 kHz)
 - Deadtime (relative to the frequency less deadtime at low frequency)





Testbeam mode

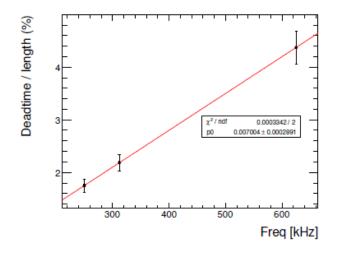
- > Same fitting as in ILC mode
- Problem with the pulse generator at 2 μs
 decrease the resolution
- > Spectrum : flat distribution no deadtime apparent and no height difference
- Improvement of the resolution :
 - Soldering a 120 k Ω resistor at 312 kHz (to avoid a saturation of the TDC)
 - Results : Better dynamic range and resolution roughly increased

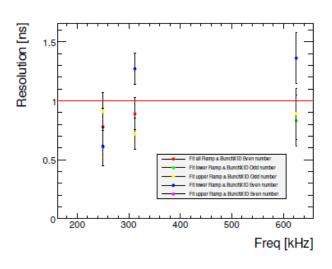
Results

> Table results :

■ 250 kHz

Channel	Ramp	Part	σ_{fit}	Slope	σ_{tot} [ns]
4	1	lower	1.06	0.698	1.53
4	1	upper	0.39	0.682	0.61
4	2	lower	0.59	0.674	0.91
4	2	upper	0.51	0.671	0.79
4	1	all	2.92	0.695	4.21
4	2	all	0.49	0.673	0.78


■ 625 kHz


Channel	Ramp	Part	σ_{fit}	Slope	σ_{tot} [ns]
4	1	lower	0.52	0.685	0.83
4	1	upper	0.91	0.687	1.36
4	2	lower	0.60	0.711	0.89
4	2	upper	0.40	0.681	0.67
4	1	all	0.91	0.683	1.37
4	2	all	1.59	0.694	2.31

Resolution

- > Focusing on compromise between dynamic range, relative deadtime and resolution
- > Deadtime roughly constant : 70 ns
- > Best compromise (without increasing slope):
 - 250 kHz (or lower than 312 kHz)
 - Deadtime : 2-2.5 %
 - Resolution : 1 1.5 ns
 - Dynamic range : 1500 2000 TDC tics

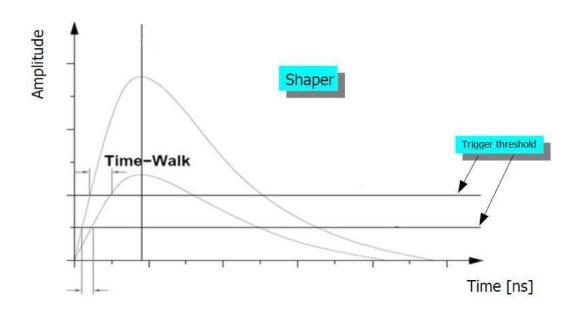
Conclusion

> ILC mode :

- 100 250 ps resolution achieved
- Spectrum measurement : ~50 TDC tics of height difference
- Deadtime too big (35%)
- Fail of distinguishing the ramp by BXID

> Testbeam mode :

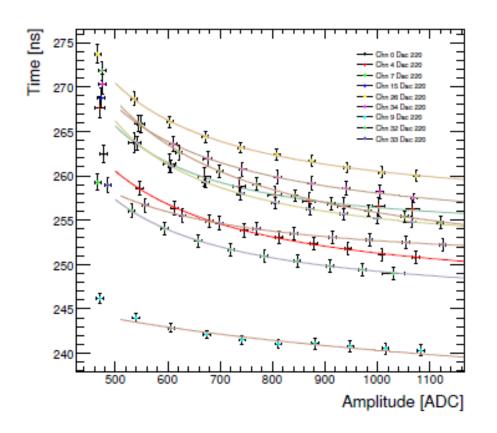
- 1 1.5 ns resolution achieved
- Frequency comparison (250 kHz to 625 kHz)
- Spectrum measurement : no visible height difference
- Compromise between resolution, deadtime and dynamic range
- Could improve the resolution (< 1 ns) by increasing the slope</p>



The Time walk effect

Explaining of the effect

- Dependence of the trigger with the amplitude of the signal
 - High amplitudes trigger before small amplitudes
 - Imply a time difference between the trigger

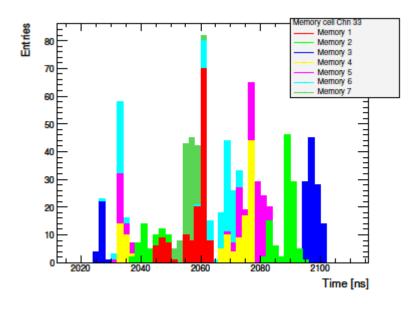


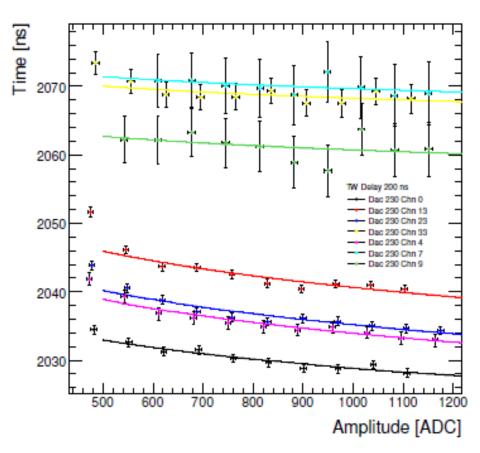
Charge injection measurements

> ILC mode :

- Same setup used
- Variation of the voltage (Amplitude) and plotting the time (TDC) function of the Amplitude (ADC)

- Fitting function [1]/(x^[3]-[2]) +
 [0]
- > Different shapes
- Offset channel to channel
- > Channel can't be compared





Charge injection measurements

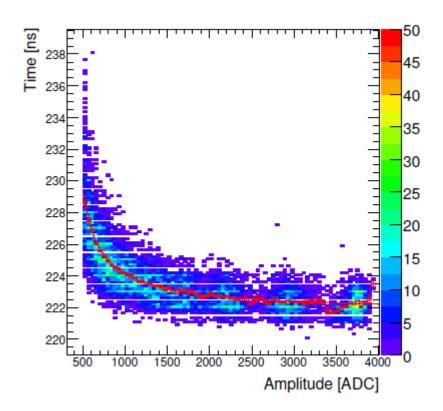
> Testbeam mode :

- Same effect as in ILC mode
- Error bar bigger (divided by 10 on the plot)
- Investigation of this reveled TDC memory cell offset

Calculated offsets: ILC mode

Channel	[0] (ns)	[1] (ADC.ns)	[2] (ADC)	[3]	Chi ²
Ø	246.074	6520.56	283.892	1.06	0.09
4	254.109	5.66e6	84320.1	2.13	0.11
7	245.258	8154.71	472.471	1.13	0.06
15	251.018	31010	1532.75	1.32	0.02
26	255.386	5324.38	292.758	1.04	0.18
34	252.865	9199.02	390,991	1.11	0.12
9	141.225	116.531	0.18	0.04	3.18
32	246.138	518.118	30.72	0.64	0.05
33	250.281	182357	1342.51	1.63	0.06

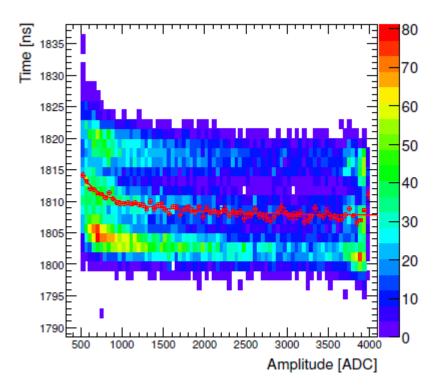
Calculated offsets: Testbeam mode


Channel	[0] (ns)	[1] (ADC,ns)	[2] (ADC)	[3]	Chi ²
Q	1032.16	1025.52	0.013	0.006	4.35
13	1042.9	1034.43	0.016	0.007	11.63
23	1039.19	1031.02	0.015	0.007	9.86
33	1042.43	1032.63	0.010	0.002	1.56
4	1037.96	1013.96	0.03	0.007	3.17
7	1044.39	1032.97	0.009	0.002	0.43
9	1040.84	1027.92	0.011	0.003	1.87

Light Calibration System measurements (LED)

> ILC mode :

- Same behavior as charge injection
- Projection of the 2D histogram
- Spread around the mean certainly due to the LED trigger system and the fact that the LED has not always the same amplitude (fluctuations)

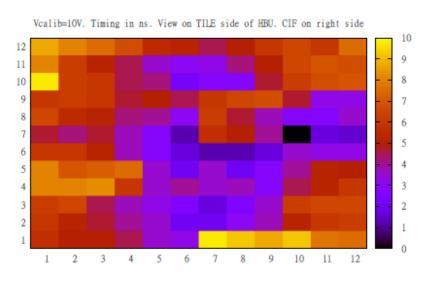


Light Calibration System measurements (LED)

> Testbeam mode :

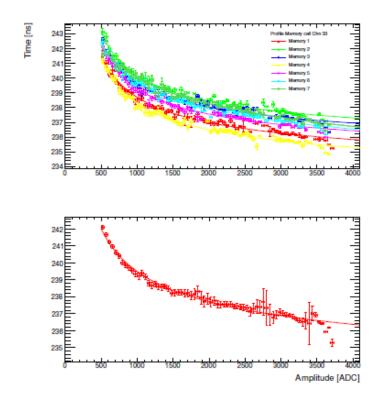
- Same setup
- Spread much more larger than in ILC mode

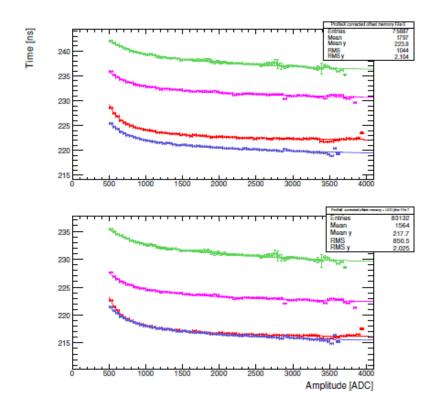
 consequence of the memory offset and
 slope < 1 TDC tics/ns induces more
 sensibility to noise



Timing Correction Procedure

- > Procedure to calculate offset channel to channel in any mode
- > Extend to a whole HBU
- Calculate offset using LED data
- > Take into account : memory cell offset (need to check the reproducibility) and LED jitter (difference between trigger and pulse of the LED)


	Vcalib=	:10V. Ti	ming in	ns. Vi	iew on	TILE si	de of H	BU. CIF	on rig	ght side	e
12 8.7	8	7.5	6.7	5.5	5.2	4.5	5	6	6.5	6	7.5 -
11 - 8	6.2	5.2	4.5	3.5	3	3.2	4.2	5	6.5	6.9	6.7 -
10 - 9.7	6.2	6	4.5	4.2	2.2	2.7	2.7	4.7	6.2	6.7	6.9 -
9 - 6	6.2	6	4.7	5	4.5	6	6.5	6.7	4.7	3.2	3.2 -
8 - 6.5	5.5	5.2	4.2	4	3	6.2	4.7	3.7	2.7	2.7	3.5 -
7 - 4.7	4.2	4.7	3.7	2.7	1.2	5.7	5	4	0	1.7	1.5 -
6 - 6	6	5.2	3.7	2.7	1.7	1.2	1.2	1.7	3.5	3.2	3.2 -
5 - 8	6.9	7.2	7.5	3.5	2	3.5	2	2.7	4	5.2	5 -
4 - 8	8	8.2	6	3.5	4	3.5	3.7	2.7	4.5	5.2	6 -
3 - 6.2	6.5	4.5	3.7	3.2	2.5	1.7	2.5	3.5	6.2	6.5	6.5 -
2 - 6	5.2	4.7	4	3.5	2	2	3	3.7	5.2	6	6.2 -
1 5.7	5	5	4,5	3,5	3,2	9.7	9.2	8.7	9.2	7,7	7,5 -
1	2	3	4	5	6	7	8	9	10	11	12



Preliminary results

- Procedure applied to LED data in ILC mode
- > Only 4 channels presents good data
- > Give a lookup table

Preliminary results

Chip	Channel	Moy_offset	LED_Jitter	Offset_corrected
0	0	221.585	6	215.606
0	23	228.006	8.3	219.634
0	33	229.488	6.7	221.523
0	9	217.145	4	212.586

- > Results (offset channel to channel) can be compared between charge injection and correction (check if match)
- > Need to take more data

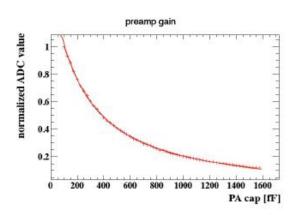
Conclusion

Measurements performed on the linearity and resolution of the TDC in SPIROC and time walk effect analyzed

> TDC measurements :

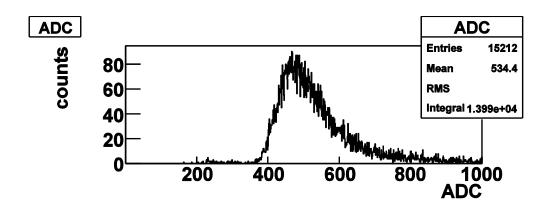
- ILD mode : resolution around 150-200 ps, ramp height differs up to 50 TDC tics, huge deadtime, improvement can be made by increasing the slope
- Testbeam mode: resolution around 1-1.5 ns, choice of 250 kHz frequency deadtime ~1%, good dynamic range (2000 TDC tics), improvement can be made also by increasing the slope (achieve a resolution < 1ns)

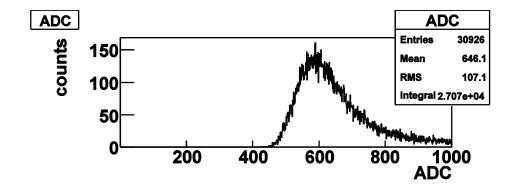
Time walk effect :


- Inverse function : $[1]/(x^{[3]}-[2]) + [0]$
- Calculate offset channel to channel using LCS
- Timing correction procedure has to be performed in order to compare channel timing (needed for testbeam in November at CERN)

Outlook

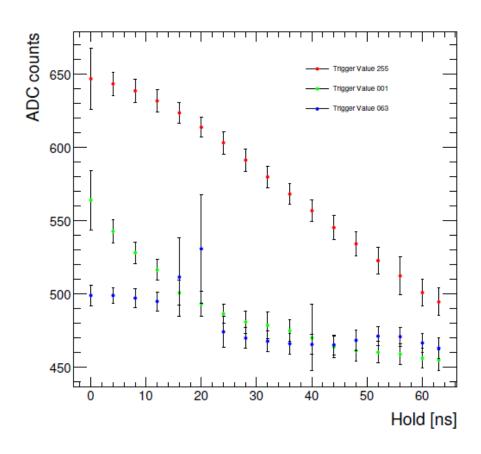
- > Commissioning of the 4 HBU for testbeam at CERN in November
 - Calculate Input DACs for each SiPM
 - Pre-Amplifier equalization
 - Noise measurement (Set Trigger threshold)
 - ADC to MIP Calibration
 - Timing correction (lookup table for each HBU)
 - Timing measurement (study the timing of em shower)
 - Playing around with Temperature


• ...



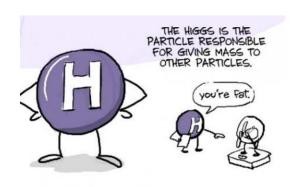
Testbeam @ DESY

- Testbeam at the end of my inturnship
 - Begin to take data
 - Results not so long ago
- > What we do:
 - Determine where the beam is hitting
 - Determine a threshold to have a correct MIP Spectrum
 - Acquire MIPs on some channels
- > Some results :



A new prototype: SPIROC2c

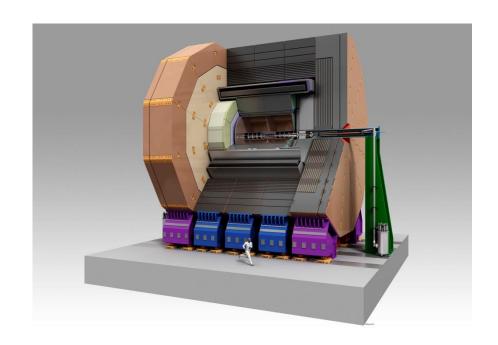
- New prototype arrived beginning of August : SPIROC2c
- Holdscan performed in external trigger
- > Studies ongoing : holdscan, pedestal shift, zero event...



Backup Slides

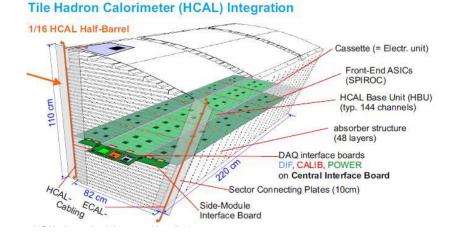
The International Linear Collider

- > 30 km long
- > e⁺e⁻ linear collider at 500 GeV (upgrade to 1 TeV)
- Precision Measurements (low background)
- 2 complementary detectors technologies (SiD and ILD)
- \rightarrow Planned for ~ 2020



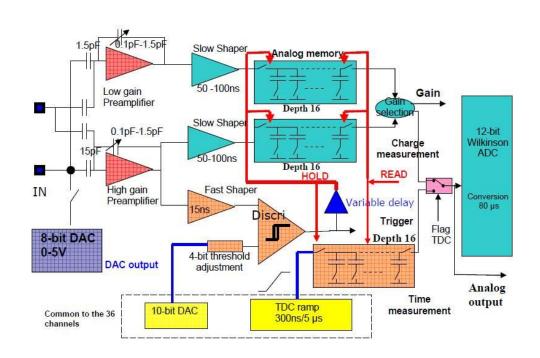
9GAG.COM/GAG/4728878

The ILD (International Linear Detector)


- One of the detector prototype
- High granularity Particle Flow
 Algorithms to trace single particles in jets
- Composed by :
 - Vertex Detector (scintillator strips)
 - Time projection chamber (trace charge particles – up to 224 points)
 - ECAL (silicon pixels or scintillator strips with W or Fe)
 - HCAL (scintillator tiles + SiPM or gas detector as active medium)
 - Cole and Yoke (channel magnetic field and tracking muons)

The AHCAL prototype

- Analog readout using scintillator tiles (3*3 cm²) and SiPM
- > 18 mm thick (10 mm W or Fe, 3 mm tiles, 5 mm electronics)
- > Front-end : SPIROC
- > 36 channel, auto-trigger, 2 gain modes, time measurement (TDC)
- \rightarrow HBU : 4 chips = 144 tiles
- > Slab: 6 HBU = 24 chips = 864 tiles
- **>** Power consumption : $40 \,\mu\text{W/channel}$



SPIROC: Silicon PM Integrated Read Out Chip

- > 2 Gains possible : Haut Gain (75) et Bas Gain (7,5)
- > 36 voies par gain
- Déclenchement intégré (Trigger)
- Mesure : 1 pe (160 fC) -> 2000 pe

