The Higgs boson decaying to b-quarks

Andrea Rizzi, INFN e Universita' di Pisa

4 October 2013, Orsay-LAL, Paris

1

Outline

- CMS and LHC
- Overview of the Higgs results
- ► The Higgs to BB modes:
 - ► VH
 - ► VBF
 - ▶ ttH
- Discussion on next LHC runs

The CMS experiment

LHC 2011 & 2012

CMS Integrated Luminosity, pp

Higgs overview

125

126

127

m_x (GeV)

-2 L 0

0.5

1

1.5 κ_V

5

10/04/13

 $H \rightarrow ZZ$

 $\mu = 0.92 \pm 0.28$

0

0.5

1

Best fit σ/σ_{SM}

2.5

0.0

124

The cross sections

Summary of SM measurements

About 3-4 orders of magnitude before cuts

VH, H->bb

VH, H to bb

Associated production of Higgs to a vector boson

- Several modes considered:
 - W->lnu (electron or muon)
 - Z-> nunu
 - Z->ll (electrons or muons)
- Decay of the Higgs boson in bb
 - Use b-tagging to identify the jets coming from the Higgs decay
- Backgrounds:
 - V+b-jets, ttbar, single top, VV
- Trigger with the lepton(s) from the V and/or MET

A ZH->IIbb event candidate

Backgrounds

Reducible backgrounds

QCD, V+udscg ("light" jets) ttbar and single top => reduced with b-tag, jet counting, additional leptons, lepton isolation

Less reducible backgrounds V+bb ZZ(bb), W(lv)Z(bb) => bb mass is the only handle

10

Other important observables used in the analysis
MET, MET significance, MinDeltaPhi (Jet, MET)
DeltaPhi(W/Z,H)

Triggers

- Triggers are mostly based on the W/Z
 - i.e. leptons and MET
- Higgs decay product (di-jets or even btag) are only exploited for the medium-low pT region of ZH->nunubb
- All efficiencies are data driven (turn-on curves from prescaled triggers)

Mode	L1 Seed	HLT Trigger		
W(μν)Η	SingleMu16(er)	IsoMu24(_eta2p1)		
	SingleMu16(er)	Mu40 (_eta2p1)		
	SingleMu16(er)	IsoMu20(_eta201)_WCandPt80		
Z(µµ)H	SingleMu16(er)	IsoMu24(_eta2p1)		
	SingleMu16(er)	Mu40(_eta2p1)		
W(ev)H	SingleEG20 OR 22	Ele27_WP80		
Z(ee)H	DoubleEG137	Ele17\CaloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL		
		_Ele8_caloIdT_CaloIsoVL_TrkIdVL_TrkIsoVL		
Z(νν)Η	l1_etm36 or l1_etm40	HLT_PFMET150		
	l1_etm36 or l1_etm40	HLT_DiCentralPFJet30_PFMHT80 For 2012A		
	L1_ETM36 OR L1_ETM40	HLT_DiCentralJetSumpT100_dPhi05>		
		DiCentralPFJet60_25_PFMET100_HBHENoiseCleaned For 2012B-C-D		
	ll_etm36 or ll_etm40	DiCentralJet20_CaloMET65_BTagCSV07_PFMHT80 For 2012A		
		DiCentralPFJet30_PFMET80_BTagCSV07 For 2012B-C-D		
$W(\tau \nu)H$	L1_ETM36 OR L1_ETM40	LooseIsoPFTau35_Trk20_Prong1_MET70		

Analysis strategy

- Each mode (ll,lnu,nunu) has a dedicated analysis optimization, but the overall schema is common
 - Categorize the analysis in pT bins (3 bins with boundaries optimized in each analysis, typically around 100~200 GeV)
 - Use a jet energy regression to improve the signal shape
 - Estimate the backgrounds in control regions
 - Train an MVA with all discriminating variables (including the mass)
 - Shape fit on the MVA output
- As cross check also a non MVA analysis has been performed
 - Keep pT categories
 - Cut based selection on b-tag and few other variables
 - Use di-jet mass for the shape fit

Jet energy regression

- The dijet mass is the most discriminating variable
- Its resolution depends on jets resolution
- b-jets are not like light jets
 - Presence of leptons and neutrinos
 - More massive (hence broader)
 - They can be "Tagged" with lifetime and secondary vertices
- Use a BDT regression in order to correct the jet energy exploiting jet and b-tag variables
 - ~ 15% improvement in mass resolution

Jet energy regression

The regression technique has been validated on data

- ▶ pT balance in a Z+2b jets sample (Z->ll)
- Top mass in a top enriched region
- In both cases the observed improvements matches the MC expectations

Multi-Variate Analysis

- Apply loose preselection cuts and let and MVA increase the S/B
- Use a dozen input variables to train a Bosted Decision Tree
- Optionally train different BDTs for different backgrounds and split the final BDT in different regions

Preselection cuts				BDT Input variables
Variable	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$	Variable
$m_{\ell\ell}$	-	[75 - 105]	-	
$p_{\rm T}(j_1)$	> 30	> 20	> 60	p_{Tj} : transverse momentum of each Higgs daughter
$p_{\mathrm{T}}(j_2)$	> 30	> 20	> 30	<i>m</i> (jj): dijet invariant mass
$p_{\rm T}(jj)$	> 120	_	> 130	$p_{\rm T}({\rm jj})$: dijet transverse momentum
m(jj)	< 250	[80 - 150] (< 250)	< 250	$p_{\rm T}({\rm V})$: vector boson transverse momentum (or $E_{\rm T}^{\rm miss}$)
$p_{\mathrm{T}}(\mathrm{V})$	[120 - 170] (> 170)	[50 - 100] (> 100)	-	CSV _{max} : value of CSV for the Higgs daughter with largest CSV value
CSV _{max}	> 0.40	> 0.50 (> 0.244)	> 0.679	CSV value of CSV for the Higgs daughter with second largest CSV value
CSV _{min}	> 0.40	> 0.244	> 0.244	$\Delta t (V II)$, azimuthal angla hatusan V (an $\frac{\text{miss}}{\text{miss}}$) and dijat
CSV ^{loose}	-(< 0.40)	_	-(< 0.244)	$\Delta \varphi(\mathbf{v}, \mathbf{H})$: azimutnai angle between \mathbf{v} (or E_{T} and dijet
N _{al}	= 0	_	= 0	$ \Delta \eta(\mathbf{j}) $: difference in η between Higgs daughters
$E_{\rm T}^{\rm miss}$	> 45 (elec)	_	[130 - 170] (> 170)	$\Delta R(jj)$: distance in η - ϕ between Higgs daughters
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet})$	-	-	> 0.5	N _{aj} : number of additional jets
$\Delta \phi(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}(\mathrm{trks})})$	_	_	< 0.5	$\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$)
$\Delta \phi(V, H)$	-	-	> 2.0	$\Delta \theta_{\text{pull}}$: color pull angle [35]

Multi BDT

- Use 3 dedicated BDT to categorize the events
- Glue together the "overall BDT" for the 4 resulting categories

Control regions

- Control regions are defined with several purpose:
 - Adjust MC prediction of main backgrounds (V+light,V+b,ttbar)
 - Verify BDT input variables distributions
 - Verify BDT input variable correlations
 - Verify BDT output distribution in signal free/depleted phase space
- Typical Control Region definition:
 - Same preselection as for signal
 - Invert some cuts
 - and/or apply mass window veto
- Perform a simultaneous fit of highly discriminating variables (e.g. btag) to extract data/MC scale factors

Control Regions – Scale Factors

- For each channel several control regions defined
- Shapes of all variables tested data vs MC
- Scale Factors for yields normalization
 - Used as starting value (with uncertainty) for nuisance parameters in the final fit

Scale Factors

Proœss	W(lv)H	$W(\ell \nu)H$	$Z(\ell \ell)H$	$Z(\ell \ell)H$	$Z(\nu\nu)H$	Ζ(νν)Η
Low p_T	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W + udscg	$0.88 \pm 0.01 \pm 0.03$	$1.00 \pm 0.02 \pm 0.01$	-	-	$0.89 \pm 0.01 \pm 0.03$	$0.96 \pm 0.06 \pm 0.03$
Wbb	$1.91 \pm 0.14 \pm 0.31$	$2.00 \pm 0.15 \pm 0.10$	-	-	$1.36 \pm 0.10 \pm 0.15$	$1.30 \pm 0.17 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.06 \pm 0.03 \pm 0.07$	$0.87 \pm 0.01 \pm 0.03$	$1.15 \pm 0.07 \pm 0.03$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.04 \pm 0.05 \pm 0.08$	$0.96 \pm 0.02 \pm 0.03$	$1.12 \pm 0.10 \pm 0.04$
tŦ	$0.93 \pm 0.02 \pm 0.05$	$1.07 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$0.95 \pm 0.04 \pm 0.10$	$0.97 \pm 0.02 \pm 0.04$	$1.05 \pm 0.07 \pm 0.03$
High p _T	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	8 TeV
W + udscg	$0.79 \pm 0.01 \pm 0.02$	$0.94 \pm 0.02 \pm 0.01$	-	-	$0.78 \pm 0.02 \pm 0.03$	$0.95 \pm 0.05 \pm 0.02$
Wbb	$1.49 \pm 0.14 \pm 0.19$	$1.72 \pm 0.16 \pm 0.08$	-	-	$1.48 \pm 0.15 \pm 0.20$	$1.27 \pm 0.18 \pm 0.10$
Z + udscg	-	-	$1.11 \pm 0.03 \pm 0.11$	$1.06 \pm 0.03 \pm 0.07$	$0.97 \pm 0.02 \pm 0.04$	$1.04 \pm 0.07 \pm 0.02$
Zbb	-	-	$0.98 \pm 0.05 \pm 0.12$	$1.04 \pm 0.06 \pm 0.08$	$1.08 \pm 0.09 \pm 0.06$	$1.15 \pm 0.10 \pm 0.04$
tī	$0.84 \pm 0.02 \pm 0.03$	$0.98 \pm 0.01 \pm 0.01$	$1.03 \pm 0.04 \pm 0.11$	$0.95 \pm 0.04 \pm 0.10$	$0.97 \pm 0.02 \pm 0.04$	$1.03 \pm 0.07 \pm 0.03$

Control Regions - BDT

Reliability of BDT from control regions

- Correlations of input variables
- Correlation of BDT output with input variables (e.g. *mass* vs BDT)
- Output distribution of the BDT
- All data vs MC checks show excellent agreement

BDT output in signal region

- Each decay mode has an independently trained BDT
- To increase the sensitivity the analysis is divided into two pT bins and a low b-tag category is added
- The final result is obtained from a global fit with correlated nuisances

CMS

Systematic uncertainties

- The limit & significance are extracted with a shape analysis
- Systematic uncertainties are handled as nuisance parameters
- Where applicable a shape uncertainty is taken
 - B-tagging (doing discriminator re-shaping)
 - JEC/JER (variation within quoted uncertainties)
 - Background models (different generators)
 - Signal pt-spectrum (half size of NNLO QCD and NLO EWK corrections)
 - Trigger (measured turn-on uncertainties)
 - MC normalization (control region SF uncertainties)
 - Diboson and single top yields (xsec uncertainty)
- Different choices of nuisance parameterization tested to verify robustness of the shape analysis
- No particular concerns from post-fit nuisance pulls

VH MVA Results

More on VH results

- Result also interpreted in the kF kV plane
- For 8TeV data the BDT analysis was actually extended to 150 GeV
 - The excess is broad (due to low mass resolution) but is compatible with 125GeV Higgs expectations
 - The fitted xsec decrease at higher mass

Mjj Analysis

While the main analysis is based on a BDT, a cross-check analysis is implemented as *a shape analysis* on the dijet invariant mass selecting high S/B with:

- \rightarrow Exploit the boost (pt binning)
- \rightarrow Double asymmetric b-tagging
- \rightarrow Topology: b2b, jet veto \rightarrow QCD rejection

Variable	$W(\mu\nu)H$	W(ev)H	$Z(\ell \ell)H$	$Z(\nu\nu)H$
$m_{\ell\ell}$	_	-	$75 < m_{\ell\ell} < 105$	_
рт(ј1)	> 30	> 30	> 20	> 60 (> 60, > 80)
$p_{T}(j_2)$	> 30	> 30	> 20	> 30
$p_{\rm T}(jj)$	> 100	> 100	-	> 110 (> 140, > 190)
$p_{\rm T}({\rm V})$	100 - 130(130 - 180 > 180)	[100 - 150](> 150)	[50 - 100]([100 - 150]) > 150)	<u>ě</u>
CSV1	CSVT	CSVT	CSVM	CSVT 12
CSV2	> 0.5	> 0.5	> 0.5	> 0.5
$\Delta \phi(V, H)$	> 2.95	> 2.95	- / {	> 2.95
$\Delta \hat{R}(jj)$	-	-	-(-, < 1.6)	jut –
N_{ai}	= 0	= 0		= 0
N_{al}	= 0	= 0	<u> </u>	= 0
E_{T}^{miss}	> 45	> 45	< 60.	[100 - 130]([130 - 170], > 170]
$\Delta \phi(pfMET, J)$	-	-	\ < -	> 0.7 (> 0.7, > 0.5)
$\Delta \phi(\text{pfMET}, \text{trkMET})$	-	-		< 0.5
$\Delta \phi(\text{pfMET}, \text{lep})$	$<\pi/2$	$< \pi/2$		\
			LOV	

sig = 1.1 std. dev.

Mu = 0.8 + 0.7 - 0.7

Di-boson cross section

- We can validate the whole analysis chain targeting VZ(bb) instead of VH(bb)
- Testing both the (multi)BDT technique and the simple Mjj
- Results compatible with SM expectation
 - >6 sigma for BDT, ~4 sigma for Mjj

VBF, H->bb

VBF Hbb

The VBF signature is the usual forward-backward jets

▶ In the case of VBF,H->bb the final state is fully hadronic

- Very large QCD background
- The discrimination is based on b-tag, rapidity gap and invariant mass of the light jets

Analysis strategy

Combine all discriminating variables into an MVA output

 Do not use variables highly correlated with b-bbar invariant mass

Categorize events based on the MVA output

The MVA also separates gg->H from VBF H

Fit a peaking signal on a smooth background

Inputs to the MVA:

- eta separation between the btag sorted qq jets.
- eta separation difference between the b-tag and eta sorted qq jets.
- invariant mass of the b-tag sorted qq jet pair
- average eta of the b-tag sorted qq jet pair system.
- CSV b-tagging output for the most b-tagged jet.
- SV b-tagging output for the second most b-tagged jet.
- quark/gluon discriminator for the third b-tagged jet.
- quark/gluon discriminator for the least b-tagged jet.
- eta of the third b-tagged jet.
- scalar pT sum of the additional "soft" Track-Jets with pT > 1 GeV.

Fit in the bb invariant mass

- The mass fit is performed using generic templates (berstein polynomials) for the background
- The signal template shape is tuned on the MC (xtalball plus berstein)
- Reliability of the fit (bias, linearity) tested using different models and different signal injections
- Non QCD backgrounds templates taken from MC

Z+jets cross check

A cross check of the fitting machinery has been done to see the Z+jet candle

Two versions tested:

- Looser preselection cuts
- Higgs like selection (no MVA, but b-tag cuts)

Excess due to Z correctly fitted on top of the very large background

Systematic uncertainties

- Dominant background (QCD) is completely data driven
- MC uncertainties mostly for signal acceptance
- Total effect of systematics on the final result is about 15%

Source	Uncertainty
Background fit	depending on the statistics of each category
Z+jets cross section	$\pm 20\%$
top cross section	$\pm 20\%$
Signal and Z peak position (JES)	$\pm 1.5\%$
Signal and Z resolution	$\pm 10\%$
Luminosity	$\pm 4.4\%$
Trigger efficiency	$\pm 5 - 8\%$
Signal acceptance due to JES	$\pm 10\%$
Signal acceptance due to JER	$\pm 2\%$
VBF cross section	±3%
VBF Monte Carlo acceptance	$\pm 10\%$
PDF	$\pm 5\%$
VBF ANN shape due to b-tag	$\pm 2\%$
VBF ANN shape due to quark-gluon discriminator	$\pm 2\%$
VBF ANN shape due to UE modeling	-8 - +2%
GF cross section	$\pm 15\%$
GF Monte Carlo acceptance	$\pm 50\%$
GF ANN shape	$\pm 50\%$

VBF results

- The first measurement at LHC of the VBF, H->bb is compatible with expectations
- Limits between 2 and 3 x SM were expected
- The observed value is compatible with the expectations for the 125 GeV Higgs boson

@125 GeV Sig = 0.5 std. dev. (0.7 exp) Mu = 0.7 + 1.4 – 1.4

- A combination with VH result is also performed
 - Relative weight of the VBF is about 10%

ttH (H->bb)

ttH, H to bb

Two modes studied (for bb): semi-leptonic and dileptonic

Signal to background ratio rapidly increasing with

Total number of jets (expect 6 or 4 jets in final state)

Number of b-tagged jets (4 b in final state)

- Analysis categorized per Njets,Ntags
- Low Njets,Ntags useful for backgrounds normalization
- High Njets,Ntags are the signal region
- tt+bb background is basically irreducible

ttH, H to bb

Several mildly discriminating variables

Use BDT to combine

An "Higgs mass" only defined in many jets/tags cat.

Systematics

Dominant systematics:

tt+bb normalization

B-tag shape uncertainties

Jet Energy Scale

Uncertainties of the sum of $t\bar{t}+lf$, $t\bar{t}+b$, $t\bar{t}+b\bar{b}$, and $t\bar{t}+c\bar{c}$ events with ≥ 6 jets and ≥ 4 b-tags				
Source	Rate	Shape?		
QCD Scale (all $t\bar{t}+hf$)	35%	No		
QCD Scale $(t\bar{t} + b\bar{b})$	17%	No		
b-Tag bottom-flavor contamination	17%	Yes		
QCD Scale $(t\bar{t} + c\bar{c})$	11%	No		
Jet Energy Scale	11%	Yes		
b-Tag light-flavor contamination	9.6%	Yes		
b-Tag bottom-flavor statistics (linear)	9.1%	Yes		
$QCD Scale (t\bar{t}+b)$	7.1%	No		
Madgraph Q^2 Scale $(t\bar{t} + b\bar{b})$	6.8%	Yes		
b-Tag Charm uncertainty (quadratic)	6.7%	Yes		
Top $p_{\rm T}$ Correction	6.7%	Yes		
b-Tag bottom-flavor statistics (quadratic)	6.4%	Yes		
b-Tag light-flavor statistics (linear)	6.4%	Yes		
Madgraph Q^2 Scale (t $\overline{t} + 2$ partons)	4.8%	Yes		
b-Tag light-flavor statistics (quadratic)	4.8%	Yes		
Luminosity	4.4%	No		
Madgraph Q^2 Scale $(t\bar{t} + c\bar{c})$	4.3%	Yes		
Madgraph Q^2 Scale (tt+b)	2.6%	Yes		
$QCD Scale (t\bar{t})$	3%	No		
$\mathrm{pdf}~(gg)$	2.6%	No		
Jet Energy Resolution	1.5%	No		
Lepton ID/Trigger efficiency	1.4%	No		
Pileup	1%	No		
b-Tag Charm uncertainty (linear)	0.6%	Yes		

ttH (Hbb and Htautau)

- Updated result with full 2012 luminosity presented in combination with ttH to tautau
- Sensitivity to 3-8 times the SM
- Slight excess observed, compatible with SM Higgs at 125GeV

-2

-6

0

Best fit σ/σ_{SM} at m_H = 125 GeV

What about the future? 13 TeV, hundreds of 1/fb, high pileup....

Are we ready for the 100/fb and above?

What we may need from theorists:

- Background uncertainties are probably more relevant than those on the signal
 - ..but a precise understanding of the pt spectrum for VH is needed
- tt+jj and tt+bb backgrounds are important for ttH
 - In particular the "tt+1b" (gluon splitting with 1 soft or collinear b) has large uncertainties
- We would benefit from more studies of NLO generators and gluon splitting tuning in generators (in general, not just in tt+b)
- The 1b and/or small angle regions showed disagreement in recent measurement from Atlas and CMS

Are we ready for the 100/fb and above?

Luminosity scaling

- In VH, S/B is at most ~ 1/6
- MC predictions becoming systematically limited?
 - More stat in the sidebands
 - Less extrapolations
 - Use generic templats (smooth shapes) instead of MC shapes
- 450M MC events used for 20/fb, we cannot produce a factor of 10 more....

Scaling with sqrt(s) and PU

- ttbar cross section grows faster than VH one!
 - Already seen in 7->8 TeV transition
 - Z->nunu & W->ln have large ttbar background
 - "additional jets" used to cut ttbar are affected by PU
 - Z->ll on the other hand stays clean
- ttH cross section grows faster than ttbar one
 - ttH should increase the sensitivity
- ▶ VBF, H->bb
 - More rapidity gap for the tag jets
 - ...but also more QCD
 - Trigger becoming really a challenge?

And how about substructures?

- Jet merging really happens only for pT > 400 GeV
- No benefit from substructure in current regime (jets are always well separated)
 - The few GeV resolution seen at 200 GeV in theory papers is not there in full simulation studies
- On the other hand, at 13 TeV
 - Larger number of high boost events
 - The fraction of merged jets could be significant
 - Substructure are likely need in the high boost regime

Conclusions

- The Higgs to b-quarks problem can be studied in at least three different channels
- CMS recently added VBF to the family of Hbb studies
- The VH mode is on track to have a 3 sigma evidence with first data at 13 TeV
- ttH and VBF not yet reaching SM sensitivity but can likely get there with ~100/fb (and some work to control the systematics)

Back up

Quark-gluon discriminator

- Uses jet properties to distinguish quark jets from gluons jets
 - RMS of the constituents in eta-phi plane
 - Asymmetry of the constituents wrt the center of the jet
 - Number of constituents
 - Max energy fraction carried by a single const.
- Validated on dijet production
- Used also in measurement of EWK produced Z+jj

Gluon splitting

- Studied already in 2010 on pure QCD!
- Ratio between "back to back" b-bbar production and small angle region
- Very different predictions from different generators, none of them really doing a good job

