Milada Margarete Mühlleitner (Karlsruhe Institute of Technology)

Seminar LAL Orsay 14 May 2013

• 4 July 2012: CERN announces discovery of new scalar Higgs-like particle!

Higgs-Groupies queueing up in front of CERN audimax

Two electroweak symmetry breaking heroes

• 4 July 2012: CERN announces discovery of new scalar Higgs-like particle!

Discovery of New Scalar Particle

Croud listening announcement at ICHEP 2012 in Melbourne

Discovery of \mathcal{N} ew Scalar Particle

At the university of Tokyo

Discovery of \mathcal{N} ew Scalar Particle

At Fermilab

 $\mathcal{D}iscovery \ of \ \mathcal{N}ew \ Scalar \ \mathcal{P}article$

At DESY, Hamburg

LHC Higgs Search Results

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

Higgs potential: [v = 246 GeV]

SM Higgs Sector

 $V(\Phi) = \lambda [\Phi^{\dagger} \Phi - \frac{v^2}{2}]^2$

 $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+H \end{pmatrix} \rightarrow$

 $V(H) = \frac{1}{2}M_H^2 H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^2}{8v^2}H^4$

Higgs boson!

EWSB mechanism:

Creation of particle masses without violating gauge principles

Determination of the Scalar Boson Couplings

Strategy

Combination of the production and decay channels \Rightarrow decay rates, absolute couplings

Coupling measurement at the LHC

- * Only ratios of couplings can be measured w/o model assumptions
- * Perform fit to couplings

$\gamma\gamma$ and 4l: $M_H = 125.5 \pm 0.2 (\text{stat})^{+0.5}_{-0.6} (\text{sys})$; slight excess in $\gamma\gamma$ but not $WW, bb, \tau\tau$

Best fit values of $\mu = (\sigma \times BR)/(\sigma \times BR)_{SM}$

ATLAS-CONF-2013-034

What ${\cal E}$ xperiment tells us: ${\cal B}$ est ${\cal F}$ it Values of $\mu=(\sigma imes BR)/(\sigma imes BR)_{SM}$

New: $\gamma\gamma$ and 4I: $M_H = (125.7\pm0.3({
m stat})\pm0.3({
m syst}))$ GeV $\mu_{\gamma\gamma} = 0.78^{+0.28}_{-0.26}$ (MVA); $\mu_{\gamma\gamma} = 1.11^{+0.32}_{-0.30}$ (cut-based) $H \rightarrow WW (VBF tag)$ $H \rightarrow \gamma \gamma$ (untagged) $H \rightarrow WW (VH tag)$ $H \rightarrow WW (0/1 \text{ jet})$ $H \rightarrow \gamma \gamma$ (VBF tag) $H \rightarrow \tau \tau$ (VBF tag) $H \rightarrow \gamma \gamma$ (VH tag) $H \rightarrow bb$ (ttH tag) $H \rightarrow bb (VH tag)$ $H \rightarrow \tau \tau$ (VH tag) $H \rightarrow ZZ (0/1 \text{ jet})$ $H \rightarrow ZZ$ (2 jets) $H \rightarrow \tau \tau$ (0/1 jet) Combined $\mu = 0.80 \pm 0.14$ 4 $\chi^2 = 6.2 \ (p_{SM} = 0.94)$ $\mu = 0.80 \pm 0.14$ CMS Preliminary m_H = 125.7 GeV κ̈́ 0 Best fit σ/σ_{sм} ł

CMS-PAS-HIG-13-005

√s = 7 TeV, L ≤ 5.1 fb⁻¹ √s = 8 TeV, L ≤ 19.6 fb⁻¹

What ${\cal E}$ xperiment tells us: ${\cal B}$ est ${\cal F}$ it Values of $\mu=(\sigma imes BR)/(\sigma imes BR)_{SM}$

SM Higgs Boson Production at the LHC

Note: Decay into $\gamma\gamma$ is loop-mediated (also into $Z\gamma$ and gg): Room for New Physics!

What Theory tells us: SM Higgs Boson Decays

Determination of the Scalar Boson Couplings

Strategy

Combination of the production and decay channels \Rightarrow decay rates, absolute couplings

Coupling measurement at the LHC

- * Only ratios of couplings can be measured w/o model assumptions
- * Perform fit to couplings

Theoretical approach to explore the coupling structure of a SM scalar boson-like particle

- * Effective Lagrangian with modified Higgs couplings - first approach: scaling factors κ_V, κ_F
- * Calculate signal rates as function of scaling factors $\rightsquigarrow \mu(\kappa_V, \kappa_F)$
- * Fit to experimental μ values

Determination of the Scalar Boson Couplings

Strategy

Combination of the production and decay channels \Rightarrow decay rates, absolute couplings

Coupling measurement at the LHC

- * Only ratios of couplings can be measured w/o model assumptions
- * Perform fit to couplings

See also: LHC HXSWG Recommendations

 $\mathsf{LHCHXSWG-2012-1:} David, \mathsf{Denner}, \mathsf{D\"uhrssen}, \mathsf{Grazzini}, \mathsf{Grojean}, \mathsf{Passarino}, \mathsf{Schumacher}, \mathsf{Spira}, \mathsf{Weiglein}, \mathsf{Zanettinden}, \mathsf{Spira}, \mathsf{Spira},$

- * Introduction of coupling scale factors
- * Assumptions: observed signal from one single resonance; narrow-width approximation; coupling strengths modification but tensor strucure the one of the SM
- * Various benchmarks for tests of coupling structure

- \diamond Effective Lagrangian valid at $E \sim v$
- \diamond Field content: SM with scalar field h

Contino eal '10,'12

$$\mathcal{L} = \mathcal{L}_{h} - (M_{W}^{2} W_{\mu}^{+} W^{\mu-} + \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}) [1 + 2 \kappa_{V} \frac{h}{v} + \mathcal{O}(h^{2})] - m_{\psi_{i}} \bar{\psi}_{i} \psi_{i} [1 + \kappa_{F} \frac{h}{v} + \mathcal{O}(h^{2})] + \dots$$

♦ Remarks:

- * Chiral Lagrangian with a cutoff at $\Lambda\gtrsim 4\pi v$
- * $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ breaking implemented
- *
- - * Custodial symmetry incorporated: $(M_W^2 W_{\mu}^+ W^{\mu-} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu}) [1 + 2 \kappa_V \frac{h}{v} + O(h^2)]$
- No tree-level FCNC due to h exchange: $-m_{\psi_i} \bar{\psi}_i \psi_i [1 + \kappa_F \frac{h}{v} + O(h^2)]$
- M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

$$\mathcal{L} = \mathcal{L}_{h} - (M_{W}^{2} W_{\mu}^{+} W^{\mu-} + \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}) [1 + 2\kappa_{V} \frac{h}{v} + \mathcal{O}(h^{2})] - m_{\psi_{i}} \bar{\psi}_{i} \psi_{i} [1 + \kappa_{F} \frac{h}{v} + \mathcal{O}(h^{2})] + \dots$$

- Extension of the SM Lagrangian by two parameters κ_V, κ_F ; SM: $(\kappa_V, \kappa_F) = (1, 1)$
- Modified decays rates: HDECAY: Djouadi, Spira, Kalinowski, MMM

$$\mathcal{L} = \mathcal{L}_{h} - (M_{W}^{2} W_{\mu}^{+} W^{\mu-} + \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}) [1 + 2 \kappa_{V} \frac{h}{v} + \mathcal{O}(h^{2})] - m_{\psi_{i}} \bar{\psi}_{i} \psi_{i} [1 + \kappa_{F} \frac{h}{v} + \mathcal{O}(h^{2})] + \dots$$

- Extension of the SM Lagrangian by two parameters κ_V, κ_F ; SM: $(\kappa_V, \kappa_F) = (1, 1)$
- Modified decays rates: HDECAY: Djouadi, Spira, Kalinowski, MMM

$$\mathcal{L} = \mathcal{L}_{h} - (M_{W}^{2} W_{\mu}^{+} W^{\mu-} + \frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}) [1 + 2 \kappa_{V} \frac{h}{v} + \mathcal{O}(h^{2})] - m_{\psi_{i}} \bar{\psi}_{i} \psi_{i} [1 + \kappa_{F} \frac{h}{v} + \mathcal{O}(h^{2})] + \dots$$

- Extension of the SM Lagrangian by two parameters κ_V, κ_F ; SM: $(\kappa_V, \kappa_F) = (1, 1)$
- Modified decays rates: HDECAY: Djouadi, Spira, Kalinowski, MMM

Modified Higgs-gluon-gluon coupling:

Signal Rates

- Coupling modifications affect Higgs signal but not background signal rates changed, but kinematics unaffected \Rightarrow Rescale SM searches
- NNLO QCD corrections: not affected by modified Higgs couplings (not true for NLO EW)

Rescaling - Production (NNLO QCD)

▷ Rescaling - Decay

$$\frac{\Gamma(H \to f\bar{f})}{\Gamma(H \to f\bar{f})^{SM}} = \frac{\Gamma(H \to gg)}{\Gamma(H \to gg)^{SM}} = \kappa_F^2 \quad \frac{\Gamma(H \to VV)}{\Gamma(H \to VV)^{SM}} = \kappa_V^2 \quad \frac{\Gamma(H \to \gamma\gamma)}{\Gamma(H \to \gamma\gamma)^{SM}} = \frac{(\kappa_V J_\gamma - \kappa_F I_\gamma)^2}{(J_\gamma - I_\gamma)^2}$$

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

Best fit points

♦ Solution for $\kappa_F < 0$

$$\Gamma(H \to \gamma \gamma) = \frac{(\kappa_V J_\gamma - \kappa_F I_\gamma)^2}{(J_\gamma - I_\gamma)^2} \Gamma^{SM}(H \to \gamma \gamma)$$

Constructive interference for $\kappa_F < 0$.

For further work, see:

Baglio, Djouadi, Godbole; Bélanger, Dumon, Ellwanger, Gunion, Kraml S. Banerjee, S. Mukhopadhyay, B. Mukhopadhyaya; Cao eal; T.Plehn, M. Rauch; I.Low, J.Lykken, G.Shaugnessy; T.Corbett, O.Eboli, J.González-Fraile, M.C. González-Garcia; A.Azatov, R.Contino, J.Galloway; P.Giardino, K.Kannike, M.Raidal, A.Strumia; D.Carmi, A.Falkowski, E.Kuflik, T.Volansky; D.Carmi, A.Falkowski, E.Kuflik, T.Volansky, J.Zupan; J.Ellis, T.You; M.Klute, R.Lafaye, T.Plehn, M.Rauch, D.Zerwas; M.Montull, F.Riva; :

\mathcal{E} xperimental \mathcal{F} its to \mathcal{C} ouplings

ATLAS-CONF-2013-034

CMS-HIG-PAS-13-005

Why ${\cal B}$ eyond ${\cal S}$ tandard ${\cal M}$ odel (${\cal B}{\cal S}{\cal M}$) Physics?

Standard Model: incomplete picture of the universe

- SM has 19 free parameters: What are the values of these parameters?
- Common origin of all three forces of the SM?
- How to incorporte gravity?
- Candidate for Dark Matter (DM)? ...

Supersymmetry: relates fermions and bosons

- \diamond solves hierarchy problem
- ♦ gauge coupling unification (MSSM)
- \diamond Higgs mechanism generated radiatively
- ♦ Cold Dark Matter candidate (\leftarrow R-parity) ...

Standard particles Susy particles

pseudoscalar Higgs bosons, Higgs bosons with no definitve CP quantum number) **Consequences:** new particles (e.g. running in the loops), extended Higgs sectors (scalar,

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

Going Beyond

 \diamond SM with $BR_{inv} = 0$ ok \diamond Still room for sizeable $BR_{inv} \lesssim (0.2, 0.45)$ at 95%CL $\diamond~\chi^2$ fit to combined $\hat{\mu}_c\pm\sigma_c$ χ^2_{min} at $BR_{inv} \approx (-0.1, 0.1)$

Espinosa, Grojean, MMM, Trott '12

 $BR(h \to f) = (1 - BR_{inv})BR(h \to f)^{SM}$

• New Physics particles X SM singlets: $h \rightarrow XX \rightsquigarrow$ universal reduction of SM branching ratios

Test Higgs Invisible Width

\mathcal{E} ffective \mathcal{L} agrangian \mathcal{A} pproach with \mathcal{BSM} \mathcal{E} ffects

- Based on R. Contino, M. Ghezzi, C. Grojean, MMM, M. Spira, arXiv:1303.3876
- Strongly Interacting Light Higgs (SILH) Lagrangian

Giudice eal

\mathcal{E} ffective \mathcal{L} agrangian \mathcal{A} pproach with \mathcal{BSM} \mathcal{E} ffects

- Based on R. Contino, M. Ghezzi, C. Grojean, MMM, M. Spira, arXiv:1303.3876
- Strongly Interacting Light Higgs (SILH) Lagrangian

 \ast Expansion in $H/f \rightsquigarrow$ coupling deviations from SM are small

Giudice eal

\mathcal{E} ffective \mathcal{L} agrangian \mathcal{A} pproach with \mathcal{BSM} \mathcal{E} ffects

Based on R. Contino, M. Ghezzi, C. Grojean, MMM, M. Spira, arXiv:1303.3876

• Strongly Interac
$$\Delta \mathcal{L}_{SILH} = \frac{\widetilde{c}_H}{2v^2} \partial^{\mu} (H^{\dagger}H) \partial_{\mu} (\widehat{H^{\dagger}H}) + \frac{\widetilde{b}_T}{2v^2} (H^{\dagger}D_{\mu}^{\dagger}H) (H^{\dagger}D_{\mu}^{\dagger}H) - \frac{\widetilde{c}_h\lambda}{v^2} (H^{\dagger}H)^3 \qquad \text{Giudice eal}$$
$$+ \frac{\widetilde{c}_H}{v^2} \partial_{\mu} H^{\dagger}H \overline{q}_L H^{\iota} u_R + \frac{\widetilde{c}_L}{v^2} u_R H^{\dagger}H \overline{q}_L H d_R + \frac{\widetilde{c}_L}{v^2} u_R H^{\dagger}H \overline{L}_L H l_R + h.c.) \\+ \frac{\widetilde{c}_R W_g}{2m_W^2} (H^{\dagger}\sigma^{\dagger}D^{\lambda}H) (D^{\nu} W_{\mu\nu})^i + \frac{\widetilde{c}_R u_d}{2m_W^2} (H^{\dagger}D^{\lambda}H) (\partial^{\nu} B_{\mu\nu}) \qquad (2.2)$$
$$+ \frac{\widetilde{c}_R W_g}{m_W^2} (D^{\mu}H)^{\dagger} \sigma^{\prime} (D^{\mu}H) W_{\mu\nu}^{\dagger} + \frac{\widetilde{c}_R u_d}{m_W^2} (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu} \\+ \frac{\widetilde{c}_R g_a}{m_W^2} (\overline{u}_R \gamma^{\mu} q_L) (H^{\dagger}D^{\lambda} \mu H) + \frac{\widetilde{c}_R u_d^2}{m_W^2} (D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu} \\+ \frac{\widetilde{c}_R u_a}{v^2} (\overline{u}_R \gamma^{\mu} q_L) (H^{\dagger}D^{\lambda} \mu H) + \frac{\widetilde{c}_R u_d^2}{m_W^2} (\overline{d}_R \gamma^{\mu} \sigma^{\dagger} q_L) (H^{\dagger} \overline{D}^{\lambda} \mu H) \\+ \left(\frac{\widetilde{c}\overline{c}u_u}{v^2} (\overline{u}_R \gamma^{\mu} u_R) (H^{\dagger}D^{\lambda} \mu H) + \frac{\widetilde{c}\overline{c}u_A}{v^2} (\overline{d}_R \gamma^{\mu} d_R) (H^{\dagger}\overline{D}^{\lambda} \mu H) \\+ \left(\frac{\widetilde{c}\overline{c}u_{ud}}{v^2} (\overline{u}_R \gamma^{\mu} u_R) (H^{\epsilon}D^{\lambda} \mu H) + h.c.\right) \qquad (2.3)$$

$$\begin{split} \Delta \mathcal{L}_{F_{1}} &= \frac{i \overline{c}_{Hq}}{v^{2}} \left(\overline{q}_{L} \gamma^{\mu} q_{L} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) + \frac{i \overline{c}_{Hq}}{v^{2}} \left(\overline{q}_{L} \gamma^{\mu} \sigma^{i} q_{L} \right) \left(H^{\dagger} \sigma^{i} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{Hu}}{v^{2}} \left(\overline{u}_{R} \gamma^{\mu} u_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) + \frac{i \overline{c}_{Hd}}{v^{2}} \left(\overline{d}_{R} \gamma^{\mu} d_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \left(\frac{i \overline{c}_{Hud}}{v^{2}} \left(\overline{u}_{R} \gamma^{\mu} L_{L} \right) \left(H^{c\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) + h.c. \right) \\ &+ \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{L}_{L} \gamma^{\mu} L_{L} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) + \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{L}_{L} \gamma^{\mu} \sigma^{iL} L_{L} \right) \left(H^{\dagger} \sigma^{i} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) + \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{L}_{L} \gamma^{\mu} \sigma^{iL} L_{L} \right) \left(H^{\dagger} \sigma^{i} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{H1}}{v^{2}} \left(\overline{l}_{R} \gamma^{\mu} l_{R} \right) \left(H^{\dagger} \overleftarrow{\mathcal{D}}_{\mu} H \right) \\ &+ \frac{i \overline{c}_{H2}} \frac{g}{m_{W}^{2}} y_{\mu} \overline{q}_{L} H^{c} \sigma^{\mu\nu} u_{R} B_{\mu\nu} + \frac{\overline{c}_{uW} g}{m_{W}^{2}} y_{u} \overline{q}_{L} \sigma^{\mu\nu} u_{R} W_{\mu\nu}^{i} \\ &+ \frac{\overline{c}_{uG} gs}{m_{W}^{2}} y_{u} \overline{q}_{L} H \sigma^{\mu\nu} \lambda^{a} d_{R} B_{\mu\nu} \\ &+ \frac{\overline{c}_{uW} g}{m_{W}^{2}} y_{l} \overline{L}_{L} \sigma^{\mu\nu} d_{R} B_{\mu\nu} + \frac{\overline{c}_{uW} g}{m_{W}^{2}} y_{l} \overline{L}_{L} \sigma^{\mu\nu} d_{R} W_{\mu\nu}^{i} + h.c. \end{split}$$

(2.4)
${\mathcal E}$ ffective ${\mathcal L}$ agrangian for a ${\mathcal L}$ ight ${\mathcal H}$ iggs- ${\mathcal L}$ ike ${\mathcal S}$ calar

- Based on R. Contino, M. Ghezzi, C. Grojean, MMM, M. Spira, arXiv:1303.3876
- SILH Lagrangian
- Non-linear Lagrangian

Contino eal

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} h \ \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - c_{3} \frac{1}{6} \left(\frac{3m_{h}^{2}}{v} \right) h^{3} - \sum_{\psi=u,d,l} m_{\psi^{(l)}} \bar{\psi}^{(l)} \psi^{(l)} \left(1 + c_{\psi} \frac{h}{v} + ... \right) + \left(m_{W}^{2} W_{\mu} W^{\mu} + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu} \right) \left(1 + 2c_{V} \frac{h}{v} + ... \right) + ... + \left(c_{WW} W_{\mu\nu}^{+} W^{-\mu\nu} + \frac{c_{ZZ}}{2} Z_{\mu\nu} Z^{\mu\nu} + c_{Z\gamma} Z_{\mu\nu} \gamma^{\mu\nu} + \frac{c_{\gamma\gamma}}{2} \gamma_{\mu\nu} \gamma^{\mu\nu} + \frac{c_{gg}}{2} G_{\mu\nu}^{a} G^{a\mu\nu} \right) \frac{h}{v} + \left(c_{W\delta W} \left(W_{\nu}^{-} D_{\mu} W^{+\mu\nu} + h.c. \right) + c_{Z\delta Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + c_{Z\delta\gamma} Z_{\nu} \partial_{\mu} \gamma^{\mu\nu} \right) \frac{h}{v} + ...$$
(3.46)

- * Expansion in E/M E = typical scale of external 4-momenta, M = New Physics scale
- * Coupling deviations from SM need not be small
- Implementation for Higgs decay rates: eHDECAY
 URL: http://www.itp.kit.edu/~maggie/eHDECAY/

Program eHDECAY

eHDECAY

The program eDHECAY is a modified version of the latest release of HDECAY 5.10. It allows for the calculation of the partial decay widths and branching ratios of a composite Higgs parametrization according to MCHM4 or MCHM5. Higgs-like boson within different parametrisations of the Lagrangian: the non-linear Lagrangian, the SILH Lagrangian and the

Program: Released by: Roberto Contino, Margherita Ghezzi, Christophe Grojean, Margarete Mühlleitner and Michael Spira eHDECAY obtained from extending HDECAY 5.10

When you use this program, please cite the following references: HDECAY: An update of HDECAY: A. Djouadi, J. Kalinowski, Margarete Muhlleitner, M. Spira, in arXiv:1003.1643 eHDECAY: R. Contino, M. Ghezzi, C. Grojean, M. Mühlleitner, M. Spira, in arXiv 1303.3876 A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108 (1998) 56

Informations on the Program:

- Short explanations on the program are given <u>here</u>.
- To be advised about future updates or important modifications, send an E-mail to <u>margherita.ghezzi@roma1.infn.it</u> or margarete.muehlleitner@kit.edu.

Downloading the files needed for eHDECAY:

\mathcal{P} rogram eHDECAY - \mathcal{I} nput \mathcal{F} ile

```
Cgaga
 Ĕ.
                                                                                                                                                                                        CMM
                                                                                                                                                                                                CZga
                                                                                                                                                                                                                              Cs
                                                                                                                                                                                                                                      c
                                                                                                                                                                                                                                               ß
                                                                                                                                                                                                                                                        ĉ
                                                                                                                                                                                                                                                                                              QW
                                                                                                                                                             CZdZ
                                                                                                                                                                      CWdW
                                                                                                                                                                               CZZ
                                                                                                                                                                                                         Cgg
                                                                                                                                                                                                                                                                  Cinu
                                                                                                                                                                                                                                                                           Ctau
                                                                                                                                                                                                                                                                                     02
         fermrepr = 1
                            Cgbar
                                     Cgambar
                                               CHBbar
                                                        CHWbar
                                                                 CBbar
                                                                          CWbar
                                                                                   Csbar
                                                                                             Cobar
                                                                                                     Cbbar
                                                                                                               Ctbar
                                                                                                                        Cmubar
                                                                                                                                 Ctaubar
                                                                                                                                           CHbar
                                                                                                                                                                                                                                                                                                       **** Turn off (0) or on (1) the elw corrections for LAGPARAM = 1 or 2 ****
                                                                                                                                                                                                                                                                                                                                  LAGPARAM = 0
                                                                                                                                                                                                                                                                                                                                           ************** LAGRANGIAN 0 - chiral
                     ******
                                                                                                                                                   IELW
                                                                                                                                                                                                                                                                                                                  MCHM4 (fermrepr=1), MCHM5 (fermrepr=2) parametrisation *******
= 0.D0
                                                                                                                                                                                                                                                                                                = 0.D0
                                     = 0.D0
                                                                                                                                           = 0.D0
                                                                                                                                                             = 0.D0
                                                                                                                                                                               = 0.D0
                                                                                                                                                                                                              0.D0
                                                                                                                                                                                        0.D0
                                                                                                                                 0.D0
                                               0.D0
                                                                                                     0.00
                                                                                                               0.D0
                                                                                                                                                                      0.D0
                                                                                                                                                                                                  0.00
                                                                                                                                                                                                          0.001D0
                                                                                                                                                                                                                                                                           0.9500
                                                                                                                                                                                                                                                                                    1.D0
                                                                 0.00
                                                                         0.D0
                                                                                   0.00
                                                                                            0.00
                                                                                                                        0.00
                                                                                                                                                                                                                             0.95D0
                                                                                                                                                                                                                                     0.95D0
                                                                                                                                                                                                                                                0.9500
                                                                                                                                                                                                                                                         0.95D0
                                                                                                                                                                                                                                                                                              1.D0
                                                                                                                                                                                                                    0.005D0
                                                                                                                                                                                                                                                                  0.9500
                                                                                                                                                                                                                                                                                                                                            1 - SILH
                                                                                                                                                                                                                                                                                                                                            2 - MCHM4/5 ************
```


 \mathcal{F} it to \mathcal{I} nvisible or \mathcal{U} ndetectable \mathcal{F} inal \mathcal{S} tates

ATLAS-CONF-2013-034

CMS-HIG-PAS-13-005

Higgs mechanism:

Creation of particle masses without violating gauge principles

Higgs Boson Quantum Numbers

- Quantum numbers of the Higgs boson: $J^{PC} P$ parity J spin C charge conjugation
- Observation in $\gamma\gamma$: No spin 1 [Landau-Yang]; C=+1 [charge invariance]

- Theoretical Tools:
- * helicity analyses
- * operator expansions
- Systematic analysis of production and decay processes

Higgs Boson Quantum Numbers

Systematic analysis of production and decay processes

* Fermionic decays

* Hadronic event shapes

Kramer eal; Berge eal

Englert eal

בחgiert eai; ו-rank eal; Djouadi eal

◇ Double polar angular distribution (CP-invariant theory)

$$\frac{1}{\Gamma'} \frac{d\Gamma'}{d\cos\theta_1 d\cos\theta_2} = \left[\sin^2\theta_1 \sin^2\theta_2 |\mathcal{T}_{00}|^2 + \frac{1}{2} (1 + \cos^2\theta_1)(1 + \cos^2\theta_2) \left[|\mathcal{T}_{11}|^2 + |\mathcal{T}_{1,-1}|^2 \right] + (1 + \cos^2\theta_1) \sin^2\theta_2 |\mathcal{T}_{10}|^2 + \sin^2\theta_1 (1 + \cos^2\theta_2) |\mathcal{T}_{01}|^2 \right] / \mathcal{N}$$

$$\mathcal{N} = (16/9) \sum |\mathcal{T}_{\lambda\lambda'}|^2$$
 – normalization

◇ Azimuthal angular distribution (CP-invariant theory)

$$\frac{1}{\Gamma'}\frac{d\Gamma'}{d\phi} = \frac{1}{2\pi}\left[1 + |\zeta_1|\cos 2\phi\right]$$

suppressing terms quadratic in $\eta_i = 2v_i a_i / (v_i^2 + a_i^2) \sim 0.02$, v_i, a_i electroweak fermion f_i charges $|\zeta_1| = |\mathcal{T}_{11}|^2 / \left[2\sum |\mathcal{T}_{\lambda\lambda'}|^2\right]$

$$\begin{array}{l} \textbf{\mathcal{D}etermination of Spin and Parity, Necessary Conditions} \\ \textbf{Standard Model:} \\ T_{00} = (M_{H}^{2} - M_{Z}^{2})/(2M_{*}M_{Z}), \quad T_{11} = +T_{-1,-1} = -1, \quad T_{10} = T_{01} = T_{1,-1} = 0 \\ \hline \textbf{Necessary conditions} \\ \textbf{Necessary conditions} \\ \textbf{Double polar angular distribution} \\ \frac{1}{\Gamma'} \frac{d\Gamma'}{d\cos\theta_{1}d\cos\theta_{2}} = \frac{9}{16} \frac{1}{\gamma^{4} + 2} \left[\gamma^{4} \sin^{2}\theta_{1} \sin^{2}\theta_{2} \\ + \frac{1}{2} (1 + \cos^{2}\theta_{1})(1 + \cos^{2}\theta_{2})\right] \\ \textbf{Azimuthal angular distribution} \\ \frac{1}{\Gamma'} \frac{d\Gamma'}{d\phi} = \frac{1}{2\pi} \left[1 + \frac{1}{2} \frac{1}{\gamma^{4} + 2} \cos 2\phi\right] \\ \gamma^{2} = (M_{H}^{2} - M_{Z}^{2})/(2M_{*}M_{Z}) \end{aligned}$$

• <u>Caveat:</u> HO cor		$\diamond d\Gamma/dM_*^2 \ \diamond d\Gamma/dM_*^2$	• $M_H < 2M_Z$:	Det
rections to		rules out and no	$d\Gamma/dM$	erminati
$H \to WW/ZZ \to 4f$ distort the shapes of the distributions Bredenstein,Denner,Dittmaier,W	\Rightarrow only 0 ⁺ left (<u>sufficient conditions</u>)	$\begin{split} \mathcal{J}^{\mathcal{P}} &= 0^{-}, 1^{-}, 2^{-}, 3^{\pm}, 4^{\pm} & [\text{threshold rise}] \\ & [1 + \cos^2 \theta_1] \sin^2 \theta_2 \\ & [1 + \cos^2 \theta_2] \sin^2 \theta_1 & \text{rules out } \mathcal{J}^{\mathcal{P}} = 1^+, 2^+ \end{split}$	$M_*^2\simeta$ for $\mathcal{J}^\mathcal{P}=0^+$	on of Spin and Parity, Sufficient Conditions

Walser

Differential Distributions: Parity invariance ----

$$\frac{1}{\Gamma_A} \frac{d\Gamma_A}{d\cos\theta_1\cos\theta_2} = \frac{9}{64} (1+\cos^2\theta_1)(1+\cos^2\theta_2)$$
$$\frac{1}{\Gamma_A} \frac{d\Gamma_A}{d\phi} = \frac{1}{2\pi} \left[1-\frac{1}{4}\cos 2\phi\right]$$

- Threshold Behaviour: $d\Gamma_A/dM_*^2 \sim \beta^3$
- If too small branching ratio $A \rightarrow Z^*Z$: sufficient and necessary conditions of spin/parity
- Spin 0: isotropic angular distribution in $gg \to A \to \gamma\gamma$
- Jets in gg
 ightarrow A + gg anti-correlated for pseudoscalar (correlated for scalar)

Hagiwara eal

• Exploit fermionic decay channels

Choi, Miller, MMM, Zerwas

Azimuthal Angular Distributions: Parity

Threshold Behaviour: Spin

Choi, Miller, MMM, Zerwas

ATLAS-CONF-2013-013

ATLAS Results

ullet $0^+, 0^-, 1^+, 1^-, 2^+, 2^-$ hypotheses in $H o ZZ^* o 4l$

ATLAS Results

Comparison $J^P = 0^+$ (SM) to graviton-inspired $J^P = 2^+$ model w/ minimal couplings

ATLAS-CONF-2013-040

for all admixtures of gg fusion and $q\bar{q}$ production processes Exclusion at more than 99.9% CL

• Spin studies in $H \rightarrow WW^* \rightarrow l\nu l\nu$ CMS-PAS-HIG-13-003

Some Comments

Correlation: between spin/parity and coupling measurements; example

- \diamond observed strong interaction of new particle with EW gauge bosons \leadsto not pseudoscalar ?
- \diamond pseudoscalar interacts w/ gauge bosons through higher-dim operators
- \diamond if significant contributions \leadsto beyond SM physics at low scale
- ♦ would have been observed experimentally

Nevertheless: Experimental test of these arguments is important

Momentum dependence

- ◊ coupling coefficients can be in general momentum-dependent
- \diamond momentum dependence involves ratios of typical momenta in the process to scale of New Physics Λ
- ♦ first approximation: neglect scale dependence

Some Comments

constants, multi-parameter fits, ...) More refined analyses (more sophisticated parametrisations, kinematic dependences of coupling

- ◇ if introduced non-minimal couplings cannot describe properties of new particle
- \diamond when more data available

With present data

- ♦ first step: test of different hypotheses
- $\diamond\,$ extreme spin/parity hypotheses can be excluded
- ◊ small anomalous coupling contributions to Higgs-gauge coupling cannot be excluded

Strategy

- 1. Prove that decay distributions are compatible with 0^+ (SM) , but not $0^ \checkmark$
- 2. Rule out in a model-independent way higher spins with both parities (so far only $KKG(2^+)$)
- 3. $0^+/0^-$ CP-violating mixture?
- \diamond Large enough ZZH^- couplings \rightsquigarrow simple analysis
- ◇ Otherwise work out other channels, including fermions

Systematic helicity analyses for angular distributions

$$\frac{1}{\sigma} \frac{d\sigma(\gamma\gamma)}{d\cos\Theta} = (2J+1) [\mathcal{X}_0^J \mathcal{Y}_0^J \mathcal{D}_{00}^J + \mathcal{X}_0^J \mathcal{Y}_2^J \mathcal{D}_{02}^J + \mathcal{X}_2^J \mathcal{Y}_0^J \mathcal{D}_{20}^J + \mathcal{X}_2^J \mathcal{Y}_2^J \mathcal{D}_{22}^J]$$

$$* \ {\cal D}^J_{m\lambda}$$
 squared Wigner functions, $m=S_z$ spin component, $\lambda\equiv\lambda_\gamma-\lambda_\gamma'$

- $* \mathcal{X}$ production helicity probability
- $* \mathcal{Y}$ decay helicity probability

Systematic helicity analyses for angular distributions

$$\frac{1}{\sigma} \frac{d\sigma(\gamma\gamma)}{d\cos\Theta} = (2J+1)[\mathcal{X}_0^J \mathcal{Y}_0^J \mathcal{D}_{00}^J + \mathcal{X}_0^J \mathcal{Y}_2^J \mathcal{D}_{02}^J + \mathcal{X}_2^J \mathcal{Y}_0^J \mathcal{D}_{20}^J + \mathcal{X}_2^J \mathcal{Y}_2^J \mathcal{D}_{22}^J]$$

*
$${\cal D}^J_{m\lambda}$$
 squared Wigner functions, $m=S_z$ spin component, $\lambda\equiv\lambda_\gamma-\lambda_\gamma'$

- $* \mathcal{X}$ production helicity probability
- $* \mathcal{Y}$ decay helicity probability
- Types

'scalar-type assignment' (Higgs):
$$\mathcal{X}_0^J = \mathcal{Y}_0^J = 1$$
 and $\mathcal{X}_2^J = \mathcal{Y}_2^J = 0$ $[J \ge 0]$
'tensor-type assignment' (graviton-like): $\mathcal{X}_0^J = \mathcal{Y}_0^J = 0$ and $\mathcal{X}_2^J = \mathcal{Y}_2^J = 1$ $[J \ge 2]$

• Selection rules for Higgs spin/parity from observing the polar angular distributions of a

spin-J Higgs state in $gg \to H \to \gamma\gamma$

odd		even	$\mathcal{P}\setminus J$
1		1	0
forbidden		forbidden	1
${\cal D}^J_{00}$	${\mathcal D}_{20}^J {\mathcal D}_{22}^J$	$\mathcal{D}^J_{00} \mathcal{D}^J_{02}$	$2, 4, \cdots$
forbidden		\mathcal{D}^J_{22}	$3, 5, \cdots$

• Squared Wigner functions $\mathcal{D}_{m\lambda}^{J}$ up to $\sim |\cos^{2J}\Theta|$

$$\mathcal{D}_{00}^{0} = 1$$

$$\mathcal{D}_{00}^{2} = (3\cos^{2}\Theta - 1)^{2}/4 \qquad \mathcal{D}_{22}^{2} = (\cos^{4}\Theta + 6\cos^{2}\Theta + 1)/16$$

• Selection rules for Higgs spin/parity from observing the polar angular distributions of a

spin-J Higgs state in $gg \to H \to \gamma \gamma$

forbidden	${\cal D}^J_{00}$	forbidden	1	odd
	${\mathcal D}^J_{20}$ ${\mathcal D}^J_{22}$			
${\cal D}^J_{22}$	${\cal D}^J_{00}$ ${\cal D}^J_{02}$	forbidden	1	even
$3, 5, \cdots$	$2, 4, \cdots$	1	0	$\mathcal{P}\setminus J$

2- 	2+ 	0^{\pm} .
$D^2_{00} eq 0,$ none else	D^2_{00} and $D^2_{22} eq 0$, both	D^0_{00} observed, none else $ ightarrow \pm$ undisc
ယ ၊ ··	$\overset{\mathfrak{S}_+}{\cdots}$	1 <u>→</u>
forbidden	$D_{22}^3 eq 0$, none else	forbidden by Landau/Yang

:

:

Scalar-type, Tensor-type

Choi, Miller, MMM, Zerwas

Distinction Scalar-type, Tensor-type

Choi, MMM, Zerwas

- Analoguous analysis: Angular distribution of Z^*Z axis in Z^*Z final states
- Parity check in:
- * Azimuthal corr. between radiation planes in $qq \rightarrow VV' + qq \rightarrow H, A + qq$ Plehn eal; Hagiwara eal
- * Correlations of planes in $gg \rightarrow H, A+2$ jets

- Hagiwara eal
- Spin/Parity in Higgs-strahlung: $q\bar{q} \rightarrow Z/W + H^J$ Choi eal; Ellis eal; Englert eal; Frank eal; Djouadi eal
- **Fermionic decays:** Angular correlations among fermion decay products in $H^J \rightarrow f\bar{f} \rightarrow a\bar{a} \dots$
- CP-violating H':
- * In $H' \rightarrow Z^*Z$, hopefully
- * Alternatively in Higgs + 2 jets, in fermionic decays

- Godbole, Miller, MMM

Kramer eal; Berge eal

- Berge, Bernreuther, Niepelt, Spiesberger Berge, Bernreuther, Ziethe; Berge, Bernreuther;

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

• CP-violating *H'ZZ* vertex:

Godbole, Miller, MMM

$$V^{\mu\nu}_{H'ZZ} = \frac{igM_Z}{\cos\theta_W} \left[a \, g^{\mu\nu} + b \, \frac{p^\mu p^\nu}{M_{H'}^2} + c \, \epsilon^{\mu\nu\rho\sigma} \frac{p_\rho k_\sigma}{M_{H'}^2} \right]$$

 $p = k_1 + k_2, k = k_1 - k_2, \quad k_1, k_2$ 4-momenta of Z^*, Z

- **CP-violation:** simultaneously a, c non-zero, or b, c non-zero (SM: a = 1, b = c = 0)
- Angular correlations and CP-properties

even	$-2\kappa\gamma^2 Im(ab^*)$	$\mathcal{O}_5 = \eta_1 s_{ heta_1} c_{ heta_2} s_{ heta_2} s_{\phi} + \eta_2 c_{ heta_1} s_{ heta_1} s_{ heta_2} s_{\phi}$
odd	$2etaRe(ac^*)$	$\mathcal{O}_4 = s_{ heta_1}^2 s_{ heta_2}^2 s_{2\phi}/2$
even	$ a ^2 - eta^2 c ^2$	$\mathcal{O}_3 = s^2_{ heta_1} s^2_{ heta_2} c_{2\phi}/2$
even	$2\left(a ^2+eta^2 c ^2 ight)$	$\mathcal{O}_2 = (1 + c_{\theta_1}^2)(1 + c_{\theta_2}^2)/4 + \eta_1 \eta_2 c_{\theta_1} c_{\theta_2}$
even	$\gamma^4 ilde{a} ^2$	$\mathcal{O}_1=s^2_{ heta_1}s^2_{ heta_2}$
CP	Observed quantity	Angular correlation

Table 1: $c_{\theta_1} \equiv \cos \theta_1 \ etc., \ and \ \tilde{a} \equiv a + \kappa b \ where \ \kappa = M_{H'}^2 \beta^2 / [2(M_{H'}^2 - M_Z^2 - M_*^2)].$

${\cal CP}$ Violation in $H' o Z^*Z o 4l$

CP-violating H'ZZ vertex:

Godbole, Miller, MMM

$$V^{\mu\nu}_{H'ZZ} = \frac{igM_Z}{\cos\theta_W} \left[a \, g^{\mu\nu} + b \, \frac{p^\mu p^\nu}{M_{H'}^2} + c \, \epsilon^{\mu\nu\rho\sigma} \frac{p_\rho k_\sigma}{M_{H'}^2} \right]$$

 $p = k_1 + k_2, k = k_1 - k_2, \quad k_1, k_2:$ 4-momenta of Z^*, Z

- **CP-violation:** simultaneously a, c non-zero, or b, c non-zero (SM: a = 1, b = c = 0)
- Angular correlations and CP-properties

$$\mathcal{D}_4 = \frac{[(\vec{p}_{3H} \times \vec{p}_{4H}) \cdot \vec{p}_{1H}][(\vec{p}_{3H} \times \vec{p}_{4H}) \cdot (\vec{p}_{1H} \times \vec{p}_{2H})]}{|\vec{p}_{3H} + \vec{p}_{4H}|^2 |\vec{p}_{1H} + \vec{p}_{2H}| |\vec{p}_{3Z} - \vec{p}_{4Z}|^2 |\vec{p}_{1Z} - \vec{p}_{2Z}|^2 / 16}$$

$$\mathcal{A}_4 = \frac{\Gamma(O_4 > 0) - \Gamma(O_4 < 0)}{\Gamma(O_4 > 0) + \Gamma(O_4 < 0)}$$

Achieved significance for Re(c)/a = 2.7 (max asymm):

$$7 + 8 \text{ TeV}: S_{A_4} = 0.45 - 0.5 \quad \text{ATLAS-CMS}$$

$$14 \text{ TeV}: S_{A_4} = 0.74 \quad \text{at } \int \mathcal{L} = 100 \text{ fb}^{-1}$$

14 TeV :

 $S_{\mathcal{A}_4} = 0.74$

 $S_{\mathcal{A}_4} = 1.28$

at $\int \mathcal{L} = 300 \text{ fb}^{-1}$

Ellis eal; Choi eal

 $H' = \cos \chi H + \sin \chi e^{i\xi} A$

Choi, Miller, MMM, Zerwas

 ${\cal CP}$ Violating Wave ${\cal F}$ unction in $H' \to Z^*Z \to 4l$

CP Violating in Kinematical Distributions

Godbole, Miller, MMM

• **CP-violating** *H'gg* vertex:

$$V_{H'gg} = \cos \chi V_{Hgg} + \sin \chi e^{i\xi} V_{Agg}$$

Modulation of azimuthal angular modulation of the two jets:

$$\frac{1}{\sigma}\frac{d\sigma}{d\phi} = \frac{1}{2\pi} \left[1 + |\zeta| \left\{ \left(c_{\chi}^2 - \rho_g^2 s_{\chi}^2 \right) \cos 2\phi + \rho_g s_{2\chi} c_{\xi} \sin 2\phi \right\} / \mathcal{N}' \right]$$

 $|\zeta|$: polarisation parameter, $\mathcal{N}'=c_{\chi}^2+\rho_g^2s_{\chi}^2$: normalisation, $\rho_g=Agg/Hgg$

Azimuthal-Angle Distribution

planes in $gg \to H' + gg \ (\rho_g = 1, \ \xi = 0, \ |\zeta| = 1)$ CP- and CP-odd coefficients in the azimuthal-angle distribution of the two initial two-jet emission Choi, Miller, MMM, Zerwas

Results on Mixed Parity

Mixed parity in $H \rightarrow ZZ \rightarrow 4l$

$$A(X \to V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} (a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\rho\sigma} q_1^{\rho} q_2^{\sigma})$$

CP-odd admixture: $f_{a_3} = |A_3|^2/(|A_1|^2 + |A_3|^2)$

The Birth of a New Particle

is a Higgs boson New results indicate that particle discovered at CERN

14 Mar 2013

however, whether this is the Higgs boson of the Standard Model of particle physics, or results that further elucidate the particle discovered last year. Having analysed two and a collaborations at CERN¹'s Large Hadron Collider (LHC) presented preliminary new possibly the lightest of several bosons predicted in some theories that go beyond the the mechanism that gives mass to elementary particles. It remains an open question, that the new particle is looking more and more like a Higgs boson, the particle linked to half times more data than was available for the discovery announcement in July, they find Geneva, 14 March 2013. At the Moriond Conference today, the ATLAS and CMS

TATI----

Standard Model. Finding the answer to this question will take time.

EWSB mechanism:

Creation of particle masses without violating gauge principles

The Trilinear Determination of λ_{HHH} at the LHC double radiation of W/Z : $q\bar{q}$	↓	F-Coupling at $W/Z + HH$	the LHC Djouadi,Kilian,MMM,Zerwas; Lafaye,Miller,Moretti,MMM Barger,Han,Phillips
double radiation of $W/Z\colon\ qar q$	\downarrow	W/Z + HH	Barger, Han, Phillips
WW/ZZ fusion: qq	\downarrow	qq + HH	Dicus, Kallianpur, Willenbrock Abbasabadi, Repko, Dicus, Vega Dobrovolskaya, Novikov Eboli, Marques, Novaes, Natale
gluon gluon fusion: gg	\downarrow	НН	Glover,van der Bij Plehn,Spira,Zerwas Dawson,Dittmaier,Spira
gluon gluon fusion - dominant process			
			H

I

Double SM Scalar Boson Production at the LHC

Djouadi, Kilian, MMM, Zerwas

small signal + large QCD background ~-> challenge!

 $M_H < 140$ GeV: $gg \rightarrow HH \rightarrow bb\gamma\gamma$:

Baur, Plehn, Rainwater

• SLHC [$\int \mathcal{L} = 6 \text{ ab}^{-1}$]: $M_H = 120 \text{ GeV}$ $\lambda_{HHH} = 0$ exclusion at 90% CL

 \circ $bb\gamma\gamma$, $bb\tau^+\tau^-$ look promising: $S/\sqrt{B} \approx 6$ for $\int \mathcal{L} = 3$ ab⁻¹ $M_H = 125 \text{ GeV}: b\bar{b}\gamma\gamma, b\bar{b}\tau^+\tau^-, b\bar{b}W^+W^-:$ Baglio, Djouadi, Gröber, MMM, Quevillon, Spira '12

 $M_H = 125$ GeV: exploit subjet techniques:

◦ LHC@14TeV [$\int \mathcal{L} = 1000 \text{ fb}^{-1}$]: $HHj \rightarrow b\bar{b}\tau^+\tau^-j$: most promising to constrain λ_{HHH}

Papaetstathiou, Yang, Zurita'12 Dolan, Englert, Spannowski'12

◦ LHC@14TeV [$\int \mathcal{L} = 600 \text{ fb}^{-1}$]: $HH \rightarrow bbW^+W^- \rightarrow bbl\nu jj$: strong evidence

 $M_H = 125$ GeV: exploit ratios of cross sections

Goertz, Papaefstathiou, Yang, Zurita '13

Baglio, Djouadi, Gröber, MMM, Quevillon, Spira

 ${\cal S}$ ensitivity to λ_{HHH}

Double scalar boson production through gluon fusion:

* w/o or w/ new heavy fermion partners (\leftarrow composite top)

 \triangleright Can be enhanced compared to the SM process

 \triangleright Mediated by top and bottom loops and heavy quark loops; here heavy top partners

Gröber,MMM

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

Sensitivity to details of heavy composite sector?

Different fermions can contribute within one loop

Double Scalar Boson Production in MCHM5

Gillioz, Gröber, Grojean, MMM, Salvioni

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

Going Beyond

Vast literature on MSSM Higgs of $\sim 122...128$ GeV

Arbey eal; Li eal; Feng eal; Baer eal; Hall eal; Albornoz Vasquez eal; Heinemeyer eal; Desai et al.; Curtin eal; ... Draper eal; Carena eal; Cao eal; Christensen eal; Kadastik eal; Buchmuller eal; Arvanitaki eal; Ellis eal;

MSSM Higgs mass corrections

$$m_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2$$

 $\Rightarrow M_H \approx 125 \text{ GeV}$ requires

 $\Delta m_h \approx 85 \text{ GeV} (\tan \beta \text{ large}) \Rightarrow \text{large corrections} \rightsquigarrow \text{finetuning}$

• Further remarks:

- next-lightest Higgs can be SM-like 122-128 GeV Higgs (low M_A , moderate aneta)lightest Higgs below LEP limit see e.g. Heinemeyer eal '11
- ullet enhanced diphoton rate can be achieved within MSSM w/ light staus Carena eal $^{\prime}11$
- $\gamma\gamma$ excess, but no WW excess requires New Physics beyond MSSM Christensen eal '12

Search for \mathcal{MSSM} $\mathcal{H}iggs$ $\mathcal{B}osons$ at the \mathcal{LHC}

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

The NMSSM Higgs Sector

Next-to-Minimal Supersymmetric Extension of the SM: NMSSM

Drees; Ellwanger eal; Savoy; Elliott eal; Gunion eal; Franke eal; Maniatis; Djouadi eal; Mahmoudi eal; ... Fayet; Kaul eal; Barbieri eal; Dine eal; Nilles eal; Frere eal; Derendinger eal; Ellis eal

• The μ -problem of the MSSM:

Higgsino mass parameter μ must be of order of EWSB scale

Kim, Nilles

• Solution in the NMSSM:

additional chiral superfield field S: $\mu = \lambda \langle S \rangle$ μ generated dynamically through the VEV of scalar component of an

Enlarged Higgs and neutralino sector:

Significant changes of Higgs boson phenomenology

Vast literature on NMSSM Higgs of $\sim 122...128$ GeV

Hall eal; Ellwanger; Gunion eal; King, MMM, Nevzorov; Vasquez eal; Cao eal; Gabrielli eal; ...

Remarks

- \diamondsuit SM-like Higgs with ~ 125 GeV can be either H_1 or H_2 $(H_1$ singlet-like, suppr. SM couplings)
- \diamond strong singlet-doublet mixing \rightsquigarrow reduced coupling to $b\bar{b}\rightsquigarrow BR(H\to\gamma\gamma)$ enhanced
- \diamondsuit mass value of ~ 125 GeV more easily obtained \leadsto less finetuning

Corrections to the MSSM, NMSSM Higgs boson mass:

MSSM: $m_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2$

NMSSM: $m_h^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_h^2$

NMSSM: $\Delta m_h \approx 55 \text{ GeV} (\lambda = 0.7, \tan \beta = 2)$ MSSM: $\Delta m_h \approx 85$ GeV $(\tan \beta \text{ large}) \Rightarrow \text{ large corrections are needed } \rightarrow \text{ conflict with finetuning}$ $\Rightarrow M_H \approx 125$ requires:

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

 \mathcal{U} pper \mathcal{L} imit on \mathcal{NMSSM} a_1 \mathcal{P} roduction

\mathcal{C} onclusions

Experimental results compatible with

- \star SM scalar boson within 2σ
- * Vanishing invisible width

Next steps

- \star Establish boson as the one responsible for EWSB
- ♦ Coupling determination
- ♦ Spin and Parity; CP violation
- ♦ Higgs Boson Self-couplings

 \star Nature of the boson (SM, SUSY, ...)

Thank you for your attention!

Signal Rates

Coupling modifications affect Higgs signal but not background

signal rates changed, but kinematics unaffected \Rightarrow Rescale SM searches

Expected signal strength

$$\mu_X = \left[\frac{\sigma_{pp \to h \to X}^{SM(\kappa_V, \kappa_F)}}{\sigma_{pp \to h \to X}^{SM}} \right] = \frac{\sum_{p_i} \epsilon_{p_i} \sigma_{p_i}(\kappa_V, \kappa_F) \times BR_{h \to X}^{SM(\kappa_V, \kappa_F)}}{\sum_{p_i} \epsilon_{p_i} \sigma_{p_i} \times BR_{h \to X}^{SM}}$$

Efficiencies ϵ_{p_i} are the same as in the SM (if interferences w/ bkg are negligible)

▷ Fit ingredients

- * Efficiencies ϵ_{p_i} \ast Measured $\hat{\mu}{}'{\rm s}$ separately at 7 and 8 TeV
- * If only $\hat{\mu}_{7+8}$ is available, then $\hat{\mu}_8 \pm \sigma_8$ from $\hat{\mu}_7 \pm \sigma_7$, $\hat{\mu}_{7+8} \pm \sigma_{7+8}$ with the Gaussian combination formula

$$\frac{\hat{\mu}_{7+8}}{\sigma_{7+8}^2} = \frac{\hat{\mu}_7}{\sigma_7^2} + \frac{\hat{\mu}_8}{\sigma_8^2} \quad , \quad \frac{1}{\sigma_{7+8}^2} = \frac{1}{\sigma_7^2} + \frac{1}{\sigma_8^2}$$

* Assumed Gaussian distributed $\hat{\mu}$'s; neglect correlations (not given by exp) in combinations of different channels and/or experiments

${\mathcal E}$ ffective ${\mathcal L}$ agrangian for a ${\mathcal L}$ ight ${\mathcal H}$ iggs- ${\mathcal L}$ ike ${\mathcal S}$ calar

- Based on R. Contino, M. Ghezzi, C. Grojean, MMM, M. Spira, arXiv:1303.3876
- SILH Lagrangian
- Non-linear Lagrangian
- **Discussion of bounds** from EWPD, Z-pole measurements, $b \rightarrow s\gamma$, electric dipole moments, anomalous magnetic moments, tt cross sections
- **New Physics** Discussion of operators sensitive to strongly-interacting Higgs boson, sensitive to the scale of
- Implementation of the Higgs effective Lagrangian beyond the tree-level
- Implementation for Higgs decay rates: eHDECAY
 URL: http://www.itp.kit.edu/~maggie/eHDECAY/

 \bullet SM-like NMSSM scalar boson of $\sim 126~{\rm GeV}$

Can be either H_1 or H_2 $(H_1$ singlet-like, suppr. SM couplings)

Enhanced Diphoton rate (now only ATLAS)

$$BR(h^{126 \text{ GeV}} \to \gamma\gamma) = \frac{\Gamma(h^{126 \text{ GeV}} \to \gamma\gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + \dots)[h^{126 \text{ GeV}}]}$$

- * Suppression of $\Gamma(h^{126\,{\rm GeV}} \rightarrow b\bar{b})$ due to Cao, Heng, Yang, Zhang, Zhu; Albornoz-Vasquez, Belanger, Boehm, DaSilva, Richardson, Wymant Hall, Pinner, Ruderman; Ellwanger; King, MMM, Nevzorov;
- \diamond strong singlet-doublet mixing \leadsto reduced coupling to $b\bar{b}$
- $\diamond \Delta_b$ corrections to $h^{126\,{
 m GeV}}b\bar{b}$ coupling

Carena eal

$$\mathcal{MSSM}$$
 Scalar Boson and Enhanced Diphoton Rate

SM-like NMSSM scalar boson of ~ 126 GeV

Can be either H_1 or H_2 $(H_1$ singlet-like, suppr. SM couplings)

Enhanced Diphoton rate (now only ATLAS)

$$R(h^{126 \text{ GeV}}
ightarrow \gamma \gamma) = rac{\Gamma(h^{126 \text{ GeV}}
ightarrow \gamma \gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + ...)[h^{126 \text{ GeV}}]}$$

 \bullet SM-like NMSSM scalar boson of $\sim 126~{
m GeV}$

Can be either H_1 or H_2 $(H_1$ singlet-like, suppr. SM couplings)

Enhanced Diphoton rate (now only ATLAS)

$$BR(h^{126\,\text{GeV}} \to \gamma\gamma) = \frac{\Gamma(h^{126\,\text{GeV}} \to \gamma\gamma)}{(\Gamma_{b\bar{b}} + \Gamma_{WW} + \Gamma_{ZZ} + \dots)[h^{126\,\text{GeV}}]}$$

- * Suppression of $\Gamma(h^{126\,{\rm GeV}} \to b\bar{b})$ due to Cao, Heng, Yang, Zhang, Zhu; Albornoz-Vasquez, Belanger, Boehm, DaSilva, Richardson, Wymant Hall, Pinner, Ruderman; Ellwanger; King, MMM, Nevzorov;
- \diamond strong singlet-doublet mixing \leadsto reduced coupling to bb
- $\diamond \ \Delta_b$ corrections to $h^{126\,{
 m GeV}}bar{b}$ coupling
- * Enhanced $\Gamma(h^{126\,\text{GeV}}
 ightarrow \gamma\gamma)$ due to charged boson, chargino, stop loop contributions

Carena eal

* $h^{126\,{\rm GeV}}$ can be H_1,H_2

NMSSM Scalar Boson and Enhanced Diphoton Rate

Enhancement on the production side

• Enhanced gluon fusion production

See e.g. King, MMM, Nevzorov, Walz

- * Stop, sbottom loop contributions in $gg \rightarrow H_i$ can enhance the production cxn for small mixing
- * Associated slight suppression in $BR(h^{126\,\text{GeV}} \rightarrow \gamma\gamma)$ compensated by charged boson, chargino loop contributions
- * \Rightarrow overall enhanced production in $\gamma\gamma$ final states, $\mu_{\gamma\gamma} > 1$
- * Couplings to WW, ZZ must be suppressed in this case \rightsquigarrow overall production in VV final states \approx SM-like, $\mu_{ZZ,WW}\approx 1$

NMSSM Scan - Light Stop Masses

$\star \tan \beta = 2, 4$	maximize tree-level mass of lightest Higgs boson
$\star~0.55 \leq \lambda \leq 0.8$, $10^{-4} \leq \kappa \leq 0.4$	validity of perturbativity
$\star~100~{ m GeV} \le \mu_{ m eff} \le 200~{ m GeV}$	avoid finetuning
\star 500 GeV $\leq M_{Q_3} = M_{t_R} \leq$ 800 GeV $A_t = 0$ GeV, 1 TeV	avoid finetuning
* $-500 \text{ GeV} \leq A_\kappa \leq 0 \text{ GeV}$ $200 \text{ GeV} \leq A_\lambda \leq 800 \text{ GeV}$	
* $M_{\tilde{u}_R} = M_{\tilde{c}_R} = M_{\tilde{D}_R} = M_{\tilde{Q}_{1,2}} =$ $M_{\tilde{e}_R} = M_{\tilde{\mu}_R} = M_{\tilde{L}_{1,2}} = 2.5 \text{ TeV}$ $M_{\tilde{\tau}_R} = M_{\tilde{L}_3} = 300 \text{ GeV} , A_D = A_E = 1 \text{ TeV}$	comply with LHC results
* $M_1 = 150 \text{ GeV}, M_2 = 300 \text{ GeV}, M_3 = 1 \text{ TeV}$	

NMSSM Scan

• Typical mass values:

$$m_{\tilde{t}_1} = 400 - 820 \text{ GeV}, \quad m_{\tilde{t}_2} = 530 - 890 \text{ GeV}$$

$$M_{H^{\pm}} \ = \ 200-500 \,\, {\rm GeV} \,, \quad M_{\tilde{\chi}_1^{\pm}} = 105-165 \,\, {\rm GeV} \,, \quad M_{\tilde{\chi}_2^{\pm}} = 345-360 \,\, {\rm GeV} \,.$$

NMSSM Scan

• Conditions on the parameter scan:

✻ * At least one CP-even Higgs boson h with: The reduced cross section for $\gamma\gamma$ must fulfill: $\mu_{\gamma\gamma}(h)\gtrsim 0.8$ with $124~{
m GeV}~\lesssim M_h \lesssim 127~{
m GeV}$

$$124~{
m GeV}~\lesssim M_h = M_{H{
m SM}} \lesssim 127~{
m GeV}$$

- * No restriction on rates into WW, ZZ, $b\bar{b}$, $\tau^+\tau^-$
- * Higgs bosons outside 124...127 GeV: exclusion limits of LEP, Tevatron and LHC searches
- Signal can be superposition of two Higgs boson rates close in mass: h and $\Phi = H_i, A_j$

$$\iota_{XX}(h) \equiv R_{\sigma}(h) R_{XX}^{BR}(h) + \sum_{\substack{\Phi \neq h \\ |M_{\Phi} - M_h| \leq \delta}} R_{\sigma}(\Phi) R_{XX}^{BR}(\Phi) F(M_h, M_{\Phi}, d_{XX})$$

 δ : mass resolution in the respective XX final state

 $F(M_h, M_{\Phi}, d_{XX})$: Gaussian weighting function

 d_{XX} : experimental resolution of final state XX

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

NMSSMTools

 $500~{\rm GeV} \le M_{Q_3},~M_{t_R} \le 800~{\rm GeV}$, $-500~{\rm GeV} \le A_\kappa \le 0~{\rm GeV}$, $200~{\rm GeV} \le A_\lambda \le 800~{\rm GeV}$, $\tan\beta=2,\,4$, $A_t=1~{\rm TeV}$ Above black line: $R_{\gamma\gamma} = R_{\gamma\gamma}^{\rm BR}(h) R_{\sigma_{\rm incl}}(h) > 1$

 $\star~0.55 \leq \lambda \leq 0.8$, $10^{-4} \leq \kappa \leq 0.4$, $100~{\rm GeV} \leq \mu_{\rm eff} \leq 200~{\rm GeV},$

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

 $\star R_{\sigma_{incl}} = \sigma_{incl}^{NMSSM} / \sigma_{incl}^{SM} \text{ enhanced: } \circ \sigma_{prod} \uparrow: \tilde{t} \text{ loops and, or } g_{H_itt} \uparrow$

 $\star R^{\mathsf{BR}}_{\gamma\gamma} = BR^{NMSSM}_{\gamma\gamma} / BR^{SM}_{\gamma\gamma} \text{ enhanced: } \circ BR_{\gamma\gamma} \uparrow: H^{\pm}, \tilde{\chi}^{\pm}, \tilde{t} \text{ loops, suppressed } g_{H_ibb} \text{ coupling}$

 \ast green/red points: perturbation theory valid up to the GUT scale

* yellow points: violate two-loop upper bounds on λ, κ

* cyan/pink points: require extra matter at 1 TeV

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

* points with $R_{\gamma\gamma}^{\rm BR}$ and $R_{\sigma_{\rm incl}}$ small not recjected as

 $\mu_{\gamma\gamma}(h)>0.8$ possible due to superpositions of rates of two Higgs bosons close in mass

For $h = H_1$: degeneracy $H_1 - H_2$ and $H_1 - A_1$ possible

For $h = H_2$: degeneracy $H_2 - H_1$ and $H_2 - A_1$ possible

* crosses: Exp. best fit of $\mu=\sigma/\sigma_{SM}$, full/ATLAS, dashed/CMS * cyan/pink points: two signals overlap

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

 $\mu_{\gamma\gamma}(H_1)$

* crosses: Exp. best fit of $\mu=\sigma/\sigma_{SM}$, full/ATLAS, dashed/CMS * cyan/pink points: two signals overlap

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

 $\mu_{\gamma\gamma}(H_1)$

* crosses: Exp. best fit of $\mu=\sigma/\sigma_{SM}$, full/ATLAS, dashed/CMS * cyan/pink points: two signals overlap

NMSSM Scan - After Moriond

King, MMM, Nevzorov, Walz

 $\mu_{\gamma\gamma}(H_1)$
$\mu_{\gamma\gamma}(H_1)$

* crosses: Exp. best fit of $\mu=\sigma/\sigma_{SM}$, full/ATLAS, dashed/CMS

NMSSM Scan - After Moriond

King, MMM, Nevzorov, Walz

* crosses: Exp. best fit of $\mu=\sigma/\sigma_{SM}$, full/ATLAS, dashed/CMS * cyan/pink points: two signals overlap

- M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

M.M. Mühlleitner, Seminar, 14 May 2013, LAL Orsay

* $\sigma_{\rm prod}(H_2) \times BR(H_2 \rightarrow \chi_1^0 \chi_1^0) \approx 4 - 8.5 \ {\rm pb}$

* $BR_{H_2}^{\max}(H_1H_1) \approx 0.36$, $BR_{H_2}^{\max}(A_1A_1) \approx 0.35$ and $BR_{H_2}^{\max}(\tilde{\chi}_1^0 \tilde{\chi}_1^0) \approx 0.43$

* $\tan \beta = 2$, $A_t = 1$ TeV

* $BR(H_1 \rightarrow bb) \approx 0.9$ $BR(H_1 \to \tau^+ \tau^-) \approx 0.07 - 0.085$ $BR(H_1 \to \mu^+ \mu^-) \lesssim 0.0006$

 ${\mathcal E}$ xpected ${\mathcal S}$ ignal - ${\mathcal R}$ esults by ${\mathcal S}$ asha ${\mathcal N}$ ikitenko

5

Consider two mass regions for m_{H1}

<u>6 GeV < m_{H1} < 2m_b</u> ττττ dominates

<u>2mb < m_{H1} < 2m_{H2} ττbb and bbbb dominates</u>

Expected signal event yield for 20 fb⁻¹ at 8 TeV

σ x Br (ττττ) from theory:3 pb	60 000
Two τ->μ, two τ->hadr: 0.17 ² x 0.65 ² x 6 = 0.0732	4392
p _T ^{μ1} >17 GeV, η ^{μ1} <2.1, p _T ^{μ2} >10 GeV, η ^{μ2} <2.4: 0.0713	313
p _T th >10 GeV, η th <2.4:0.277	87
ΔR(μ–μ) > 1.0 : 0.579	50
Probably ask SS muons against DY, tt~, WW: 0.5	25
Probably ask only 1 track around muon against QCD: 0.75 ² = 0.56	14

• $au au au au \to au_{\mu} au_{h} au_{\mu} au_{h}$ from inclusive H_2 production and $2m_{ au} < M_{H_1} < 2m_b$ promising, but estimate of expected bkg needed