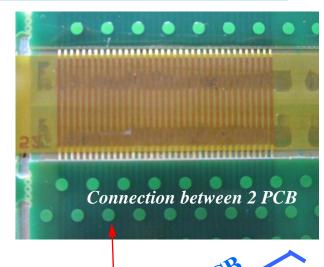
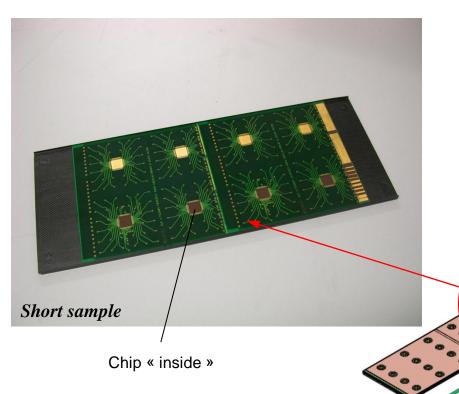



# - ECAL -SLAB Assembly

### ECAL – Baseline




- The future ECAL consists of 1 barrel of (40 identical trapezoidal modules) and 2 endcaps (3 different modules).
- Principle of the design is based on several self-supporting structures where detector devices (slabs) are slid into each cell
- main quantities : absorbers : W (~80 tonnes) ...
  - detector : Si (~300 000 wafers), FE (~1.2 M ASICs), ASU (~ 73000 PBCs) ...

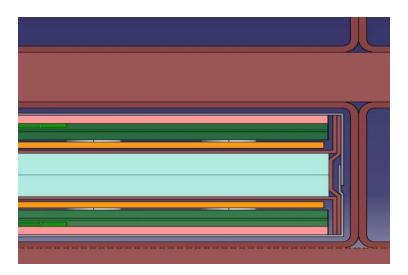



## Detector slab - principle



- Long slab is made by <u>several short PCBs</u>:
  - Design of one interconnection
  - Development easier : study, integration and tests of short PCB (with chips and wafers) before assembly
  - The length of each long slab will be obtained by the size of one "end PCB" (tools)






", PCB

## Detector slab – options



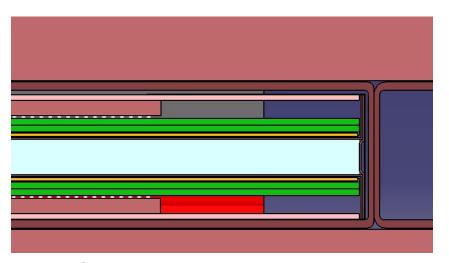
#### 2 designs :



Chip embedded

⇒ Gaps (slab integration) : 500 μm

⇒ Heat shield: 500 μm


⇒ PCB : **1200 μm ?** (flatness problems)

⇒ Thickness of glue : **100 µm ?** (gluing problems @ LPNHE)

 $\Rightarrow$  Thickness of wafer : 325  $\mu m$ 

⇒ Kapton® film HV : 100 μm

 $\Rightarrow$  Thickness of W: 2100/4200  $\mu$ m (± 80  $\mu$ m)



Chip with BGA packaging

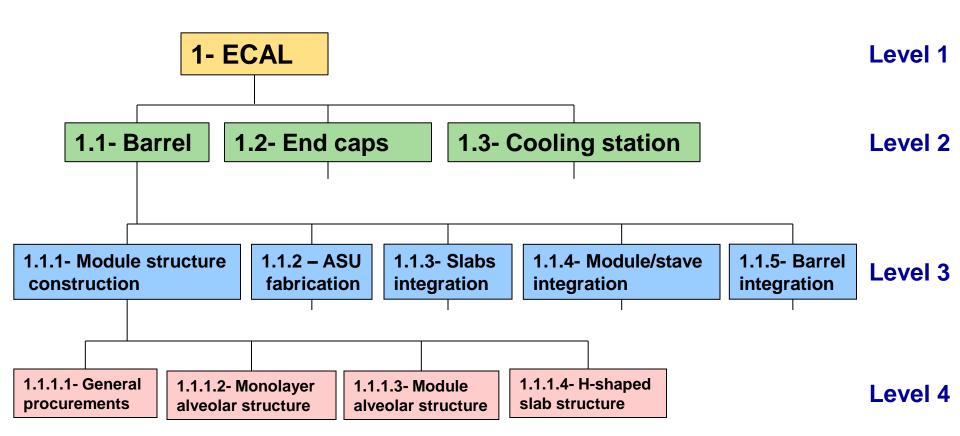
⇒ Gaps (slab integration) : 500 μm

⇒ Heat shield : 500 μm

⇒ PCB : 1600 μm

⇒ BGA thickness : 1700 μm

⇒ Thickness of glue : **100 µm ?** (gluing problems @ LPNHE)


⇒ Thickness of wafer : 325 μm
⇒ Kapton® film HV : 100 μm

 $\Rightarrow$  Thickness of W: 2100/4200  $\mu$ m (± 80  $\mu$ m)

### Work Breakdown Structure



 The WBS is a decomposition of the project into phases, deliverables and work packages. It is a tree structure, which shows a subdivision of effort required to achieve an objective (tasks)



# Tasks repartition in 2008 (1/2)



| WAFERS (glue studies)                                                   | MANCHESTER<br>1824 | LIR | Grenobie |
|-------------------------------------------------------------------------|--------------------|-----|----------|
| 01- Study of the size of dots (glue)                                    |                    |     |          |
| 02- Gluing tools (for 4 wafers on unit PCB)                             |                    |     |          |
| 03- Design of a gluing robot (industrialization)                        |                    |     |          |
| 04- Study of gluing process                                             |                    |     |          |
| 05- Gluing of all wafers on unit PCB                                    |                    |     |          |
| 06- Cosmic tests of unit PCB glued                                      |                    |     |          |
| LONG PCB                                                                |                    |     |          |
| 07- Assembling of several unit PCB (study of the stitching)             |                    |     |          |
| 08- Cosmic tests and calibration of long PCB                            |                    |     |          |
| SLAB                                                                    |                    |     |          |
| 09- Assembling tools of long PCB to put on "H" structure                |                    |     |          |
| 10- Integration of the heat shield (copper)                             |                    |     |          |
| 11- Integration of all components (shielding, end-caps)                 |                    |     |          |
| 12- Thermal study of one slab behavior                                  |                    |     |          |
| 13- Thermal tests on real equipped slab (sensors) on alveolar structure |                    |     |          |
| 14- Global thermal Simulations                                          |                    |     |          |
| 15- Transport and works tools (slab on alveolar structure)              |                    |     |          |
| 16- Fastening system of the slab                                        |                    |     |          |
| 17- Back-end System (inlet/outlet + connector DIF0 + thermal aspect)    |                    |     |          |

# Tasks repartition in 2008 (2/2)



| COMPOSITE STRUCTURES                                                     | MANCHESTER<br>1824 | 414 | LIR | Grenobie |
|--------------------------------------------------------------------------|--------------------|-----|-----|----------|
| 18- Global design of EUDET module structures                             |                    |     |     |          |
| 19- design of "H" mould                                                  |                    |     |     |          |
| 20- Fabrication of all "H" structures                                    |                    |     |     |          |
| 21- design of "one alveolar layer" mould V1 (124 wide) and V2 (180)      |                    |     |     |          |
| 22- Fabrication of moulds V1 and V2                                      |                    |     |     |          |
| 23- Fabrication of first "one alveolar layer" unit                       |                    |     |     |          |
| 24- Destructive tests (study of thin composite sheets)                   |                    |     |     |          |
| 25- Mechanical behavior using optical fibers on composite layers (BRAGG) |                    |     |     |          |
| 26- supplying of W plates                                                |                    |     |     |          |
| 27- dimensional inspection of each W plates                              |                    |     |     |          |
| 28- design of fastening system ECAL/HCAL (metal inserts)                 |                    |     |     |          |
| 29- Study and fabrication of thick composite plates (2 mm and 15 mm)     |                    |     |     |          |
| 30- Design of assembling mould V1 et V2                                  |                    |     |     |          |
| 31- validation of the concept with one test structure and tests          |                    |     |     |          |
| 32- transport tools + XYZ support table                                  |                    |     |     |          |
| 33- Fabrication of all alveolar composite layers                         |                    |     |     |          |
| 34- Mechanical simulations (global and local points)                     |                    |     |     |          |
| 35- Fabrication / industrialization process                              |                    |     |     |          |

## Example:



The part of the ECAL-WBS : SLAB assembly

| 1.2 | Active Sensor Unit fabrication (ASU)            | 49800             |           |                           |                            |            |  |  |
|-----|-------------------------------------------------|-------------------|-----------|---------------------------|----------------------------|------------|--|--|
| 1.2 | Procurements for current design (Hwafer 90 m    |                   | channels) |                           |                            |            |  |  |
|     | Processed wafers 9x9 cm²                        | 199200            |           |                           | Industry several suppliers | 0,243      |  |  |
|     | ASIC                                            | 796800            |           |                           | Industry                   | 0,013      |  |  |
|     | PCB electricaly tested                          | 49800             |           |                           | Industry                   | 0,4        |  |  |
|     | Inter-connection kapton                         | 90000             |           |                           | Industry                   | 0,004      |  |  |
|     | HT Kapton                                       | 6000              |           |                           | Industry                   | 0,10       |  |  |
|     | Copper sheets in shape                          | 6000              |           |                           | Industry                   |            |  |  |
|     | Aluminium cover in shape                        | 6000              |           |                           | Industry                   |            |  |  |
|     | Wafer test set-up                               | 10                |           |                           | Industry                   | 20         |  |  |
|     | Asic test set-up                                | 5                 |           |                           | Industry                   | 500        |  |  |
|     | PCB test set-up                                 | 5                 |           |                           |                            | 5          |  |  |
|     | storage boxes                                   | 1660,00           |           |                           |                            | 0,40       |  |  |
|     | Gluing and position robot                       | 10                |           |                           |                            | 100        |  |  |
|     | ASU test set-up                                 | 5                 |           |                           |                            | 5          |  |  |
|     | Operations                                      |                   |           |                           |                            |            |  |  |
|     | Wafers tests                                    | 39840             | wafer     | Specific automatic set-up | HOME                       |            |  |  |
|     | ASIC tests                                      | 789000            | ASIC      | Specific automatic set-up | HOME/Industry              |            |  |  |
|     | Bonding                                         | 1250000           | ASIC      |                           | Industry                   | 0,004      |  |  |
|     | PCB tests with ASIC                             | 50000             | PCB       | Specific automatic set-up | HOME/Industry              | 5000 days  |  |  |
|     | Transport and storage                           |                   |           |                           | HOME/Industry              |            |  |  |
|     | Gluing operation (+ polymerisation time)        | 50000             | ASU       | Gluing robot + clean room | HOME/Industry              | 10 minutes |  |  |
|     | ASU tests (ASU=PCB+Wafers(4)+ASIC(16))          | 50000             | ASU       | Specific automatic set-up | HOME/Industry              |            |  |  |
| 1.3 | Slabs integration                               | 3000              |           |                           |                            |            |  |  |
|     | Procurements for current design (H with 2 layer | ers of detection) |           |                           |                            |            |  |  |
|     | Storage                                         | 200               | boxes     | boxes / 15                | Industry                   | 0,6        |  |  |
|     | Operations                                      |                   |           |                           |                            |            |  |  |
|     | Inter-connection operation                      | 6000              |           | Specific automatic set-up | HOME/Industry              |            |  |  |
|     | Slab integration                                | 3000              |           | Specific tooling          | HOME/Industry              |            |  |  |
|     | Slab test                                       |                   |           |                           |                            |            |  |  |
|     | Transport & storage                             |                   |           |                           |                            |            |  |  |
|     | Follow-up                                       |                   |           |                           |                            |            |  |  |