Particle Physics: The Standard Model

Dirk Zerwas

LAL
zerwas@lal.in2p3.fr

March 14, 2013
(1) The Standard Model of Particle Physics: Overview

- Kinematics
- s channel and t channel
- Cross section and total width
- Description of an unstable particle

The Course Philosophy

- Emphasis of the course is on the phenomenology
- We will discuss experimental aspects but more important is the interpretation of measurements
- In an ideal world: construct theory and apply it
- Real (course) world: theory and application in parallel
- Build the theory knowledge to put the experiments into perspective
- Natural units: $\hbar=c=1 \rightarrow \hbar c=197.3 \mathrm{MeV} \cdot \mathrm{fm}$

Matter $=$ fermions (Spin- $\frac{1}{2}$ particles):

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R
(proton=uud,
neutron=udd)
- Three families $=$
heavier copies of the first family

Matter $=$ fermions (Spin- $\frac{1}{2}$ particles):

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R
(proton=uud, neutron=udd)
- Three families =
heavier copies of the first family

$$
\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}} \quad\binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}} \quad\binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}}
$$

Matter $=$ fermions $\left(\right.$ Spin- $\frac{1}{2}$ particles):

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families =
heavier copies of the first family

$$
\binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}}
$$

$$
\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}}
$$

$$
\mathrm{u}_{\mathrm{R}}
$$

$$
\mathrm{d}_{\mathrm{R}}
$$

$$
\mathrm{e}_{\mathrm{R}}
$$

Matter $=$ fermions $\left(\right.$ Spin- $\frac{1}{2}$ particles):

- Electrons with two spin orientations: L and R
- Neutrinos (L)
- Quarks L and R (proton=uud, neutron=udd)
- Three families $=$ heavier copies of the first family

$$
\begin{array}{ccc}
\binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}} & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}} & \binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~b}_{\mathrm{L}}} \\
\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}} & \binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}} & \binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}} \\
\begin{array}{c}
\mathrm{u}_{\mathrm{R}} \\
\mathrm{~d}_{\mathrm{R}}
\end{array} & \mathrm{c}_{\mathrm{R}} & \mathrm{t}_{\mathrm{R}} \\
\mathrm{~s}_{\mathrm{R}} & \mathrm{~b}_{\mathrm{R}} \\
\mu_{\mathrm{R}} & \tau_{\mathrm{R}}
\end{array}
$$

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin-1 massless
- Strong interaction
($\mathrm{p}=\mathrm{uud}$): Spin-1
massless
- Weak interaction:

Spin-1 massive

- Masses: Spin-0
massive

$$
\begin{array}{ccc}
\binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}} & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}} & \binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~b}_{\mathrm{L}}} \\
\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}} & \binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}} & \binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}} \\
\mathrm{u}_{\mathrm{R}} & \mathrm{c}_{\mathrm{R}} & \mathrm{t}_{\mathrm{R}} \\
\mathrm{~d}_{\mathrm{R}} & \mathrm{~s}_{\mathrm{R}} & \mathrm{~b}_{\mathrm{R}} \\
\mathrm{e}_{\mathrm{R}} & \mu_{\mathrm{R}} & \tau_{\mathrm{R}} \\
\gamma & &
\end{array}
$$

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin-1 massless
- Strong interaction ($\mathrm{p}=\mathrm{uud}$): Spin-1 massless
- Weak interaction:

Spin-1 massive

- Masses: Spin-0
massive

$$
\begin{array}{ccc}
\binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}} & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}} & \binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~b}_{\mathrm{L}}} \\
\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}} & \binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}} & \binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}} \\
\mathrm{u}_{\mathrm{R}} & \mathrm{c}_{\mathrm{R}} & \mathrm{t}_{\mathrm{R}} \\
\mathrm{~d}_{\mathrm{R}} & \mathrm{~s}_{\mathrm{R}} & \mathrm{~b}_{\mathrm{R}} \\
\mathrm{e}_{\mathrm{R}} & \mu_{\mathrm{R}} & \tau_{\mathrm{R}}
\end{array}
$$

$$
\gamma
$$

$$
g
$$

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin-1 massless
- Strong interaction ($\mathrm{p}=\mathrm{uud}$): Spin-1 massless
- Weak interaction: Spin-1 massive
- Masses: Spin-0
massive

$$
\begin{array}{ccc}
\binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}} & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}} & \binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~b}_{\mathrm{L}}} \\
\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}} & \binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}} & \binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}} \\
\mathrm{u}_{\mathrm{R}} & \mathrm{c}_{\mathrm{R}} & \mathrm{t}_{\mathrm{R}} \\
\mathrm{~d}_{\mathrm{R}} & \mathrm{~s}_{\mathrm{R}} & \mathrm{~b}_{\mathrm{R}} \\
\mathrm{e}_{\mathrm{R}} & \mu_{\mathrm{R}} & \tau_{\mathrm{R}}
\end{array}
$$

$$
\begin{gathered}
\gamma \\
g \\
\mathrm{~W}^{ \pm}, \mathrm{Z}^{\circ}
\end{gathered}
$$

Interactions = bosons (Spin-0 or -1 particles):

- Electromagnetism: Spin-1 massless
- Strong interaction ($\mathrm{p}=\mathrm{uud}$): Spin-1 massless
- Weak interaction: Spin-1 massive
- Masses: Spin-0 massive

$$
\begin{array}{ccc}
\binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}} & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}} & \binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~b}_{\mathrm{L}}} \\
\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}} & \binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}} & \binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}} \\
\mathrm{u}_{\mathrm{R}} & \mathrm{c}_{\mathrm{R}} & \mathrm{t}_{\mathrm{R}} \\
\mathrm{~d}_{\mathrm{R}} & \mathrm{~s}_{\mathrm{R}} & \mathrm{~b}_{\mathrm{R}} \\
\mathrm{e}_{\mathrm{R}} & \mu_{\mathrm{R}} & \tau_{\mathrm{R}} \\
\gamma & & \\
g & & \\
\mathrm{~W}^{ \pm}, \mathrm{Z}^{\circ} & \\
\mathrm{H} & &
\end{array}
$$

Properties: Electric Charge

- Fractional charges not observed in nature
- Strong interaction: uud, udd

$$
\begin{array}{ccc}
\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{3}
\end{array} & \binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}} & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}}
\end{array}\binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~b}_{\mathrm{L}}}
$$

Properties: Electric Charge

- Fractional charges not observed in nature
- Strong interaction: uud, udd

$$
\begin{array}{ccc}
\frac{2}{3} \\
-\frac{1}{3} & \binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}} & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}}
\end{array}\binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~b}_{\mathrm{L}}}
$$

Properties: Color charge

- Sum of colors (RGB) white
- $\mathrm{R}+\mathrm{G}+\mathrm{B}=$ (qqq =baryon)
- Color+anti-color= White ($\mathrm{q} \overline{\mathrm{q}}=\mathrm{meson}$)
- Gluon carries color+anti-color
- 8 different gluons (not 9)

$$
\begin{array}{ccc}
C & \left(\begin{array}{c}
\mathrm{u}_{\mathrm{L}} \\
\boldsymbol{C}
\end{array}\right. & \binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{~d}_{\mathrm{L}}}
\end{array}\binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{~s}_{\mathrm{L}}} \quad\left(\begin{array}{ccc}
\mathrm{b}_{\mathrm{L}}
\end{array}\right)
$$

Rule of thumb for interactions

Interaction	Carrier	Relative strength
Gravitation	Graviton (G)	10^{-40}
Weak	Weak Bosons $\left(\mathrm{W}^{ \pm}, \mathrm{Z}^{\circ}\right)$	10^{-7}
Electromagnetic	Photon (γ)	10^{-2}
Strong	Gluon (g)	1

- Forget about Gravitation in particle physics problems
- The course and problem solving sessions will lead us to understand how the model describes the interactions and their strength.
$\mathbf{a}=\left(E_{a}, \vec{p}_{a}\right)=\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$
$E_{a} \cdot E_{a}-\vec{p}_{a} \cdot \vec{p}_{a}=m_{a}^{2}$ $\mathrm{g}^{\mu \nu} p_{\mu} p_{\nu}=m_{a}^{2}$

Conservation of E and $\overline{\mathrm{p}}$

therefore

$$
\begin{array}{ll}
\mathbf{a}=\left(E_{a}, \vec{p}_{a}\right)=\left(p_{0}, p_{1}, p_{2}, p_{3}\right) & \mathrm{g}^{\mu \mu}=(1,-1,-1,-1) \\
E_{a} \cdot E_{a}-\vec{p}_{a} \cdot \vec{p}_{a}=m_{a}^{2} & \text { for } \mu \neq \nu: \mathrm{g}^{\mu \nu}=0 \\
\mathrm{~g}^{\mu \nu} p_{\mu} p_{\nu}=m_{a}^{2} &
\end{array}
$$

Conservation of E and \vec{p}

Mandelstam Variables

$$
\mathbf{a}+\mathbf{b}=\mathbf{c}+\mathbf{d}
$$

therefore

$$
\mathbf{a}-\mathbf{c}=\mathbf{d}-\mathbf{b}
$$

$\mathbf{a}=\left(E_{a}, \vec{p}_{a}\right)=\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$
$E_{a} \cdot E_{a}-\vec{p}_{a} \cdot \vec{p}_{a}=m_{a}^{2}$
$\mathrm{g}^{\mu \nu} p_{\mu} p_{\nu}=m_{a}^{2}$

Conservation of E and \vec{p}

$$
\mathbf{a}+\mathbf{b}=\mathbf{c}+\mathbf{d}
$$

therefore

$$
\mathbf{a}-\mathbf{c}=\mathbf{d}-\mathbf{b}
$$

$\mathrm{g}^{\mu \mu}=(1,-1,-1,-1)$
for $\mu \neq \nu: \mathrm{g}^{\mu \nu}=0$

Mandelstam Variables

$$
\begin{gathered}
a+b \rightarrow c+d \\
s=(\mathbf{a}+\mathbf{b})^{2} \\
t=(\mathbf{a}-\mathbf{c})^{2} \\
u=(\mathbf{a}-\mathbf{d})^{2}
\end{gathered}
$$

Theorem

Proof.

$$
\begin{gathered}
s+t+u \\
=\quad m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}
\end{gathered}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\left.\vec{p}_{a}=-\vec{p}_{b}\right)$
- $\rightarrow E_{a}=E_{b}=E_{c}=$
$E_{d}=\sqrt{(s) / 2}$

Theorem

$$
\begin{gathered}
s+t+u \\
=\quad m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}
\end{gathered}
$$

\qquad

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame $\left(\vec{p}_{a}=-\vec{p}_{b}\right)$

Proof.

$s=\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b}$
$=m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right)$
$=2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right)$
$=2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right)$
$=2\left(E_{a}^{2}+E_{a}^{2}\right)$
$=4 E_{a}^{2}$
$t=$
$-2\left(F_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right)$
$-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right)$
$-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)$

Theorem

$$
\begin{gathered}
s+t+u \\
=\quad m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}
\end{gathered}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\vec{p}_{a}=-\vec{p}_{b}$)

Proof.

$$
\begin{aligned}
\boldsymbol{s} & =\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
t & =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Theorem

$$
\begin{gathered}
s+t+u \\
=\quad m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}
\end{gathered}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\left.\vec{p}_{a}=-\vec{p}_{b}\right)$

Proof.

$$
\begin{aligned}
s & =\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{2} \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
& =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Theorem

$$
\begin{array}{cc}
& s+t+u \\
= & m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2} \\
= & 0
\end{array}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\left.\vec{p}_{a}=-\vec{p}_{b}\right)$

Proof.

$$
\begin{aligned}
s & =\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
t & =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Theorem

$$
\begin{array}{cc}
& s+t+u \\
= & m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2} \\
= & 0
\end{array}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\left.\vec{p}_{a}=-\vec{p}_{b}\right)$

Proof.

$$
\begin{aligned}
s & =\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
t & =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Theorem

$$
\begin{array}{cc}
& s+t+u \\
= & m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2} \\
= & 0
\end{array}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\left.\vec{p}_{a}=-\vec{p}_{b}\right)$

Proof.

$$
\begin{aligned}
s & =\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
t & =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Theorem

$$
\begin{array}{cc}
& s+t+u \\
= & m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2} \\
= & 0
\end{array}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\vec{p}_{a}=-\vec{p}_{b}$)
- $\rightarrow E_{a}=E_{b}=E_{c}=$
$E_{d}=\sqrt{(s)} / 2$

Proof.

$$
\begin{aligned}
s & =\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
t & =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Theorem

$$
\begin{array}{cc}
& s+t+u \\
= & m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2} \\
= & 0
\end{array}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\vec{p}_{a}=-\vec{p}_{b}$)
- $\rightarrow E_{a}=E_{b}=E_{c}=$
$E_{d}=\sqrt{(s)} / 2$

Proof.

$$
\begin{aligned}
s & =\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
t & =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Theorem

$$
\begin{array}{cc}
& s+t+u \\
= & m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2} \\
= & 0
\end{array}
$$

- High energy approx $(E \gg m \sim 0, E=|\vec{p}|)$
- CM-frame ($\vec{p}_{a}=-\vec{p}_{b}$)
- $\rightarrow E_{a}=E_{b}=E_{c}=$
$E_{d}=\sqrt{(s)} / 2$

Proof.

$$
\begin{aligned}
s & =\mathbf{a}^{2}+\mathbf{b}^{2}+2 \cdot \mathbf{a} \cdot \mathbf{b} \\
& =m_{a}^{2}+m_{b}^{2}+2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{b}-\vec{p}_{a} \cdot \vec{p}_{b}\right) \\
& =2\left(E_{a} \cdot E_{a}+\vec{p}_{a} \cdot \vec{p}_{a}\right) \\
& =2\left(E_{a}^{2}+E_{a}^{2}\right) \\
& =4 E_{a}^{2} \\
t & =-2\left(E_{a} \cdot E_{c}-\vec{p}_{a} \cdot \vec{p}_{c}\right) \\
u & =-2\left(E_{a} \cdot E_{d}-\vec{p}_{a} \cdot \vec{p}_{d}\right) \\
& =-2\left(E_{a} \cdot E_{c}+\vec{p}_{a} \cdot \vec{p}_{c}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
t+u & =-2\left(2 \cdot E_{a} \cdot E_{c}\right) \\
& =-2\left(2 \cdot E_{a} \cdot E_{a}\right) \\
s+t+u & =4 \cdot E_{a} \cdot E_{a}-4 \cdot E_{a} \cdot E_{a}
\end{aligned}
$$

2 particle reaction $\rightarrow 2$ independent variables!

Proof.

$$
\begin{aligned}
t+u & =-2\left(2 \cdot E_{a} \cdot E_{c}\right) \\
& =-2\left(2 \cdot E_{a} \cdot E_{a}\right) \\
s+t+u & =4 \cdot E_{a} \cdot E_{a}-4 \cdot E_{a} \cdot E_{a}
\end{aligned}
$$

2 particle reaction $\rightarrow 2$ independent variables!

Proof.

$$
\begin{aligned}
t+u & =-2\left(2 \cdot E_{a} \cdot E_{c}\right) \\
& =-2\left(2 \cdot E_{a} \cdot E_{a}\right) \\
s+t+u & =4 \cdot E_{a} \cdot E_{a}-4 \cdot E_{a} \cdot E_{a}
\end{aligned}
$$

2 particle reaction $\rightarrow 2$ independent variables!

Proof.

$$
\begin{aligned}
t+u & =-2\left(2 \cdot E_{a} \cdot E_{c}\right) \\
& =-2\left(2 \cdot E_{a} \cdot E_{a}\right) \\
s+t+u & =4 \cdot E_{a} \cdot E_{a}-4 \cdot E_{a} \cdot E_{a} \\
& =0
\end{aligned}
$$

2 particle reaction $\rightarrow 2$ independent variables!

Crossing relationship

$$
\begin{array}{l|ll}
\boldsymbol{a}+\boldsymbol{b} \rightarrow \boldsymbol{c}+\boldsymbol{d} & a+\bar{c}-\bar{b}+d & \\
\boldsymbol{s}=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathrm{a}+\overline{\mathrm{c}})^{2} & =(\mathrm{a}-\mathrm{c})^{2}=t \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathrm{a}-\overline{\mathrm{b}})^{2} & =(\mathrm{a}+\mathrm{b})^{2}=s \\
\boldsymbol{u}=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathrm{a}-\mathrm{d})^{2} & =(\mathrm{a}-\mathrm{d})^{2}=u
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

Crossing relationship

$$
\begin{array}{l|l}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2}
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

Crossing relationship

$$
\begin{array}{l|ll}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d & \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} & =(\mathbf{a}-\mathbf{c})^{2} \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} & =(\mathbf{a}+\mathbf{b})^{2} \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2} & =(\mathbf{a}-\mathbf{d})^{2}
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

Crossing relationship

$$
\begin{array}{l|lll}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d & & \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} & =(\mathbf{a}-\mathbf{c})^{2} & =t \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} & =(\mathbf{a}+\mathbf{b})^{2} & =s \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2} & =(\mathbf{a}-\mathbf{d})^{2} & =u
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

Crossing relationship

$$
\begin{array}{l|lll}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d & & \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} & =(\mathbf{a}-\mathbf{c})^{2} & =t \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} & =(\mathbf{a}+\mathbf{b})^{2} & =s \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2} & =(\mathbf{a}-\mathbf{d})^{2} & =u
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

Crossing relationship

$$
\begin{array}{l|lll}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d & & \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} & =(\mathbf{a}-\mathbf{c})^{2} & =t \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} & =(\mathbf{a}+\mathbf{b})^{2} & =s \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2} & =(\mathbf{a}-\mathbf{d})^{2} & =u
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

Crossing relationship

$$
\begin{array}{l|lll}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d & & \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} & =(\mathbf{a}-\mathbf{c})^{2} & =t \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} & =(\mathbf{a}+\mathbf{b})^{2} & =s \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2} & =(\mathbf{a}-\mathbf{d})^{2} & =u
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

Crossing relationship

$$
\begin{array}{l|lll}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d & & \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} & =(\mathbf{a}-\mathbf{c})^{2} & =t \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} & =(\mathbf{a}+\mathbf{b})^{2} & =s \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2} & =(\mathbf{a}-\mathbf{d})^{2} & =u
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Crossing relationship

$$
\begin{array}{l|lll}
a+b \rightarrow c+d & a+\bar{c} \rightarrow \bar{b}+d & & \\
s=(\mathbf{a}+\mathbf{b})^{2} & s^{\prime}=(\mathbf{a}+\overline{\mathbf{c}})^{2} & =(\mathbf{a}-\mathbf{c})^{2} & =t \\
t=(\mathbf{a}-\mathbf{c})^{2} & t^{\prime}=(\mathbf{a}-\overline{\mathbf{b}})^{2} & =(\mathbf{a}+\mathbf{b})^{2}=s \\
u=(\mathbf{a}-\mathbf{d})^{2} & u^{\prime}=(\mathbf{a}-\mathbf{d})^{2} & =(\mathbf{a}-\mathbf{d})^{2} & =u
\end{array}
$$

- Calculate a process as function of s, t, u
- Derive crossed process by $s \rightarrow t, t \rightarrow s, u \rightarrow u$
- We can express one process in the kinematic variables of another process (Xcheck)
- Rigorous derivation $s \rightarrow-t$

Kinematics and Crossing and the - in Problem Solving

s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{array}{ll}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
\boldsymbol{s} & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{array}
$$

the photon is massive (virtual)
time-like

t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

the photon is massive space-like

s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{array}{ll}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
\boldsymbol{s} & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2}
\end{array}
$$

the photon is massive (virtual)
time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

the photon is massive space-like
s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{aligned}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
\boldsymbol{s} & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{aligned}
$$

the photon is massive (virtual) time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

the photon is massive space-like
s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{aligned}
\mathbf{q}_{\gamma} & =\mathbf{p}_{e^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
\boldsymbol{s} & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{aligned}
$$

the photon is massive (virtual) time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

$$
\mathbf{p}_{\mathrm{e}_{i}^{-}}=\mathbf{q}_{\gamma}+\mathbf{p}_{\mathrm{e}_{o}^{-}}
$$

the photon is massive space-like
s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{aligned}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
\boldsymbol{s} & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{aligned}
$$

the photon is massive (virtual) time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

$$
\begin{aligned}
\mathbf{p}_{\mathrm{e}_{i}^{-}} & =\mathbf{q}_{\gamma}+\mathbf{p}_{\mathrm{e}_{o}^{-}} \\
t & =\mathbf{q}_{\gamma}^{2}
\end{aligned}
$$

s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{array}{ll}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
s & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{array}
$$

the photon is massive (virtual) time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

$$
\begin{aligned}
\mathbf{p}_{\mathrm{e}_{i}^{-}} & =\mathbf{q}_{\gamma}+\mathbf{p}_{\mathrm{e}_{o}^{-}} \\
& =\mathbf{q}_{\gamma}^{2} \\
& =m_{e}^{2}+m_{e}^{2}-2 \cdot \mathbf{p}_{\mathrm{e}_{j}^{-}} \cdot \mathbf{p}_{\mathrm{e}_{o}^{-}}
\end{aligned}
$$

$$
\approx-2\left(E_{i} E_{0}-\left|\vec{p}_{i}\right|\left|\vec{p}_{0}\right| \cos \theta\right)
$$

$$
\approx-2 E_{i} E_{o}(1-\cos \theta)
$$

the photon is massive space-like

s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{array}{ll}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
s & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{array}
$$

the photon is massive (virtual) time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

$$
\begin{aligned}
\mathbf{p}_{\mathrm{e}_{i}^{-}} & =\mathbf{q}_{\gamma}+\mathbf{p}_{\mathrm{e}_{o}^{-}} \\
& =\mathbf{q}_{\gamma}^{2} \\
& =m_{e}^{2}+m_{e}^{2}-2 \cdot \mathbf{p}_{\mathrm{e}_{-}^{-}} \cdot \mathbf{p}_{\mathrm{e}_{o}^{-}} \\
& \approx-2\left(E_{i} E_{o}-\left|\vec{p}_{i}\right|\left|\vec{p}_{o}\right| \cos \theta\right)
\end{aligned}
$$

the photon is massive space-like

s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{array}{ll}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
\mathbf{s} & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{array}
$$

the photon is massive (virtual) time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

$$
\begin{aligned}
\mathbf{p}_{\mathrm{e}_{i}^{-}} & =\mathbf{q}_{\gamma}+\mathbf{p}_{\mathrm{e}_{o}^{-}} \\
& =\mathbf{q}_{\gamma}^{2} \\
& =m_{e}^{2}+m_{e}^{2}-2 \cdot \mathbf{p}_{\mathrm{e}_{-}^{-}} \cdot \mathbf{p}_{\mathrm{e}_{o}^{-}} \\
& \approx-2\left(E_{i} E_{o}-\left|\vec{p}_{i} \| \vec{p}_{o}\right| \cos \theta\right) \\
& \approx-2 E_{i} E_{o}(1-\cos \theta)
\end{aligned}
$$

the photon is massive space-like

s-channel: annihiliation

$$
\mathrm{e}^{+}+\mathrm{e}^{-} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}
$$

$$
\begin{array}{ll}
\mathbf{q}_{\gamma} & =\mathbf{p}_{\mathrm{e}^{-}}+\mathbf{p}_{\mathrm{e}^{+}} \\
\mathbf{s} & =\mathbf{q}_{\gamma}^{2} \\
(C M) & =\left(E_{\mathrm{e}^{-}}+E_{\mathrm{e}^{+}}\right)^{2} \\
& >0
\end{array}
$$

the photon is massive (virtual) time-like
t-channel: scattering

$$
\mathrm{e}^{-}+A \rightarrow \mathrm{e}^{-}+A
$$

$$
\begin{aligned}
\mathbf{p}_{\mathrm{e}_{i}^{-}} & =\mathbf{q}_{\gamma}+\mathbf{p}_{\mathrm{e}_{o}^{-}} \\
& =\mathbf{q}_{\gamma}^{2} \\
& =m_{e}^{2}+m_{e}^{2}-2 \cdot \mathbf{p}_{\mathrm{e}_{-}^{-}} \cdot \mathbf{p}_{\mathrm{e}_{o}^{-}} \\
& \approx-2\left(E_{i} E_{o}-\left|\vec{p}_{i} \| \vec{p}_{o}\right| \cos \theta\right) \\
& \approx-2 E_{i} E_{o}(1-\cos \theta) \\
& \leq 0
\end{aligned}
$$

the photon is massive space-like

Cross Section

- The cross section σ is the ratio of the transition rate and the flux of incoming particles.
- Its unit is cm^{2}
- $1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}$ (puts barn in perspective, doesn't it?)

Two ingredients:

- the interaction transforming initial state $|i\rangle$ to a final state $\langle f|$ of m particles with four-vectors $\mathbf{p}_{\mathbf{i}}^{\prime}$
- kinematics (including Lorentz-Invariant phase space element)
$\mathrm{d} \sigma=\frac{1}{2 S_{12}} \prod_{i=1}^{m} \frac{\mathrm{~d}^{3} p_{i}^{\prime}}{(2 \pi)^{3} 2 E_{i}^{\prime 0}}(2 \pi)^{4} \delta\left(\mathrm{p}_{1}^{\prime}+\ldots+\mathrm{p}_{\mathrm{m}}^{\prime}-\mathrm{p}_{1}-\mathrm{p}_{2}\right)|\mathcal{M}|^{2}$
with (originating from flux) $S_{12}=\sqrt{\left(s-\left(m_{1}+m_{2}\right)^{2}\right)\left(s-\left(m_{1}-m_{2}\right)^{2}\right)}$

Cross Section

- The cross section σ is the ratio of the transition rate and the flux of incoming particles.
- Its unit is cm^{2}
- $1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}$ (puts barn in perspective, doesn't it?)

Two ingredients:

- the interaction transforming initial state $|i\rangle$ to a final state $\langle f|$ of m particles with four-vectors $\mathbf{p}_{\mathbf{i}}^{\prime}$
- kinematics (including Lorentz-Invariant phase space element)

$$
\mathrm{d} \sigma=\frac{1}{2 S_{12}} \prod_{i=1}^{m} \frac{\mathrm{~d}^{3} p_{i}^{\prime}}{(2 \pi)^{3} 2 E_{i}^{\prime 0}}(2 \pi)^{4} \delta\left(\mathbf{p}_{1}^{\prime}+\ldots+\mathbf{p}_{\mathbf{m}}^{\prime}-\mathbf{p}_{\mathbf{1}}-\mathbf{p}_{\mathbf{2}}\right)|\mathcal{M}|^{2}
$$

with (originating from flux) $S_{12}=\sqrt{\left(s-\left(m_{1}+m_{2}\right)^{2}\right)\left(s-\left(m_{1}-m_{2}\right)^{2}\right)}$

Total Width or Decay Rate

- Total width is the inverse of the lifetime of the particle
- unit: energy, e.g., GeV.
- Closely related, but not identical to the cross section

$$
\mathrm{d} \Gamma=\frac{1}{2 E} \prod_{i=1}^{m} \frac{\mathrm{~d}^{3} \mathbf{p}_{i}^{\prime}}{(2 \pi)^{3} 2 E_{i}^{\prime 0}} \delta\left(\mathbf{p}_{\mathbf{1}}^{\prime}+\ldots+\mathbf{p}_{\mathbf{m}}^{\prime}-\mathbf{p}_{\mathbf{1}}\right)|\mathcal{M}|^{2}
$$

For the decay of an unpolarized particle of mass M into two particles (in the CM frame $\vec{p}_{1}^{\prime}=-\vec{p}_{2}^{\prime}$):

$$
\mathrm{d} \Gamma=\frac{1}{32 \pi^{2}} \frac{\left|\vec{p}_{1}^{\prime}\right|}{M^{2}}|\mathcal{M}|^{2} \mathrm{~d} \Omega
$$

where Ω is the solid angle with $\mathrm{d} \Omega=\mathrm{d} \phi \mathrm{d} \cos \theta$

Cross section and total width for a final state with 2 particles

Cross section $2 \rightarrow 2$ reaction with four massless particles:

$$
\mathrm{d} \sigma=\frac{1}{64 \pi^{2}} \frac{|\mathcal{M}|^{2}}{s} \mathrm{~d} \Omega
$$

Width of a massive particle $(\sqrt{s}=M)$ decaying to two massless particles in the final state $\left|\vec{p}_{1}^{\prime}\right|=\sqrt{s} / 2$:

$$
\mathrm{d} \Gamma=\frac{1}{64 \pi^{2}} \frac{|\mathcal{M}|^{2}}{\sqrt{s}} \mathrm{~d} \Omega
$$

Study of the phase space in Problem Solving with applications to 2-body and 3-body reactions.

- Particles: plane waves $\psi(\vec{x}, t) \sim \exp -i m_{0} t$
- $m_{0} \rightarrow m_{0}-i \Gamma / 2$

Fourrier transform to momentum

space:

「: full width half maximum Similarity to classical mechanics:
 resonance

- Particles: plane waves $\psi(\vec{x}, t) \sim \exp -i m_{0} t$
- $m_{0} \rightarrow m_{0}-i \Gamma / 2$

Fourrier transform to momentum

space:

「: full width half maximum Similarity to classical mechanics:
 resonance

- Particles: plane waves
$\psi(\vec{x}, t) \sim \exp -i m_{0} t$
- $m_{0} \rightarrow m_{0}-i \Gamma / 2$
$N(t)=N_{0} \cdot \exp -t / \tau$
$\Gamma=1 / \tau$

Fourrier transform to momentum

space:

Γ : full width half maximum Similarity to classical mechanics:
 resonance

- Particles: plane waves

$$
\psi(\vec{x}, t) \sim \exp -i m_{0} t
$$

- $m_{0} \rightarrow m_{0}-i \Gamma / 2$

$$
\begin{array}{ll}
N(t) & =N_{0} \cdot \exp -t / \tau \\
\Gamma & =1 / \tau
\end{array}
$$

Fourrier transform to momentum space:

$$
\begin{aligned}
& A \sim \frac{1}{\left(m-m_{0}\right)+i \Gamma / 2} \\
& |A|^{2} \sim \frac{1}{\left(m-m_{0}\right)^{2}+\Gamma^{2} / 4}
\end{aligned}
$$

「: full width half maximum

Similarity to classical mechanics:
resonance

- Particles: plane waves

$$
\psi(\vec{x}, t) \sim \exp -i m_{0} t
$$

- $m_{0} \rightarrow m_{0}-i \Gamma / 2$

$$
\begin{array}{ll}
N(t) & =N_{0} \cdot \exp -t / \tau \\
\Gamma & =1 / \tau
\end{array}
$$

Fourrier transform to momentum
space:

$$
\begin{aligned}
& A \\
& |A|^{2} \sim \frac{1}{\left(m-m_{0}\right)+i \Gamma / 2} \\
& \left(m-m_{0}\right)^{2}+\Gamma^{2} / 4
\end{aligned}
$$

Γ : full width half maximum
Similarity to classical mechanics:
resonance

- Particles: plane waves

$$
\psi(\vec{x}, t) \sim \exp -i m_{0} t
$$

- $m_{0} \rightarrow m_{0}-i \Gamma / 2$

$$
\begin{array}{ll}
N(t) & =N_{0} \cdot \exp -t / \tau \\
\Gamma & =1 / \tau
\end{array}
$$

Fourrier transform to momentum space:

$$
\begin{aligned}
& A \\
& |A|^{2} \sim \frac{1}{\left(m-m_{0}\right)+i \Gamma / 2} \\
& \left(m-m_{0}\right)^{2}+\Gamma^{2} / 4
\end{aligned}
$$

Γ : full width half maximum Similarity to classical mechanics: resonance

Example $\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow \mathrm{Z}^{\circ} \rightarrow q \bar{q}$

lifetime too short to be measured directly: measure mass via decay products $q \bar{q}$ cross section measurement

- Particles: plane waves

$$
\psi(\vec{x}, t) \sim \exp -i m_{0} t
$$

- $m_{0} \rightarrow m_{0}-i \Gamma / 2$

$$
\begin{array}{ll}
N(t) & =N_{0} \cdot \exp -t / \tau \\
\Gamma & =1 / \tau
\end{array}
$$

Fourrier transform to momentum space:

$$
\begin{aligned}
& A \\
& |A|^{2} \sim \frac{1}{\sim} \frac{1}{\left(m-m_{0}\right)+i \Gamma / 2} \\
& \left(m-m_{0}\right)^{2}+\Gamma^{2} / 4
\end{aligned}
$$

Γ : full width half maximum Similarity to classical mechanics: resonance

Example pp $\rightarrow H \rightarrow \gamma \gamma$ (EW 2013)

Beware: the width here has nothing to do with $\Gamma \sim 5 \mathrm{MeV}$!
The experimental resolution is the origin (error propagation):

$$
\begin{aligned}
m_{H} & =\sqrt{\left(\mathbf{p}_{1}^{\gamma}+\mathbf{p}_{\mathbf{2}}^{\gamma}\right)^{2}} \\
& =\sqrt{2 E_{1}^{\gamma} E_{2}^{\gamma}(1-\cos \theta)}
\end{aligned}
$$

Suppose that we have two (and exactly two) possible decays for the particle a:

$$
\begin{aligned}
& a \rightarrow b+c \\
& a \rightarrow d+e
\end{aligned}
$$

then:

$$
\Gamma=\Gamma_{b c}+\Gamma_{d e}
$$

If a particle of a given mass can decay to more final states than another one with the same mass, it will have a shorter lifetime

Branching ratio

$\mathcal{B}(a \rightarrow b+c)=\Gamma_{b c} / \Gamma$
The branching ratio: Of N decays of particle a, a fraction \mathcal{B} will be the final state with the particles b and $c . \Gamma_{b c}$ is a partial width of particle a.

Remember: for the calculation 「 ALL final states (partial widths) have to be considered.

What do we know?

- Names of particles
- Kinematic description of interactions
- Defintion of cross section and decay width

What is next?

- Electromagnetic interactions (QED)
- Strong interaction (QCD)
- Electroweak interactions

