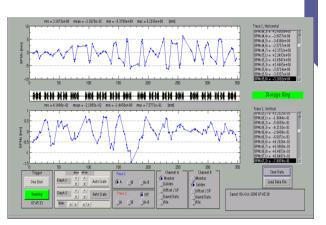
SULLEIL for the Commissioning and the Operation of the Synchrotron SOLEIL

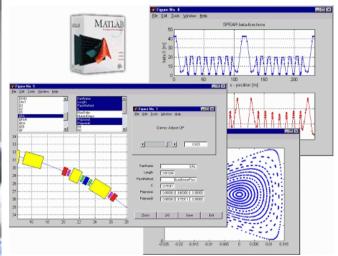
SELEIL

Référence : SOU-PM-NT-1522


Matlab Middle Layer à SOLEIL : contrôle commande des installations via Matlab

Diffusion

Liste de diffusio


Groupe Physique Machine Copie : J-M. Filhol, M-P. Level, Groupe Fonctionnement, groupe ICA

Date :	Rédacteur :	Vérificateur :	Approbateur :	Modifications :	Indice :
en cours	L. Nadolski				3
22/01/06	L. Nadolski				2
05/04/05	L. Nadolski				1
21/06/04	L. Nadolski				0

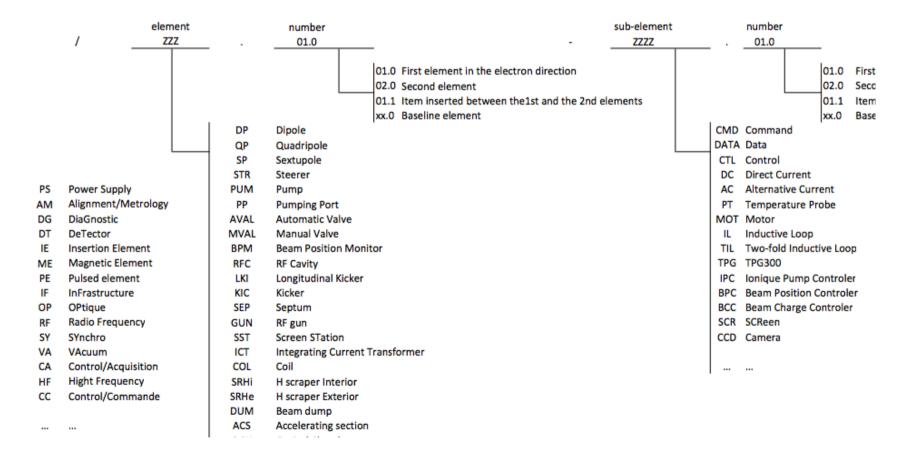
Laurent S. Nadolski Accelerator Physics Group

February 13rd 2013 – LAL seminar – Laurent S. Nadolski

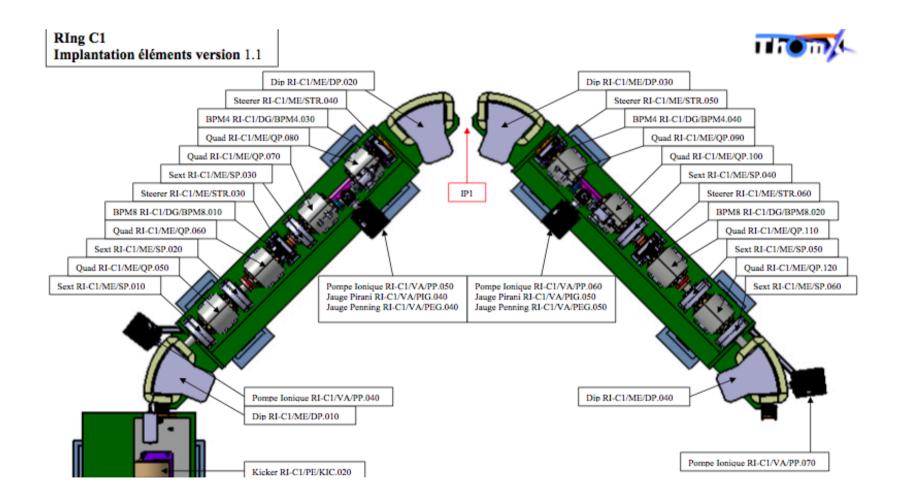
• Control system

- Architecture
- Nomenclature and naming convention
- The Matlab Middle Layer (MML)
 - Extensive definition
 - Accelerator Toolbox
 - Examples
 - What need to be done for THOMX
- Reasons of a success and what have been learned

Contents


- Choice of the tools
- In house developments
- TANGO cooperation and collaboration

Java, C++, Python **GNU/Linux**, **MS-Windows**, Solaris MATLAB 7.0.1.24704 (R14) S GlobalSCREEN Applis TANGO génériques LabVIEW jive, ATKPanel, DeviceTree, PASSERELLE etc .. SALSA TANGO Software Bus Dev Dev Dev Dev Dev Dev Dev AV. EPICS LabVIEW


Both for the developpers (Control group) and users Easy to remember since used every where (matlab, archiving, etc.)

SULEIL Naming convention (1)

February 13rd 2013 – LAL seminar – Laurent S. Nadolski

SULEIL Naming convention (2)

Using Matlab for Accelerator Experimentation and Control or A Matlab "MiddleLayer" (MML)

Adapted slides by Gregory J. Portmann

Jeff Corbett, Andrei Terebilo, James Safranek (SSRL) Christoph Steier, Tom Scarvie, Dave Robin (ALS) Laurent Nadolski (Soleil)

USA: ALS, Stanford (Spear3), Duke FEL, Brookhaven (VUV or X-Ray rings), B-Factory Canada: CLS Europe: SOLEIL (France), DIAMOND (England), ALBA (Spain) Asia: PLS2 (Korea), SLS (Thailand), SSRF (Shanghai), NSRRC (Taiwan) Middle East: SESAME (Jordan) Australia: ASP

Why Matlab?

- Matrix programming language (variables default to a double precision matrix)
- Extensive built-in math libraries
- Active workspace for experimentation and algorithm development
- Easy of import/export of data
- Graphics library
- Compact code and good readability
- Adequate GUI capabilities
- Platform independents

SUNCHROTRON SYNCHROTRON (without becoming a software engineer)

Goals

• Develop an easy scripting method to experiment with accelerators (accelerator independent)

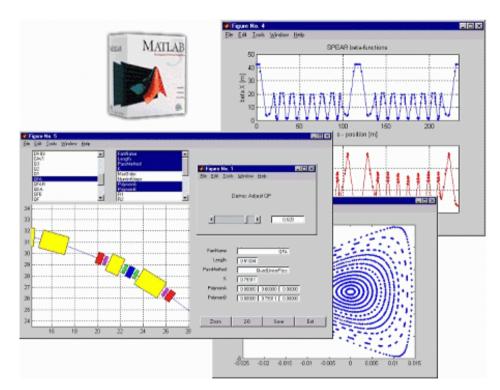
- Remove the control system details from the physicist (like Tango names and how to connect to the computer control system)
- Easy access to important data (offsets, gains, rolls, max/min, etc.)

• Integrate simulation and online control. Make working on an accelerator more like simulation codes.

Integrate data taking and data analysis tools

 Develop a software library of common tasks (orbit correction, tune correction, chromaticity, ID compensation, etc.)

• Develop a high level control applications to automate the setup and control of storage rings, boosters, transfer lines.


SUNCHROTRON Matlab Toolbox Suite for Accelerator Physics

- MiddleLayer + High Level Applications
 - 1. Link between applications and control system or simulator.
 - 2. Functions to access accelerator data.
 - 3. Provide a physics function library.
- MCA, LabCA, SCAIII Matlab to EPICS links
- TANGO/Matlab binding
- Accelerator Toolbox for simulations
- LOCO Linear Optics from Closed Orbits (Calibration)
- NAFF Library (frequency maps)
- Used for transfer lines, Booster, Storage Ring

MATLAB[®] Toolbox for Particle Accelerator Modeling

Accelerator Toolbox is a collection of tools to model particle accelerators and beam transport lines in MATLAB environment. It is being developed by <u>Accelerator Physics Group</u> at <u>Stanford Synchrotron Radiation Laboratory</u> for the ongoing design and future operation needs of <u>SPEAR3</u> Synchrotron Light Source.

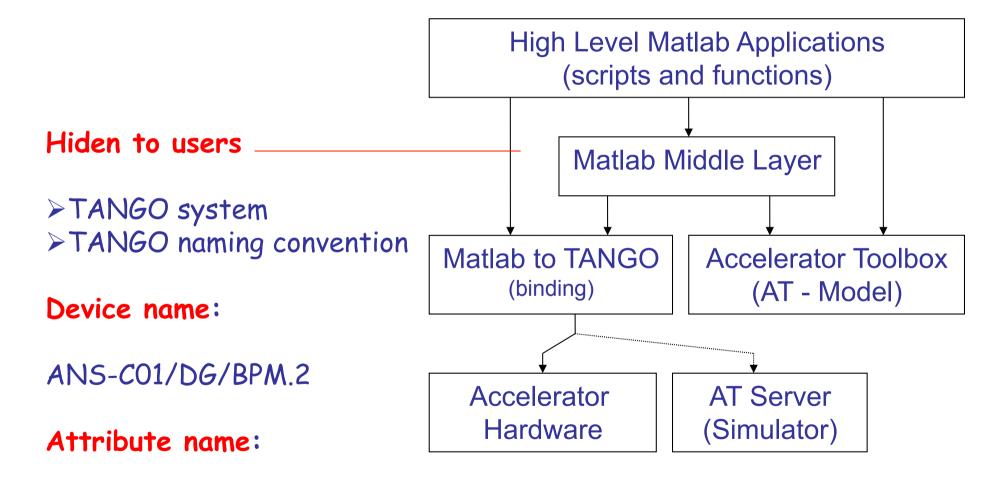
What is Accelerator Toolbox New in AT version 1.2 Download and Installation Get Started Collaboration Publications e-mail AT Links

www-ssrl.slac.stanford.edu/at/welcome.html http://www.slac.stanford.edu/~terebilo/at/

Online Model (AT)

What's in the Middle Layer Part of the Model?

- BPM gain, roll, crunch
- Corrector magnets gain, roll
- Lattice magnets gain, hysteresis (only upper branch at the moment), correction offset.


What's in the AT Part of the Model?

• Everything else!

Present State of the Model

• Needs a little more fine tuning (LOCO data, hysteresis)

XPosSA

Basic Calling Syntax

Naming Convention: practical, easy to remember, ... Family = Group descriptor (text string) Field = Subgroup descriptor (text string) DeviceList = [Sector Element-in-Sector]

Basic Functions getpv(Family, Field, DeviceList); setpv(Family, Field, Value, DeviceList); steppv(Family, Field, Value, DeviceList);

Examples:

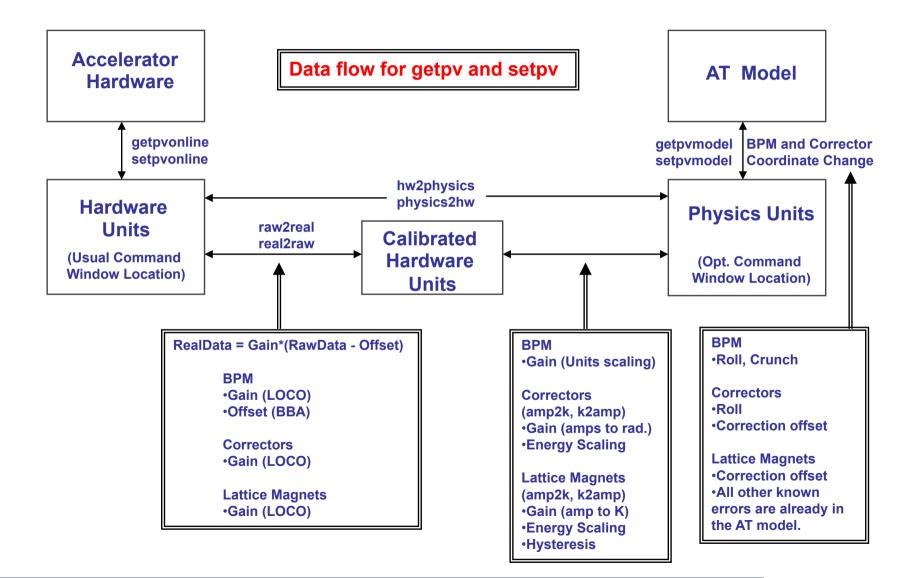
x = getpv('BPMx', 'Monitor', [3 4;5 2]); h = getpv('HCM', 'Setpoint', [2 1;12 4]); setpv('QF', 'Setpoint', 81);

SUNCHROTRON Examples

Nomenclatures

- TANGO cf document, ex: ANS-C01/DG/BPM.2
- Matlab Middle Layer
 - BPM [1 2] : BPM 2 de la cellule 1
- getam('BPMx', [12])
- family2tangodev('BPMx',[1 2])
- Frequency
 - *getrf* : 352.1962246 MHz
 - 10 Hz, steprf(10e-6)
 - *getrf* : 352.1962346 MHz

Function Library


There are hundreds of functions for accelerator control

- setorbit general purpose global orbit correction function
- setorbitbump general purpose local bump function
- settune sets the storage ring tune
- setchro sets the storage ring chromaticity
- measchro measure the chromaticity
- measdisp measure the dispersion function
- quadcenter, quadplot finds the quadrupole center
- physics2hw converts between physics and hardware units
- measbpmresp measure a BPM response matrix
- measlifetime computes the beam lifetime
- minpv/maxpv min/max value for family/field
- srcycle standardizes the storage ring magnets
- scantune scan in tune space and record the lifetime
- scanaperture scans the electron beam in the straight sections and monitors lifetime
- finddispquad finds the setpoint that minimizes the dispersion in the straight sections.
- rmdisp adjusts the RF frequency to remove the dispersion component of the orbit by fitting the orbit to the dispersion orbit
- etc

Data Management

- Beam Position Monitors
 - Attribute names, gains, roll, crunch, offsets, golden, standard deviations
- Magnets
 - Attribute names, gains, offsets, roll, setpoint-monitor tolerance, amp-to-simulator conversions, hysteresis loops, max/ min setpoint
- Other equipment: Vacuum, loss monitors, etc.
- Response matrices (Orbit, Tune, Chromaticity)
- Lattices (Save and restore)
- Measurement archiving
 - Dispersion, tunes, chromaticities, quadrupole centers, etc.
- TANGO configuration
 - Device & attribute properties
 - Historical data archiving

Sole LEIL Middle Layer Data Flow Diagram

- Make the model the default
 >> switch2sim
- Make the accelerator the default
 >> switch2online
- Mixed mode use keyword overrides

'Simulator' - Run the same code as online just use the AT model for input/output.

'Model' - Some code uses the AT model more directly (like measbpmresp or measchro) Note: 'Model' and 'Simulator' are often the same.

How to Switch Between Hardware and Physics Units

- Make the hardware units the default
 >> switch2hw
- Make the physics units the default
 >> switch2physics
- Mixed mode use keyword overrides

 'Hardware' Force hardware units for this
 for this

function.

'Physics' - Force physics units for this function.

Example:

SUBLEIL Scripting example: Orbit Correction

% Gets the vertical orbit X = getam('BPMx');

% Gets the horizontal response matrix from the model Rx = getrespmat('BPMx', 'HCM'); % 120x56 matrix

% Computes the SVD of the response matrix Ivec = 1:48; [U, S, V] = svd(Rx, 0);

% Finds the corrector changes use 48 singular values DeltaAmps = -V(:,Ivec) * S(Ivec,Ivec)^-1 * U(:,Ivec)' * X;

% Changes the corrector strengths stepsp('HCM', DeltaAmps);

```
(setorbitgui done this more elegantly)
```

SULLEILA dapting MML to THOMX

Installation

- Read/write access for user
- Binding with TANGO
- AT toolbox
- Compilation of toolbox
- Binding configuration
 - Basic TANGO basic syntax
 - Extending binding (groups, robustness, efficiency)
 - Getpvonline/setpvonline
- AT Configuration
 - Basic synthax
 - AT lattice and conversion to standard reference code
 - Modification

SUBLEIL SYNCHROTRON MAL Configuration

- Read the full documentation and get familiar with main functions and practice
- Write Master files for TL,SR, LINAC(?)
 - Setting the two main matlab structure AO (accelerator object) and AD (Accelerator Directory)
 - srinit, aoinit, setoperationalmode
 - Updateatindex
 - Magnetcoefficient
 - Golden file
 - Response matrix for tunes/chromaticities/orbit ..
 - Setpoint configuration

- Idendify what

- Can be used as such
- Need to be adapted to THOMX need
- Is THOMX specific

6.1 Accelerator Object (AO)

But

Lieu de stockage Get/Set Tableau 6.1: Accelerator Object Information permettant la communication entre les familles et le système de contrôle/commande

Espace de travail de Matlab getfamilydata / setfamilydata

6.2 Accelerator Data (AD)

But	Variables liées au MML			
Lieu de stockage	Espace de travail de Matlab			
Get/Set	getfamilydata / setfamilydata			
AD.Machine	nom de la machine, eg. 'ALS' ou 'SOLEIL'			
AD.Directory.DataRoot	Racine de l'arborescence des fichiers de sauvegardes			
AD.OpsData.RespFiles	Tableau de cellules des fichiers de matrices réponses, eg. {'respmatbpm_08-06-2002', 'respmattune'}			
AD.ATModel	Nom de la maille AT			
AD.BPMDelay	Temps d'attente entre deux relectures des BPM (attendre que les données soient renouvelées)			
AD.TUNEDelay	Temps de delai pour les nombres d'onde (cf. BPM)			

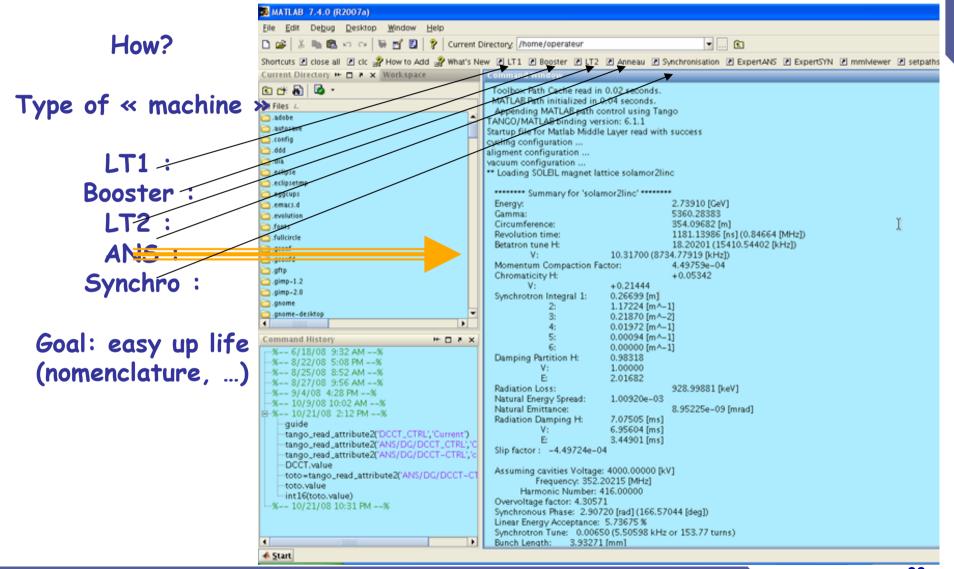
AcceleratorObject.(FamilyName)

donnees

Champ	Description				
FamilyName	- Nom de la famille ('BPMx', 'HCOR', etc.) (unicité requise)				
FamilyType	 Nom de la catégorie d'éléments, par exemple 'QUAD' 				
MemberOf	- Tableau de cellules, par exemple {'QUAD', 'Magnet'}				
Status	 1 pour statut valide, 0 pour invalide 				
DeviceList	- Vecteur colonne [1 1; 1 2; 2 1,]				
ElementList	- Vecteur colonne [1;2;3;; n]				
Desired	- Structure (cf. infra)				
Monitor	- Structure (cf. infra)				
Setpoint	- Structure (cf. infra)				
DeviceNames	 Matrice de cellules pour le nom du device Tango 				
Champ	Description				
Position	 Vecteur colonne avec la position longitudinal le long de l'anneau (mètres) 				
AT	- Structure pour le simulateur AT (facultatif)				
Golden	 Structure avec les valeurs de référence (facultatif) 				

alle

Tableau 4.1: Champs d'une famille du MML.


Third generation Light sources are complex facilities SOLEIL: About 30 000 parameters to control or survey 6 000 main parameters!

Main Matlab based applications at SOLEIL (1)

• Timing system

- Modes, filling patterns, ..
- Save/restore
- TL1/TL2
 - Save/restore
 - Magnet cycling
 - Emittance, energy spread measurement
 - Optics
- Booster
 - Optics, orbit correction, power supplies tracking
 - Save/restore
 - Online tune measurement during ramping up

Loading MML configuration: LT1, BOO, LT2 ou ANS

SYNCHROTRON

Main applications at SOLEIL (2)

SOFB (Correction automatique orbite)

Interface experte Correction Orbite

Mesurer nombres d'onde

Changer nombres d'onde

Nombres d'onde Golden

BBA.

En rouge : Action sur le faisceau

Mesurer durée de vie

Mesurer bruit BPM (60s)

Mesurer dispersion

Mesurer chromaticités

Changer chromaticités

Chromaticités Golden

• Storage Ring

SYNCHROTRON

- Save/restore
- Magnet cycling
- Orbit: display, correction, SOFB, bumps, ...
- BPM configuration, noise measurement, turn by turn...

Menu ANNEAU SYNCHROTRON SOLEII

Soleilinit

Fichiers de Consignes

Cyclage

Configuration BPM

Synchronisation

Afficher orbite

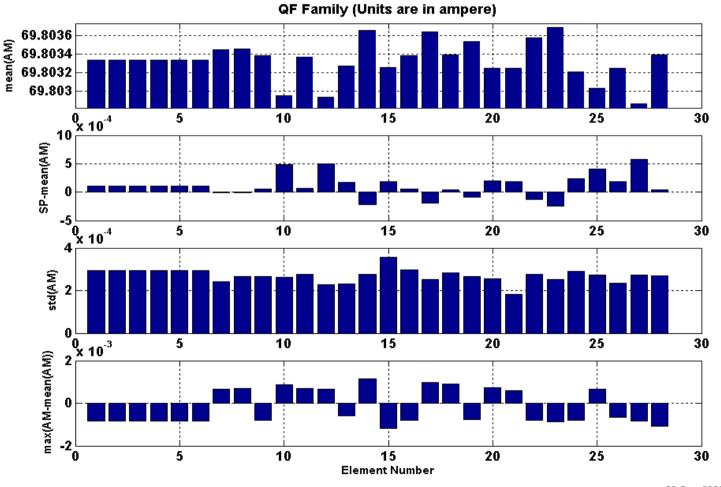
Mesure du couplage

- First turn applications
- Energy calibration
- Lattice symmetry restoration (LOCO)
- Coupling correction
- Dynamics aperture measurement
- Frequency maps
- Tune, chromaticity, dispersion tuning
- Pinhole/emittance measurement
- Lifetime measurement

×

Variation des points source

Nh d'onde TEB


FOFB

TuneFB

Trouver fréquence RF

Finding Power Supply Errors

Spear 3: monmags output

08-Dec-2003 18:18:22

February 13rd 2013 – LAL seminar – Laurent S. Nadolski

Origin: Spear3

SYNCHROTRON

Timing system as a prototype before writing definitive userTANGO Interface

Alim booster		Linac - Diag LT	1 - Inj Diag	BOO	Ext BOO - Inj	Diag ANS			Courant	
Pré Charge	0	Injection	976.9394	-1 +1	Extraction	1113.8154	-1 +1	LT1	0	nC
		Soft	841.1082	-1 +1	Soft	841.1082		BOO	0	mA
Dipole	1000	Off Set inj	31000	-1 +1	Off Set ext	179000	-1 +1		_	1
QF	782.0739	LIN-Mod	0	1	BOO-DOF	-14000.0738	1	ANS	0	mA
QD	750.6431	LIN-Canon-LPM	1.1471	i l	BOO-Sept-p	-36.0702		De	ndama	
SF	1000	LIN-Canon-SPM	83.4578	i l	BOO-Sept-a	-1600.0704			ndeme	
SD	1000	LIN-Canon-SPM-fin	1.8	ns	BOO-Kicker	0.14764		LT1	-	ж
RF	31000				SDC2	-3.004		BOO	0	%
		LT1-Emittance	78.0859							-
		LT1-MC.1	79.9712		LT2-emit/mrsv	-0.0056786		ANS	0	%
Update Cartes	Injection	LT1-MC.2	75.4908		LT2-BPM	-0.0056786				
opuse contr	inge can an	LT1-OSC	79.4942		LT2-OSC	-0.0056786]		Courant (par injection	
Acquisition TrigStatus	Multi Shot	SDC1	77.9893		ANS-Sept-p	-30.0055	1	di	0	mA
Acquisition Address		BOO-Sept-p	53.9577		ANS-Sept-a	-1600.0079				-
ACTIVITY ACTIVITY	 Ott 	BOO-Kicker	79.5964		ANS-Kicker1	0.94832		Cycles	0	
Acquisition (no offset)	C Laps: 10 5	BOO-BPM	79.9939	1	ANS-Kicker2	0.97103		Cou	irant To	
	Olma: 20 A	BAA-NOD	79.9939	1	ANS-Kicker3	0.97103	1		injecté	1
Acquisition Délais		BOO-DCCT	-31000		ANS-Kicker4	0.96536			0	mA
Modes de rem	plissage			-	DCCT	-179000				Ľ.
Quart 1 Quart 2	- UPM SPM	Modes d'injection	on		BPM	0.48836	All BPM			
Quart 3 Quart 4 Quart 1, 2	- LPM SPM	Mode Soft	Mode 3	Hz						
Quart 1, 2, 3 Quart 1, 2, 3, 4	SPM modes	Mode Soft	Mode 3 H	17						
Uniforme 1 Paquet 8 Paquets	1 Z	Fix first 1/4	mode 5 m	-	Relecture tables (0 -1				Load Golde	in .
16 Paquets Paquets n.m.p	2 3				Relecture Paquets 27	/	_			
Paquets n,m,p paque	t paquet2 etc	Nombre de cycles :	Durée Cycle		Neterine California Ma					
Paquets n à m : paque	t1 paquet2	1	1	s						
		1			la mar					

S

SYNC

Save/restore magnet setpoints

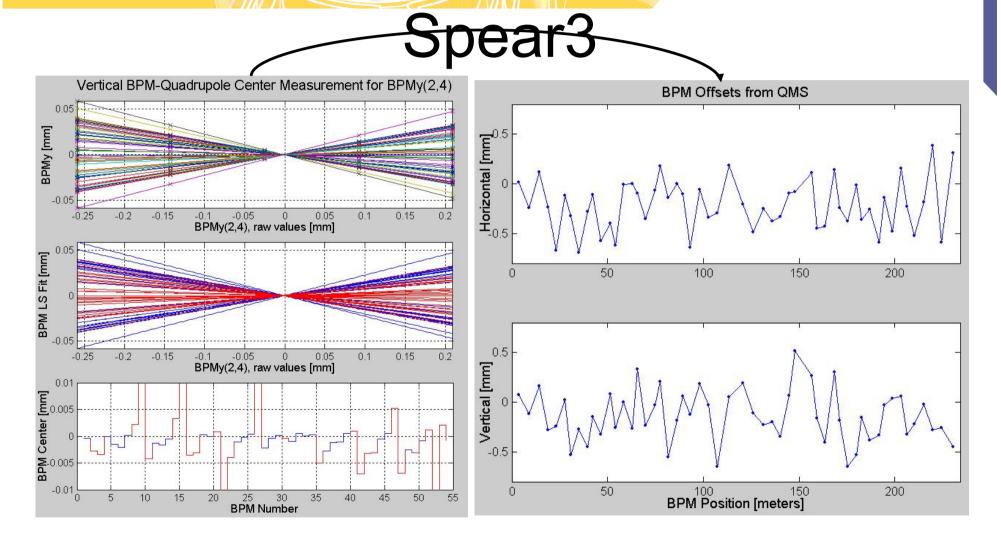
	F	Ring: Setpoint file mana	ger (Fichiers de consign	es)	<u>×</u>
BEND HCOR	Q1 Q2 Q3	 Q6 Q7 Q8 	S1 S2 S3	S6 S7 S8	
■QT	■Q4 ■Q5	■Q9 ■Q10	S4 S5	59	
Get Configuration from: Set Configuration to: Machine 09-Mar-2007 15:15:20 Desired Desired File File Golden Golden Simulator Simulator Workspace Workspace Program Start-Up: 09-Mar-2007 15:14:48 09-Mar-2007 15:15:20: Get Configuration from Machine					
Origin: Sp	ear3				Files of type : *.mat Selection /home/matlabML/measdata/Ringdata/MachineConfig] Open Filter

February 13rd 2013 – LAL seminar – Laurent S. Nadolski

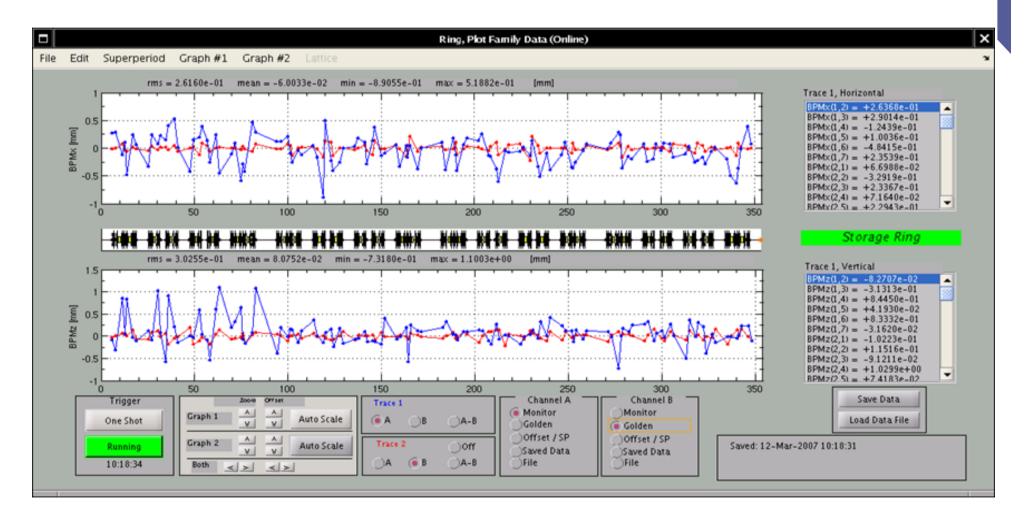

EIL

SYNCHROTRON

S



- Calibrate/control optics using orbit response matrix
- Determine quadrupole gradients
- Correct coupling
- Calibrate BPM gains, steering magnets
- Measure local chromaticity and transverse impedance



- <u>New MATLAB version of</u> <u>code</u>
- Rewritten from FORTRAN
- Linked to control system
- Linked to AT simulator

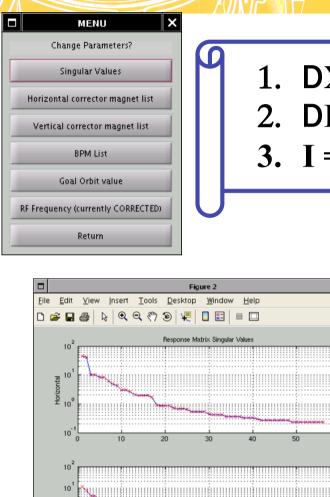
SoleBeam-based Alignment at

SULEIL Displaying closed orbit

February 13rd 2013 – LAL seminar – Laurent S. Nadolski

SULEIL Orbit Correction, SOFB

Maaaaa


30

Singular Value Number

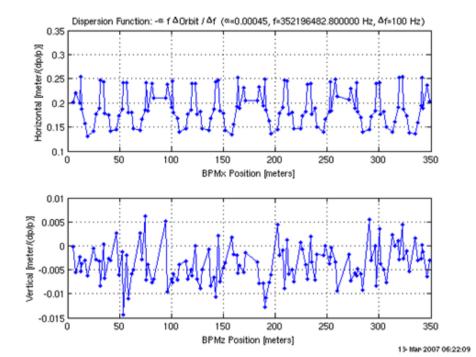
unununi ununui interneti anteri a

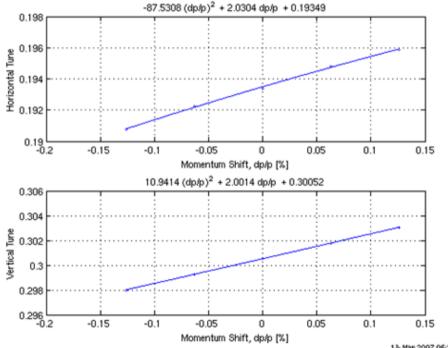
SOLEIL ORBIT CONTROL

Manual Orbit Correction 🗸 H-plane V-plane Correct Orbit Edit BPM, CM Lists Orbit Feedback 🖌 H-plane V-plane Slow Orbit Correction Fast Orbit Correction (Not i... Correct RF Frequency Start FB Horizontal RMS = ____ mm Vertical RMS = ____ mm Edit SOFB Setup Experimental Interface Startup Close

1. $\mathbf{DX} = \mathbf{X}_{\mathbf{h}\mathbf{u}} - \mathbf{X}_{\mathbf{ref}}$ 2. $DI = R^{-1} DX$ 3. $I = I_0 + DI$

🗖 Edit HC	OR List X
(HCOR(1,1)	(HCOR(9,1)
(i) HCOR(1,4)	📵 HCOR(9,4)
(i) HCOR(1,7)	(i) HCOR(9,7)
(i) HCOR(2,1)	(i) HCOR(10,1)
🔘 HCOR(2,4)	(i) HCOR(10,4)
(i) HCOR(2,5)	(i) HCOR(10,5)
() HCOR(2,8)	🔘 HCOR(10,8)
() HCOR(3,1)	() HCOR(11,1)
(i) HCOR(3,4)	(i) HCOR(11,4)
() HCOR(3,5)	(i) HCOR(11,5)
(i) HCOR(3,8)	(i) HCOR(11,8)
(HCOR(4,1)	(i) HCOR(12,1)
🖲 HCOR(4,4)	🖲 HCOR(12,4)
(HCOR(4,7)	i HCOR(12,7)
(e) HCOR(5,1)	(i) HCOR(13,1)
(e) HCOR(5,4)	🖲 HCOR(13,4)
(e) HCOR(5,7)	(i) HCOR(13,7)
(e) HCOR(6,1)	(e) HCOR(14,1)
(e) HCOR(6,4)	(i HCOR(14,4)
(e) HCOR(6,5)	(i) HCOR(14,5)
(e) HCOR(6,8)	(e) HCOR(14,8)
(HCOR(7,1)	(e) HCOR(15,1)
(HCOR(7,4)	(i) HCOR(15,4)
(e) HCOR(7,5)	(e) HCOR(15,5)
(HCOR(7,8)	(i) HCOR(15,8)
(HCOR(8,1)	(HCOR(16,1)
(HCOR(8,4)	(HCOR(16,4)
(HCOR(8,7)	(HCOR(16,7)
Do	one


February 13rd 2013 – LAL seminar – Laurent S. Nadolski


퓓 10[°]

10

36

13- Mar-2007 05:23:15

MML core functions

February 13rd 2013 – LAL seminar – Laurent S. Nadolski

SUNCHROTRON Matlab feedbacks at SOLEIL

- Relatively easy to use. Most people start writing useful scripts in a few hours.
- MiddleLayer + LOCO + AT + TANGO cover many of the high level software concerns for storage rings. Hence, not every accelerator has to spend resources coding the same algorithms.
- Thousands of dedicated accelerator hours have been spent testing, improving, debugging, and exercising the Middle Layer software.
- It's a good scripting language for machine shifts or it can be the high level setup and control software for a storage ring.
- Integration of the AT model is good for debugging software without using accelerator time.
- Easy way for prototyping high level control applications
- The semi-machine independence software has fostered collaboration and code sharing between the laboratories.

February 13rd 2013 – LAL seminar – Laurent S. Nadolski

SUNCHROTRON Technical choices SUNCHROTRON Saving a lot of time

• <u>Matlab Middle Layer (barely no bugs! = fast commissioning)</u>

- Tango link \rightarrow 1 m.y
- Soleil specific Physics Application \rightarrow 3 m.y
- Debugging well ahead of the commissioning periods
 - Test on Speudo TANGO device servers
 - Use of the AT Simulator
- Prototyping applications before robust development by control group
- Daily used (20-30 people)
 - Commissioning team
 - Operators (simple user)
 - ID group (ID commissioning, Feedforward tables)
 - Diagnostics group
- Naming convention (nomenclature) defined well ahead and operation/accelerator oriented
- Autonomous operators
 - Early implication in the development of applications for the control-room, in installation, testing and commissioning periods

Conclusion

- What should be clear now
 - What is a high level application in matlab
 - What is MML and what is AT
 - Why TANGO is not enough and why is called a bus software
 - Why Matlab for us is a good choice
 - What work need to be done
- Define your goals (commissioning) and the steps to reached them
- Open discussion in French and English