Particle Physics: The Standard Model

Dirk Zerwas

LAL
zerwas@lal.in2p3.fr
May 16, 2013

- The Particles
- $\mathrm{W}^{ \pm}$couples to $S U(2)_{L}$ doublets
- Z° : no FCNC (Z ${ }^{\circ}$ cannot change flavor just like γ)

$\binom{\mathrm{u}_{\mathrm{L}}}{\mathrm{d}_{\mathrm{L}}}$	$\binom{\mathrm{c}_{\mathrm{L}}}{\mathrm{s}_{\mathrm{L}}}$	$\binom{\mathrm{t}_{\mathrm{L}}}{\mathrm{b}_{\mathrm{L}}}$
$\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}}$	$\binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}}$	$\binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}}$
u_{R}	c_{R}	t_{R}
d_{R}	s_{R}	b_{R}
e_{R}	μ_{R}	τ_{R}

$$
\begin{gathered}
\gamma \\
g \\
\mathrm{~W}^{ \pm}, \mathrm{Z}^{\circ} \\
\mathrm{H}
\end{gathered}
$$

- The Particles
- $\mathrm{W}^{ \pm}$couples to $S U(2)_{L}$ doublets
- Z° : no FCNC (Z° cannot change flavor just like γ)
- Assumption $\begin{array}{llll}\text { MassEigenstates=EWEigenstates } \\ \text { Why? } & \mathrm{c}_{\mathrm{R}} & \mathrm{c}_{\mathrm{R}} \\ \mathrm{d}_{\mathrm{R}} & \mathrm{s}_{\mathrm{R}} & \mathrm{b}_{\mathrm{R}} \\ \mathrm{e}_{\mathrm{R}} & \mu_{\mathrm{R}} & \tau_{\mathrm{R}}\end{array}$

$$
\begin{gathered}
\gamma \\
g \\
\mathrm{~W}^{ \pm}, \mathrm{Z}^{\circ} \\
\mathrm{H}
\end{gathered}
$$

- The Particles
- $\mathrm{W}^{ \pm}$couples to $S U(2)_{L}$ doublets
- Z° : no FCNC (Z° cannot change flavor just like γ)
- Assumption

MassEigenstates=EWEigenstates
$\binom{u_{L}}{d_{L}} \quad\binom{c_{L}}{s_{L}} \quad\binom{t_{L}}{b_{L}}$
$\binom{\nu_{\mathrm{e}_{\mathrm{L}}}}{\mathrm{e}_{\mathrm{L}}} \quad\binom{\nu_{\mu_{\mathrm{L}}}}{\mu_{\mathrm{L}}} \quad\binom{\nu_{\tau_{\mathrm{L}}}}{\tau_{\mathrm{L}}}$

u_{R}	c_{R}	t_{R}
d_{R}	s_{R}	b_{R}
e_{R}	μ_{R}	τ_{R}

$$
\begin{gathered}
\gamma \\
g \\
\mathrm{~W}^{ \pm}, \mathrm{Z}^{\circ} \\
\mathrm{H}
\end{gathered}
$$

- Another perspective: meson lifetimes
- Weak decays of mesons differ by orders of magnitude?
- How can the s decay weakly? $m_{\mathrm{c}}>m_{\mathrm{s}}$?
- Keep leptons untouched
- Introduce the CKM matrix

Properties of the c

Properties of the s

- Another perspective: meson lifetimes
- Weak decays of mesons differ by orders of magnitude?
- How can the s decay weakly? $m_{c}>m_{s}$?
- Keep leptons untouched
- Introduce the CKM matrix

Properties of the c

$$
\begin{aligned}
& \mathrm{m}_{0}=1.27 \mathrm{GeV} \\
& \tau=\left(1.040 \cdot 10^{-12}\right) \mathrm{s} \quad c \bar{d} \\
& c \tau=311.8 \mu \mathrm{~m}
\end{aligned}
$$

Properties of the s

$$
\begin{aligned}
& \mathrm{m}_{0}=100 \pm 25 \mathrm{MeV} \\
& \tau=\left(1.24 \cdot 10^{-8}\right) \mathrm{s} \quad u \overline{\mathrm{~s}} \\
& c \tau=3.7 \mathrm{~m}
\end{aligned}
$$

- Another perspective: meson lifetimes
- Weak decays of mesons differ by orders of magnitude?
- How can the s decay weakly? $m_{\mathrm{c}}>m_{\mathrm{s}}$?
- Keep leptons untouched
- Introduce the CKM matrix

Properties of the c

$$
\begin{array}{ll}
\mathrm{m}_{0} & =1.27 \mathrm{GeV} \\
\tau & =\left(1.040 \cdot 10^{-12}\right) \mathrm{s} \\
c \bar{d} \\
c \tau & =311.8 \mu \mathrm{~m}
\end{array}
$$

Properties of the s

$$
\begin{aligned}
& \mathrm{m}_{0}=100 \pm 25 \mathrm{MeV} \\
& \tau=\left(1.24 \cdot 10^{-8}\right) \mathrm{s} \quad u \overline{\mathrm{~s}} \\
& c \tau=3.7 \mathrm{~m}
\end{aligned}
$$

- Another perspective: meson lifetimes
- Weak decays of mesons differ by orders of magnitude?
- How can the s decay weakly? $m_{\mathrm{c}}>m_{\mathrm{s}}$?
- Keep leptons untouched
- Introduce the CKM matrix

Properties of the c

$$
\begin{aligned}
& \mathrm{m}_{0}=1.27 \mathrm{GeV} \\
& \tau=\left(1.040 \cdot 10^{-12}\right) \mathrm{s} \quad c \bar{d} \\
& c \tau=311.8 \mu \mathrm{~m}
\end{aligned}
$$

Properties of the s

$$
\begin{aligned}
& \mathrm{m}_{0}=100 \pm 25 \mathrm{MeV} \\
& \tau=\left(1.24 \cdot 10^{-8}\right) \mathrm{s} \quad u \overline{\mathrm{~s}} \\
& c \tau=3.7 \mathrm{~m}
\end{aligned}
$$

- Another perspective: meson lifetimes
- Weak decays of mesons differ by orders of magnitude?
- How can the s decay weakly? $m_{\mathrm{c}}>m_{\mathrm{s}}$?
- Keep leptons untouched
- Introduce the CKM matrix

Properties of the c

$$
\begin{aligned}
& \mathrm{m}_{0}=1.27 \mathrm{GeV} \\
& \tau=\left(1.040 \cdot 10^{-12}\right) \mathrm{s} \quad c \bar{d} \\
& c \tau=311.8 \mu \mathrm{~m}
\end{aligned}
$$

Properties of the s

$$
\begin{aligned}
& \mathrm{m}_{0}=100 \pm 25 \mathrm{MeV} \\
& \tau=\left(1.24 \cdot 10^{-8}\right) \mathrm{s} \quad u \overline{\mathrm{~s}} \\
& \mathrm{c} \tau=3.7 \mathrm{~m}
\end{aligned}
$$

- Another perspective: meson lifetimes
- Weak decays of mesons differ by orders of magnitude?
- How can the s decay weakly? $m_{\mathrm{c}}>m_{\mathrm{s}}$?
- Keep leptons untouched
- Introduce the CKM matrix

Properties of the c

$$
\begin{aligned}
& \mathrm{m}_{0}=1.27 \mathrm{GeV} \\
& \tau=\left(1.040 \cdot 10^{-12}\right) \mathrm{s} \quad c \bar{d} \\
& c \tau=311.8 \mu \mathrm{~m}
\end{aligned}
$$

Properties of the s

$$
\begin{aligned}
& \mathrm{m}_{0}=100 \pm 25 \mathrm{MeV} \\
& \tau=\left(1.24 \cdot 10^{-8}\right) \mathrm{s} \quad u \overline{\mathrm{~s}} \\
& c \tau=3.7 \mathrm{~m}
\end{aligned}
$$

Definition

d is the mass Eigenstate

d^{\prime} is the isospin partner of u V : unitary 3×3 matrix $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$

Cannot simplify: masses not equal

$$
\mathcal{L}_{\text {Yuk }}=-\overline{\mathrm{u}} m_{\mathrm{u}} \mathrm{u}-\overline{\mathrm{c}} m_{\mathrm{c}} \mathrm{c}-\overline{\mathrm{t}} m_{\mathrm{t}} \mathrm{t}-\overline{\mathrm{d}} m_{\mathrm{d}} \mathrm{~d}-\overline{\mathrm{s}} m_{\mathrm{s}} \mathrm{~s}-\overline{\mathrm{b}} m_{\mathrm{b}} \mathrm{~b}
$$

$$
\left.=-\begin{array}{lll}
\bar{u} & \bar{c} & \overline{\mathrm{t}}
\end{array}\right)\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{c} & 0 \\
0 & 0 & m_{\mathrm{t}}
\end{array}\right)\left(\begin{array}{l}
\mathrm{u} \\
\mathrm{c} \\
\mathrm{t}
\end{array}\right)
$$

Definition

d is the mass Eigenstate

d^{\prime} is the isospin partner of u
V : unitary 3×3 matrix $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$
Cannot simplify: masses not equal

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}= & -\overline{\mathrm{u}} m_{\mathrm{u}} \mathrm{u}-\overline{\mathrm{c}} m_{\mathrm{c}} \mathrm{c}-\overline{\mathrm{t}} m_{\mathrm{t}} \mathrm{t}-\overline{\mathrm{d}} m_{\mathrm{d}} \mathrm{~d}-\overline{\mathrm{s}} m_{\mathrm{s}} \mathrm{~s}-\overline{\mathrm{b}} m_{\mathrm{b}} \mathrm{~b} \\
= & -\left(\begin{array}{lll}
\overline{\mathrm{u}} & \overline{\mathrm{c}} & \overline{\mathrm{t}}
\end{array}\right)\left(\begin{array}{ccc}
m_{\mathrm{u}} & 0 & 0 \\
0 & m_{\mathrm{c}} & 0 \\
0 & 0 & m_{\mathrm{t}}
\end{array}\right)\left(\begin{array}{l}
\mathrm{u} \\
\mathrm{c} \\
\mathrm{t}
\end{array}\right) \\
& -\left(\begin{array}{lll}
\overline{\mathrm{d}} & \overline{\mathrm{~s}} & \overline{\mathrm{~b}}
\end{array}\right)\left(\begin{array}{ccc}
m_{\mathrm{d}} & 0 & 0 \\
0 & m_{\mathrm{s}} & 0 \\
0 & 0 & m_{\mathrm{b}}
\end{array}\right)\left(\begin{array}{l}
\mathrm{d} \\
\mathrm{~s} \\
\mathrm{~b}
\end{array}\right)
\end{aligned}
$$

Definition

d is the mass Eigenstate d^{\prime} is the isospin partner of u
V : unitary 3×3 matrix $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$
Cannot simplify: masses not equal

$$
\begin{aligned}
\mathcal{L}_{Y u k}= & -\overline{\mathrm{u}} m_{\mathrm{u}} \mathrm{u}-\overline{\mathrm{c}} m_{\mathrm{c}} \mathrm{c}-\overline{\mathrm{t}} m_{\mathrm{t}} \mathrm{t}-\overline{\mathrm{d}} m_{\mathrm{d}} \mathrm{~d}-\overline{\mathrm{s}} m_{\mathrm{s}} \mathrm{~s}-\overline{\mathrm{b}} m_{\mathrm{b}} \mathrm{~b} \\
= & -\left(\begin{array}{lll}
\overline{\mathrm{u}} & \overline{\mathrm{c}} & \overline{\mathrm{t}}
\end{array}\right)\left(\begin{array}{ccc}
m_{\mathrm{u}} & 0 & 0 \\
0 & m_{\mathrm{c}} & 0 \\
0 & 0 & m_{\mathrm{t}}
\end{array}\right)\left(\begin{array}{c}
\mathrm{u} \\
\mathrm{c} \\
\mathrm{t}
\end{array}\right) \\
& -\left(\begin{array}{lll}
\overline{\mathrm{d}}^{\prime} & \overline{\mathrm{s}}^{\prime} & \overline{\mathrm{b}}^{\prime}
\end{array}\right) \mathrm{V}\left(\begin{array}{ccc}
m_{\mathrm{d}} & 0 & 0 \\
0 & m_{\mathrm{s}} & 0 \\
0 & 0 & m_{\mathrm{b}}
\end{array}\right) \mathrm{V}^{\dagger}\left(\begin{array}{c}
\mathrm{d}^{\prime} \\
\mathrm{s}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right)
\end{aligned}
$$

Properties of V

- Cabibbo, Kobayashi, Maskawa
- V complex: $3 \times 3 \times 2$
- $\mathrm{VV}^{\dagger}=1_{3}: 9$
constraints
- 5 phases absorbed
- 3 real mixing angles, 1 complex phase

Cabibbo

(2 generations):

Wolfenstein

- Diagonal entries dominate

Properties of V

- Cabibbo, Kobayashi, Maskawa
- V complex: $3 \times 3 \times 2$
- $\mathrm{VV}^{\dagger}=1_{3}: 9$ constraints
- 5 phases absorbed
- 3 real mixing angles, 1 complex phase

Cabibbo

(2 generations):

$$
\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)
$$

Wolfenstein

Properties of V

- Cabibbo, Kobayashi, Maskawa
- V complex: $3 \times 3 \times 2$
- $\mathrm{VV}^{\dagger}=1_{3}: 9$ constraints
- 5 phases absorbed
- 3 real mixing angles, 1 complex phase

Cabibbo

(2 generations):

$$
\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)
$$

Wolfenstein

$$
\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- Diagonal entries dominate

Properties of V

- Cabibbo, Kobayashi, Maskawa
- V complex: $3 \times 3 \times 2$
- $\mathrm{VV}^{\dagger}=1_{3}: 9$ constraints
- 5 phases absorbed
- 3 real mixing angles, 1 complex phase

Cabibbo

(2 generations):

$$
\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)
$$

Wolfenstein

$$
\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- Diagonal entries dominate

Charged Current

$$
\begin{aligned}
& \left(\begin{array}{lll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}}^{\prime} \\
\mathrm{s}_{\mathrm{L}}^{\prime} \\
\mathrm{b}_{\mathrm{L}}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{llll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu} \mathrm{V}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right)
\end{aligned}
$$

Decays

$$
\begin{array}{lll}
\mathrm{d} & \rightarrow \mathrm{u}+\mathrm{W}^{-} & \mathrm{V}_{11} \\
\mathrm{~s} & \rightarrow \mathrm{u}+\mathrm{W}^{-} & \mathrm{V}_{12} \\
\mathrm{~b} & \rightarrow \mathrm{u}+\mathrm{W}^{-} & \mathrm{V}_{13}
\end{array}
$$

- $V_{11}=0.98, V_{12}=0.2$
- charmed mesons: $V_{11}^{2} G^{2} \rightarrow 0.96 G^{2}$
- strange mesons: $V_{12}^{2} G^{2} \rightarrow 0.04 G^{2}$ longer lifetime

Charged Current

$$
\begin{aligned}
& \left(\begin{array}{llll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}}^{\prime} \\
\mathrm{s}_{\mathrm{L}}^{\prime} \\
\mathrm{b}_{\mathrm{L}}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{llll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu} \mathrm{V}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right)
\end{aligned}
$$

Decays

$$
\begin{aligned}
& \mathrm{d} \rightarrow \mathrm{u}+\mathrm{W}^{-} V_{11} \\
& \mathrm{~s} \rightarrow \mathrm{u}+\mathrm{W}^{-} \\
& V_{12} \\
& \mathrm{~b} \rightarrow \mathrm{u}+\mathrm{W}^{-} \\
& V_{13}
\end{aligned}
$$

- $V_{11}=0.98, V_{12}=0.2$
- charmed mesons: $V_{11}^{2} G^{2} \rightarrow 0.96 G^{2}$
- strange mesons: $V_{12}^{2} G^{2} \rightarrow 0.04 G^{2}$ longer lifetime

Charged Current

$$
\begin{aligned}
& \left(\begin{array}{llll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}}^{\prime} \\
\mathrm{s}_{\mathrm{L}}^{\prime} \\
\mathrm{b}_{\mathrm{L}}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{llll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu} \mathrm{V}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right)
\end{aligned}
$$

Decays

$$
\begin{aligned}
& \mathrm{d} \rightarrow \mathrm{u}+\mathrm{W}^{-} V_{11} \\
& \mathrm{~s} \rightarrow \mathrm{u}+\mathrm{W}^{-} \\
& V_{12} \\
& \mathrm{~b} \rightarrow \mathrm{u}+\mathrm{W}^{-} \\
& V_{13}
\end{aligned}
$$

- $V_{11}=0.98, V_{12}=0.2$
- charmed mesons: $V_{11}^{2} G^{2} \rightarrow 0.96 G^{2}$
- strange mesons: $V_{12}^{2} G^{2} \rightarrow 0.04 G^{2}$ longer lifetime

Charged Current

$$
\begin{aligned}
& \left(\begin{array}{llll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}}^{\prime} \\
\mathrm{s}_{\mathrm{L}}^{\prime} \\
\mathrm{b}_{\mathrm{L}}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{llll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu} \mathrm{V}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right)
\end{aligned}
$$

Decays

$$
\begin{array}{lll}
\mathrm{d} & \rightarrow \mathrm{u}+\mathrm{W}^{-} & V_{11} \\
\mathrm{~s} & \rightarrow \mathrm{u}+\mathrm{W}^{-} & V_{12} \\
\mathrm{~b} & \rightarrow \mathrm{u}+\mathrm{W}^{-} & V_{13}
\end{array}
$$

- $V_{11}=0.98, V_{12}=0.2$
- charmed mesons: $V_{11}^{2} G^{2} \rightarrow 0.96 G^{2}$
- strange mesons:
$V_{12}^{2} G^{2} \rightarrow 0.04 G^{2}$ longer lifetime

Neutral Current

Neutral currents couple to right- and left-handed quarks:

$$
\left(\begin{array}{lll}
\overline{\mathrm{d}}^{\prime} & \overline{\mathrm{s}}^{\prime} & \overline{\mathrm{b}}^{\prime}
\end{array}\right) \gamma^{\mu}\left(-\frac{1}{2} \frac{1-\gamma_{5}}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right)\left(\begin{array}{c}
\mathrm{d}^{\prime} \\
\mathrm{s}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right)
$$

[^0]
Neutral Current

Neutral currents couple to right- and left-handed quarks:

$$
\left.\begin{array}{l}
\left(\begin{array}{ccc}
\overline{\mathrm{d}}^{\prime} & \overline{\mathrm{s}}^{\prime} & \overline{\mathrm{b}}^{\prime}
\end{array}\right) \gamma^{\mu}\left(-\frac{1}{2} \frac{1-\gamma_{5}}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right)\left(\begin{array}{c}
\mathrm{d}^{\prime} \\
\mathrm{s}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right) \\
=\left(\begin{array}{ccc}
\overline{\mathrm{d}} & \overline{\mathrm{~s}} & \overline{\mathrm{~b}}
\end{array}\right) \mathrm{V}^{\dagger} \gamma^{\mu}\left(-\frac{1}{2} \frac{1-\gamma_{5}}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right) \mathrm{V}\left(\begin{array}{l}
\mathrm{d} \\
\mathrm{~s} \\
\mathrm{~b}
\end{array}\right) \\
=\left(\begin{array}{lll}
\overline{\mathrm{d}} & \overline{\mathrm{~s}} & \overline{\mathrm{~b}}
\end{array}\right) \mathrm{V} V \gamma^{\mu}\left(-\frac{1}{2} \frac{1-\gamma^{2}}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right.
\end{array}\right)\binom{\mathrm{d}}{\mathrm{~d}}
$$

Neutral Current

Neutral currents couple to right- and left-handed quarks:

$$
\left.\begin{array}{l}
\left(\begin{array}{ccc}
\overline{\mathrm{d}}^{\prime} & \overline{\mathrm{s}}^{\prime} & \overline{\mathrm{b}}^{\prime}
\end{array}\right) \gamma^{\mu}\left(-\frac{1}{2} \frac{1-\gamma_{5}}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right)\left(\begin{array}{c}
\mathrm{d}^{\prime} \\
\mathrm{s}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right) \\
=\left(\begin{array}{ccc}
\overline{\mathrm{d}} & \overline{\mathrm{~s}} & \overline{\mathrm{~b}}
\end{array}\right) V^{\dagger} \gamma^{\mu}\left(-\frac{1}{2} \frac{1-\gamma_{5}}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right) V\left(\begin{array}{l}
\mathrm{d} \\
\mathrm{~s} \\
\mathrm{~b}
\end{array}\right) \\
=\left(\begin{array}{lll}
\overline{\mathrm{d}} & \overline{\mathrm{~s}} & \overline{\mathrm{~b}}
\end{array}\right) V^{\dagger} V \gamma^{\mu}\left(-\frac{1}{2} \frac{1-\gamma_{5}}{2}+\frac{1}{3} \sin ^{2} \theta_{W}\right.
\end{array}\right)\left(\begin{array}{l}
\mathrm{d} \\
\mathrm{~s} \\
\mathrm{~b}
\end{array}\right) .
$$

$\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$: does not have a Lorentz index, only family index

And the up-type sector?

$$
\begin{aligned}
& \left(\begin{array}{lll}
\bar{u}_{\mathrm{L}}^{\prime} & \overline{\mathrm{c}}_{\mathrm{L}}^{\prime} & \overline{\mathrm{t}}_{\mathrm{L}}^{\prime}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}}^{\prime} \\
\mathrm{s}_{\mathrm{L}}^{\prime} \\
\mathrm{b}_{\mathrm{L}}^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) V_{2}^{\dagger} \gamma^{\mu \mathrm{V}}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu} V_{2}^{\dagger} \mathrm{V}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right)
\end{aligned}
$$

define: $V_{3}=V_{2}^{\dagger} V$
$V_{3} V_{3}^{\dagger}=\left(V_{2}^{\dagger} V\right)\left(V_{2}^{\dagger} V\right)^{\dagger}=V_{2}^{\dagger} V^{\dagger} V_{2}=1$
$\rightarrow 1$ matrix sufficient

And the up-type sector?

$$
\begin{aligned}
& \left(\begin{array}{lll}
\overline{\mathrm{u}}_{\mathrm{L}}^{\prime} & \overline{\mathrm{c}}_{\mathrm{L}}^{\prime} & \overline{\mathrm{t}}_{\mathrm{L}}^{\prime}
\end{array}\right) \gamma^{\mu}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}}{ }^{\prime} \\
\mathrm{s}_{\mathrm{L}}^{\prime} \\
\mathrm{b}_{\mathrm{L}}{ }^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) V_{2}^{\dagger} \gamma^{\mu} \mathrm{V}\left(\begin{array}{c}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right) \\
& =\left(\begin{array}{lll}
\overline{\mathrm{u}}_{\mathrm{L}} & \overline{\mathrm{c}}_{\mathrm{L}} & \overline{\mathrm{t}}_{\mathrm{L}}
\end{array}\right) \gamma^{\mu} V_{2}^{\dagger} \mathrm{V}\left(\begin{array}{l}
\mathrm{d}_{\mathrm{L}} \\
\mathrm{~s}_{\mathrm{L}} \\
\mathrm{~b}_{\mathrm{L}}
\end{array}\right)
\end{aligned}
$$

define: $V_{3}=V_{2}^{\dagger} V$
$V_{3} V_{3}^{\dagger}=\left(V_{2}^{\dagger} \mathrm{V}\right)\left(V_{2}^{\dagger} \mathrm{V}\right)^{\dagger}=V_{2}^{\dagger} \mathrm{VV}^{\dagger} V_{2}=1$
$\rightarrow 1$ matrix sufficient

- C: transforms particles into anti-particles
- P : inverts momentum

EW Interactions

- C: transforms particles into anti-particles
- P : inverts momentum

EM Interactions

| | e^{-} | $\rightarrow \gamma \mathrm{e}^{-}$ |
| :--- | :--- | :--- | :--- |
| L | $\rightarrow-1 R$ | |
| $P \quad$ | e^{-} | $\rightarrow \gamma \mathrm{e}^{-}$ |
| R | $\rightarrow+1 L$ | |

- C: transforms particles into anti-particles
- P : inverts momentum

EM Interactions

	e^{-}	$\rightarrow \gamma \mathrm{e}^{-}$	
L	$\rightarrow-1 R$		
$P \quad \mathrm{e}^{-}$	$\rightarrow \gamma \mathrm{e}^{-}$		
	R	$\rightarrow+1 L$	
	C	e^{+}	$\rightarrow \gamma \mathrm{e}^{+}$
	L	$\rightarrow-1 R$	

EW Interactions

μ^{-}	$\rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}}$
L	$\rightarrow L R R$
$P \quad \mu^{-}$	$\rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}}$
R	$\rightarrow R R L$
$C \quad \mu^{+}$	$\rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}}$
L	$\rightarrow L L R$
$C P$	μ^{+}
R	$\rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}}$
$R R L$	

- C: transforms particles into anti-particles
- P : inverts momentum

EW Interactions

CPT always conserved

- C: transforms particles into anti-particles
- P : inverts momentum

EW Interactions

$$
\begin{array}{ll}
\mu^{-} & \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}} \\
L & \rightarrow L L R
\end{array}
$$

P

CPT always conserved

- C: transforms particles into anti-particles
- P : inverts momentum

EM Interactions

$$
\begin{array}{lll}
& \mathrm{e}^{-} & \rightarrow \gamma \mathrm{e}^{-} \\
& L & \rightarrow-1 R \\
P & \mathrm{e}^{-} & \rightarrow \gamma \mathrm{e}^{-} \\
& R & \rightarrow+1 L \\
C & \mathrm{e}^{+} & \rightarrow \gamma \mathrm{e}^{+} \\
& L & \rightarrow-1 R \\
C P & \mathrm{e}^{+} & \rightarrow \gamma \mathrm{e}^{+} \\
& R & \rightarrow+1 L
\end{array}
$$

EW Interactions

$$
\begin{array}{ll}
\mu^{-} & \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}} \\
L & \rightarrow L L R
\end{array}
$$

$$
P \quad \mu^{-} \quad \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}}
$$

$$
R \quad \rightarrow \quad R R L
$$

CPT always conserved

- C: transforms particles into anti-particles
- P : inverts momentum

EM Interactions

$$
\begin{array}{lll}
& \mathrm{e}^{-} & \rightarrow \gamma \mathrm{e}^{-} \\
& L & \rightarrow-1 R \\
P & \mathrm{e}^{-} & \rightarrow \gamma \mathrm{e}^{-} \\
& R & \rightarrow+1 L \\
C & \mathrm{e}^{+} & \rightarrow \gamma \mathrm{e}^{+} \\
& L & \rightarrow-1 R \\
C P & \mathrm{e}^{+} & \rightarrow \gamma \mathrm{e}^{+} \\
& R & \rightarrow+1 L
\end{array}
$$

EW Interactions

$$
\begin{aligned}
\mu^{-} & \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}} \\
L & \rightarrow L L R \\
P \quad \mu^{-} & \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}} \\
R & \rightarrow R R L \\
C \quad \mu^{+} & \rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}} \\
L & \rightarrow L L R \\
C P & \mu^{+} \\
R & \rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}} \\
& \rightarrow R R L
\end{aligned}
$$

- C: transforms particles into anti-particles
- P : inverts momentum

EM Interactions

$$
\begin{array}{ll}
& \mathrm{e}^{-} \\
& \rightarrow \gamma \mathrm{e}^{-} \\
\hline & \rightarrow-1 R \\
P & \mathrm{e}^{-}
\end{array} \rightarrow \gamma \mathrm{e}^{-},
$$

EW Interactions

$$
\begin{array}{ll}
\mu^{-} & \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}} \\
L & \rightarrow L L R
\end{array}
$$

$$
P \quad \mu^{-} \quad \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}}
$$

$$
R \quad \rightarrow \quad R R L
$$

$$
\text { C } \quad \mu^{+} \quad \rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}}
$$

$$
L \quad \rightarrow \quad L L R
$$

$$
\text { CP } \quad \mu^{+} \quad \rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}}
$$

$$
R \quad \rightarrow \quad R R L
$$

CPT always conserved

- C: transforms particles into anti-particles
- P : inverts momentum

EM Interactions

| e^{-} | $\rightarrow \gamma \mathrm{e}^{-}$ | |
| :--- | :--- | :--- | :--- |
| L | $\rightarrow-1 R$ | |
| $P \quad$ | e^{-} | $\rightarrow \gamma \mathrm{e}^{-}$ |
| | R | $\rightarrow+1 L$ |
| C | e^{+} | $\rightarrow \gamma \mathrm{e}^{+}$ |
| | L | $\rightarrow-1 R$ |
| $C P$ | e^{+} | $\rightarrow \gamma \mathrm{e}^{+}$ |
| R | $\rightarrow+1 L$ | |

EW Interactions

$$
\begin{aligned}
\mu^{-} & \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}} \\
L & \rightarrow L L R \\
P \quad \mu^{-} & \rightarrow \nu_{\mu_{\mathrm{L}}} \mathrm{e}^{-} \bar{\nu}_{\mathrm{e}_{\mathrm{L}}} \\
R & \rightarrow R R L \\
C \quad \mu^{+} & \rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}} \\
L & \rightarrow L L R \\
C P \quad \mu^{+} & \rightarrow \bar{\nu}_{\mu_{\mathrm{L}}} \mathrm{e}^{+} \nu_{\mathrm{e}_{\mathrm{L}}} \\
R & \rightarrow R R L
\end{aligned}
$$

CPT always conserved

Neutral Kaons

$$
\begin{aligned}
& \mathrm{K}^{\circ}=|\bar{s} \mathrm{~d}\rangle \\
& \overline{\mathrm{K}}^{\circ}=-|\mathrm{s} \overline{\mathrm{~d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

Parity

- $(-1)^{\ell}$ from

$(-1)^{\ell} Y(\theta, \phi)$
- multiolicative: $P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)$
- Spinor: $\gamma^{0} \psi$ (DIRAC equation)
- relative (-1) between particle and anti-particle

Neutral Kaons

$$
\begin{aligned}
\mathrm{K}^{\circ} & =|\bar{s} \mathrm{~d}\rangle \\
\overline{\mathrm{K}}^{\circ} & =-|\mathrm{s} \overline{\mathbf{d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

$$
\begin{aligned}
C \mathrm{~K}^{\circ} & =C(|\overline{\mathrm{~s}} \mathbf{d}\rangle) \\
& =|\overline{\mathrm{d}}\rangle \\
& =-\overline{\mathrm{K}}^{\circ} \\
C \overline{\mathrm{~K}}^{\circ} & =-|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& =-\mathrm{K}^{\circ}
\end{aligned}
$$

Parity

- multiplicative: $P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)$
- Spinor: $\gamma^{0} \psi$ (DIRAC equation)
- relative (-1) between particle and anti-particle
not Eigenstates of C

Neutral Kaons

$$
\begin{aligned}
& \mathrm{K}^{\circ}=|\bar{s} \mathrm{~d}\rangle \\
& \overline{\mathrm{K}}^{\circ}=-|\mathrm{s} \overline{\mathrm{~d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

$$
\begin{aligned}
C \mathrm{~K}^{\circ} & =C(|\overline{\mathrm{~s}} \mathrm{~d}\rangle) \\
& =|\overline{\mathrm{d}}\rangle \\
& =-\overline{\mathrm{K}}^{\circ} \\
C \overline{\mathrm{~K}}^{\circ} & =-|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& =-\mathrm{K}^{\circ}
\end{aligned}
$$

not Eigenstates of C

Parity

- $(-1)^{\ell}$ from $Y_{\ell m}(\pi-\theta, \pi+\phi)=$ $(-1)^{\ell} Y(\theta, \phi)$
- multiplicative: $P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)$
- Spinor: $\gamma^{0} \downarrow$ (DIRAC equation)
- relative (-1) between particle and anti-particle

Neutral Kaons

$$
\begin{aligned}
& \mathrm{K}^{\circ}=|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& \overline{\mathrm{K}}^{\circ}=-|\mathrm{s} \overline{\mathrm{~d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

$$
\begin{aligned}
C \mathrm{~K}^{\circ} & =C(|\overline{\mathrm{~s}} \mathrm{~d}\rangle) \\
& =|\overline{\mathrm{d}}\rangle \\
& =-\overline{\mathrm{K}}^{\circ} \\
C \overline{\mathrm{~K}}^{\circ} & =-|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& =-\mathrm{K}^{\circ}
\end{aligned}
$$

not Eigenstates of C

Parity

- $(-1)^{\ell}$ from $Y_{\ell m}(\pi-\theta, \pi+\phi)=$ $(-1)^{\ell} Y(\theta, \phi)$
- multiplicative:

$$
P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)
$$

- Spinor: $\gamma^{0} \psi$ (DIRAC equation)
- relative (-1) between particle and anti-particle

Neutral Kaons

$$
\begin{aligned}
& \mathrm{K}^{\circ}=|\bar{s} \mathrm{~d}\rangle \\
& \overline{\mathrm{K}}^{\circ}=-|\mathrm{s} \overline{\mathrm{~d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

$$
\begin{aligned}
C K^{\circ} & =C(|\overline{\mathrm{~s}} \mathrm{~d}\rangle) \\
& =|\overline{\mathrm{d}}\rangle \\
& =-\overline{\mathrm{K}}^{\circ} \\
C \overline{\mathrm{~K}}^{\circ} & =-|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& =-\mathrm{K}^{\circ}
\end{aligned}
$$

not Eigenstates of C

Parity

- $(-1)^{\ell}$ from $Y_{\ell m}(\pi-\theta, \pi+\phi)=$ $(-1)^{\ell} Y(\theta, \phi)$
- multiplicative:

$$
P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)
$$

- Spinor: $\gamma^{0} \psi$ (DIRAC equation)

particle and anti-particle

Neutral Kaons

$$
\begin{aligned}
& \mathrm{K}^{\circ}=|\bar{s} \mathrm{~d}\rangle \\
& \overline{\mathrm{K}}^{\circ}=-|\mathrm{s} \overline{\mathrm{~d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

$$
\begin{aligned}
C \mathrm{~K}^{\circ} & =C(|\overline{\mathrm{~s}} \mathrm{~d}\rangle) \\
& =|\overline{\mathrm{d}}\rangle \\
& =-\overline{\mathrm{K}}^{\circ} \\
C \overline{\mathrm{~K}}^{\circ} & =-|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& =-\mathrm{K}^{\circ}
\end{aligned}
$$

not Eigenstates of C

Parity

- $(-1)^{\ell}$ from $Y_{\ell m}(\pi-\theta, \pi+\phi)=$ $(-1)^{\ell} Y(\theta, \phi)$
- multiplicative:
$P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)$
- Spinor: $\gamma^{0} \psi$ (DIRAC equation)

$$
\text { - } \gamma^{0} u\left(\mathbf{p}^{\prime}\right)=u(\mathbf{p})
$$

- relative (-1) between particle and anti-particle

Neutral Kaons

$$
\begin{aligned}
& \mathrm{K}^{\circ}=|\bar{s} \mathrm{~d}\rangle \\
& \overline{\mathrm{K}}^{\circ}=-|\mathrm{s} \overline{\mathrm{~d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

$$
\begin{aligned}
C \mathrm{~K}^{\circ} & =C(|\overline{\mathrm{~s}} \mathrm{~d}\rangle) \\
& =|\overline{\mathrm{d}}\rangle \\
& =-\overline{\mathrm{K}}^{\circ} \\
C \overline{\mathrm{~K}}^{\circ} & =-|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& =-\mathrm{K}^{\circ}
\end{aligned}
$$

not Eigenstates of C

Parity

- $(-1)^{\ell}$ from $Y_{\ell m}(\pi-\theta, \pi+\phi)=$ $(-1)^{\ell} Y(\theta, \phi)$
- multiplicative:

$$
P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)
$$

- Spinor: $\gamma^{0} \psi$ (DIRAC equation)

$$
\begin{aligned}
\gamma^{0} u\left(\mathbf{p}^{\prime}\right) & =u(\mathbf{p}) \\
-\gamma^{0} v\left(\mathbf{p}^{\prime}\right) & =-v(\mathbf{p})
\end{aligned}
$$

- relative (-1) between particle and anti-particle

Neutral Kaons

$$
\begin{aligned}
\mathrm{K}^{\circ} & =|\bar{s} \mathrm{~d}\rangle \\
\overline{\mathrm{K}}^{\circ} & =-|\mathrm{s} \overline{\mathbf{d}}\rangle
\end{aligned}
$$

-: strong Isospin anti-particle

Charge Conjugation

$$
\begin{aligned}
C \mathrm{~K}^{\circ} & =C(|\overline{\mathrm{~s}} \mathrm{~d}\rangle) \\
& =|\overline{\mathrm{d}} \overline{ }\rangle \\
& =-\overline{\mathrm{K}}^{\circ} \\
C \overline{\mathrm{~K}}^{\circ} & =-|\overline{\mathrm{s}} \mathrm{~d}\rangle \\
& =-\mathrm{K}^{\circ}
\end{aligned}
$$

not Eigenstates of C

Parity

- $(-1)^{\ell}$ from $Y_{\ell m}(\pi-\theta, \pi+\phi)=$ $(-1)^{\ell} Y(\theta, \phi)$
- multiplicative:
$P\left(p_{1} p_{2}\right)=P\left(p_{1}\right) \cdot P\left(p_{2}\right)$
- Spinor: $\gamma^{0} \psi$ (DIRAC equation)

$$
\begin{aligned}
& \gamma^{0} u\left(\mathbf{p}^{\prime}\right)=u(\mathbf{p}) \\
& -\gamma^{0} v\left(\mathbf{p}^{\prime}\right)=-v(\mathbf{p})
\end{aligned}
$$

- relative (-1) between particle and anti-particle

$C P$

$C P K^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\overline{\mathrm{K}}^{\circ}\right)$

$$
=\overline{\mathrm{K}}^{\circ}
$$

$C P \overline{\mathrm{~K}}^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\mathrm{K}^{\circ}\right)$

$$
=\mathrm{K}^{\circ}
$$

CP Eigenstates

strong prod, weak decay

Particle Physics: The Standard Model

$C P$

$C P K^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\overline{\mathrm{K}}^{\circ}\right)$

$$
=\overline{\mathrm{K}}^{\circ}
$$

$C P \overline{\mathrm{~K}}^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\mathrm{K}^{\circ}\right)$

$$
=\mathrm{K}^{\circ}
$$

CP Eigenstates

$$
\begin{aligned}
& (+1): K_{1}=\frac{1}{\sqrt{2}}\left(\mathrm{~K}^{\circ}+\overline{\mathrm{K}}^{\circ}\right) \\
& (-1): K_{2}=\frac{1}{\sqrt{2}}\left(\mathrm{~K}^{\circ}-\overline{\mathrm{K}}^{\circ}\right)
\end{aligned}
$$

strong prod, weak decay

$C P$

CPK $^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\overline{\mathrm{K}}^{\circ}\right)$

$$
=\overline{\mathrm{K}}^{\circ}
$$

$C P \overline{\mathrm{~K}}^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\mathrm{K}^{\circ}\right)$

$$
=\mathrm{K}^{\circ}
$$

CP Eigenstates

$$
\begin{aligned}
& (+1): K_{1}=\frac{1}{\sqrt{2}}\left(\mathrm{~K}^{\circ}+\overline{\mathrm{K}}^{\circ}\right) \\
& (-1): K_{2}=\frac{1}{\sqrt{2}}\left(\mathrm{~K}^{\circ}-\overline{\mathrm{K}}^{\circ}\right)
\end{aligned}
$$

strong prod, weak decay

$$
\pi^{+} \pi^{-}
$$

$$
\begin{aligned}
C\left(\pi^{+} \pi^{-}\right) & =\pi^{-} \pi^{+} \\
P\left(\pi^{+} \pi^{-}\right) & =P\left(\pi^{-}\right) P\left(\pi^{+}\right) \\
& =1 \\
C P\left(\pi^{+} \pi^{-}\right) & =1
\end{aligned}
$$

$C P$

CPK $^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\overline{\mathrm{K}}^{\circ}\right)$

$$
=\overline{\mathrm{K}}^{\circ}
$$

$C P \overline{\mathrm{~K}}^{\circ}=(-1) \cdot(-1)^{\ell}\left(-\mathrm{K}^{\circ}\right)$
$=\mathrm{K}^{\circ}$

CP Eigenstates

$$
\begin{aligned}
& (+1): K_{1}=\frac{1}{\sqrt{2}}\left(\mathrm{~K}^{\circ}+\overline{\mathrm{K}}^{\circ}\right) \\
& (-1): K_{2}=\frac{1}{\sqrt{2}}\left(\mathrm{~K}^{\circ}-\overline{\mathrm{K}}^{\circ}\right)
\end{aligned}
$$

strong prod, weak decay

$$
\pi^{+} \pi^{-}
$$

$$
\begin{aligned}
C\left(\pi^{+} \pi^{-}\right) & =\pi^{-} \pi^{+} \\
P\left(\pi^{+} \pi^{-}\right) & =P\left(\pi^{-}\right) P\left(\pi^{+}\right) \\
& =1 \\
C P\left(\pi^{+} \pi^{-}\right) & =1
\end{aligned}
$$

$$
\pi^{+} \pi^{-} \pi^{0}
$$

$$
\begin{array}{ll}
C\left(\pi^{0}\right) & =C(\gamma)^{2}=1 \\
P\left(\pi^{0}\right) & =-1 \\
C P\left(\pi^{+} \pi^{-} \pi^{0}\right) & =C P\left(\pi^{+} \pi^{-}\right) \\
& \\
& =-1
\end{array}
$$

Lifetimes

Kaon mass: 494MeV

$$
\begin{aligned}
& K_{1} \rightarrow \pi^{+} \pi^{-} \\
& \tau_{S}=0.9 \cdot 10^{-10} s \\
& K_{2} \rightarrow \pi^{+} \pi^{-} \pi^{0} \\
& \tau_{L}=5.2 \cdot 10^{-8} s
\end{aligned}
$$

phase space:

$$
\begin{aligned}
& m\left(\pi^{+} \pi^{-}\right) \approx 280 \mathrm{MeV} \\
& m\left(\pi^{+} \pi^{-} \pi^{0}\right) \approx 420 \mathrm{MeV}
\end{aligned}
$$

K_{2} was initially "overlooked"

Time dependence

Decay is described by weak Eigenstates with a well-defined lifetime:

strong as $f($ weak $)$:

Lifetimes

Kaon mass: 494 MeV

$$
\begin{aligned}
& K_{1} \rightarrow \pi^{+} \pi^{-} \\
& \tau_{S}=0.9 \cdot 10^{-10} s \\
& K_{2} \rightarrow \pi^{+} \pi^{-} \pi^{0} \\
& \tau_{L}=5.2 \cdot 10^{-8} s
\end{aligned}
$$

phase space:

$$
\begin{array}{ll}
m\left(\pi^{+} \pi^{-}\right) & \approx 280 \mathrm{MeV} \\
m\left(\pi^{+} \pi^{-} \pi^{0}\right) & \approx 420 \mathrm{MeV}
\end{array}
$$

K_{2} was initially "overlooked"

Time dependence

Decay is described by weak Eigenstates with a well-defined lifetime:

$$
\begin{aligned}
\left|K_{1}(t)\right\rangle= & \left|K_{1}(0)\right\rangle \exp ^{-i M_{S} t} \\
& \exp ^{-\Gamma_{S} t / 2} \\
\left|K_{2}(t)\right\rangle= & \left|K_{2}(0)\right\rangle \exp ^{-i M_{L} t} \\
& \exp ^{-\Gamma_{L} t / 2}
\end{aligned}
$$

strong as $f($ weak):

$$
\begin{aligned}
\mathrm{K}^{\circ} & =\frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right) \\
\overline{\mathrm{K}}^{\circ} & =\frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle-\left|K_{2}\right\rangle\right)
\end{aligned}
$$

Oscillation

$A(t)$: amplitude to produce at $t=0 \mathrm{a} \mathrm{K}^{\circ}$ and find at $t \mathrm{a} \overline{\mathrm{K}}^{\circ}$:

$$
A(t) \quad=\left\langle\overline{\mathrm{K}}^{\circ}(t) \mid \mathrm{K}^{\circ}(t=0)\right\rangle
$$

$$
=\frac{1}{2}\left(\left\langle K_{1}(t)\right|-\left\langle K_{2}(t)\right|\right)\left(\left|K_{1}(t=0)\right\rangle+\left|K_{2}(t=0)\right\rangle\right)
$$

$$
=\frac{1}{2}\left(\left\langle K_{1}(t) \mid K_{1}(t=0)\right\rangle-\left\langle K_{2}(t) \mid K_{2}(t=0)\right\rangle\right)
$$

$$
=\frac{1}{2}\left(\exp ^{-i M_{S} t} \exp ^{-\Gamma_{S} t / 2}-\exp ^{-i M_{L} t} \exp ^{-\Gamma_{L} t / 2}\right)
$$

$A(t) A^{*}(t)=\frac{1}{4}\left(\exp ^{-\Gamma_{s} t}+\exp ^{-\Gamma_{L} t}-2 \cos (\Delta M t) \exp ^{-\left(\Gamma_{L}+\Gamma_{s}\right) t / 2}\right.$

- $\Gamma_{S} \gg \Gamma_{L}$: decay with Γ_{L}
- oscillation with frequency $\triangle M=M_{L}-M_{S}$

Oscillation

$A(t)$: amplitude to produce at $t=0 \mathrm{a} \mathrm{K}^{\circ}$ and find at $t \mathrm{a} \overline{\mathrm{K}}^{\circ}$:

$$
\begin{align*}
& =\left\langle\overline{\mathbf{K}}^{\circ}(t) \mid \mathrm{K}^{\circ}(t=0)\right\rangle \tag{t}\\
& =\frac{1}{2}\left(\left\langle K_{1}(t)\right|-\left\langle K_{2}(t)\right|\right)\left(\left|K_{1}(t=0)\right\rangle+\left|K_{2}(t=0)\right\rangle\right)
\end{align*}
$$

$$
=\frac{1}{2}\left(\left\langle K_{1}(t) \mid K_{1}(t=0)\right\rangle-\left\langle K_{2}(t) \mid K_{2}(t=0)\right\rangle\right)
$$

$$
=\frac{1}{2}\left(\exp ^{-i M_{S} t} \exp ^{-\Gamma_{S} t / 2}-\exp ^{-i M_{L} t} \exp ^{-\Gamma_{L} t / 2}\right)
$$

$A(t) A^{\star}(t)$ $=\frac{1}{4}\left(\exp ^{-\Gamma s t}+\exp \right.$ $-2 \cos (\Delta M t) \exp$

- $\Gamma_{S} \gg \Gamma_{L}$: decay with Γ_{L}
- oscillation with frequency $\Delta M=M_{L}-M_{S}$

Oscillation

$A(t)$: amplitude to produce at $t=0 \mathrm{a} \mathrm{K}^{\circ}$ and find at $t \mathrm{a} \overline{\mathrm{K}}^{\circ}$:

$$
A(t)
$$

$$
\begin{aligned}
& =\left\langle\overline{\mathbf{K}}^{\circ}(t) \mid \mathrm{K}^{\circ}(t=0)\right\rangle \\
& =\frac{1}{2}\left(\left\langle K_{1}(t)\right|-\left\langle K_{2}(t)\right|\right)\left(\left|K_{1}(t=0)\right\rangle+\left|K_{2}(t=0)\right\rangle\right) \\
& =\frac{1}{2}\left(\left\langle K_{1}(t) \mid K_{1}(t=0)\right\rangle-\left\langle K_{2}(t) \mid K_{2}(t=0)\right\rangle\right)
\end{aligned}
$$

$$
=\frac{1}{2}\left(\exp ^{-i M_{S} t} \exp ^{-\Gamma_{S} t / 2}-\exp ^{-i M_{L} t} \exp ^{-\Gamma_{L} t / 2}\right)
$$

- $\Gamma_{S} \gg \Gamma_{L}$: decay with Γ_{L}

- oscillation with frequency $\Delta M=M_{L}-M_{S}$

Oscillation

$A(t)$: amplitude to produce at $t=0 \mathrm{a} \mathrm{K}^{\circ}$ and find at $t \mathrm{a} \overline{\mathrm{K}}^{\circ}$:

$$
\begin{aligned}
& A(t) \\
& A(t) A^{*}(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\overline{\mathrm{K}}^{\circ}(t) \mid \mathrm{K}^{\circ}(t=0)\right\rangle \\
& =\frac{1}{2}\left(\left\langle K_{1}(t)\right|-\left\langle K_{2}(t)\right|\right)\left(\left|K_{1}(t=0)\right\rangle+\left|K_{2}(t=0)\right\rangle\right) \\
& =\frac{1}{2}\left(\left\langle K_{1}(t) \mid K_{1}(t=0)\right\rangle-\left\langle K_{2}(t) \mid K_{2}(t=0)\right\rangle\right) \\
& =\frac{1}{2}\left(\exp ^{-i M_{S} t} \exp ^{-\Gamma_{s} t / 2}-\exp ^{-i M_{L} t} \exp ^{-\Gamma_{L} t / 2}\right)
\end{aligned}
$$ $=\frac{1}{4}\left(\exp ^{-\Gamma s t}+\exp \right.$

- $\Gamma_{S} \gg \Gamma_{L}$: decay with Γ_{L}

- oscillation with frequency $\triangle M=M_{L}-M_{S}$

Oscillation

$A(t)$: amplitude to produce at $t=0 \mathrm{a} \mathrm{K}^{\circ}$ and find at $t \mathrm{a} \overline{\mathrm{K}}^{\circ}$:

$$
\begin{aligned}
& A(t)=\left\langle\overline{\mathrm{K}}^{\circ}(t) \mid \mathrm{K}^{\circ}(t=0)\right\rangle \\
&=\frac{1}{2}\left(\left\langle K_{1}(t)\right|-\left\langle K_{2}(t)\right|\right)\left(\left|K_{1}(t=0)\right\rangle+\left|K_{2}(t=0)\right\rangle\right) \\
&=\frac{1}{2}\left(\left\langle K_{1}(t) \mid K_{1}(t=0)\right\rangle-\left\langle K_{2}(t) \mid K_{2}(t=0)\right\rangle\right) \\
&=\frac{1}{2}\left(\exp ^{-i M_{S} t} \exp ^{-\Gamma_{S} t / 2}-\exp ^{-i M_{L} t} \exp ^{-\Gamma_{L} t / 2}\right) \\
& A(t) A^{\star}(t)=\frac{1}{4}\left(\exp ^{-\Gamma_{S} t}+\exp ^{-\Gamma_{L} t}-2 \cos (\Delta M t) \exp ^{-\left(\Gamma_{L}+\Gamma_{S}\right) t / 2}\right) \\
& \Gamma_{S} \gg \Gamma_{L}: \text { decay with } \Gamma_{L} \\
& \text { oscill ation with frequency } \triangle M=M_{L}-M_{S}
\end{aligned}
$$

Oscillation

$A(t)$: amplitude to produce at $t=0 \mathrm{a} \mathrm{K}^{\circ}$ and find at $t \mathrm{a} \overline{\mathrm{K}}^{\circ}$:

$$
\begin{aligned}
A(t) & =\left\langle\overline{\mathrm{K}}^{\circ}(t) \mid \mathrm{K}^{\circ}(t=0)\right\rangle \\
& =\frac{1}{2}\left(\left\langle K_{1}(t)\right|-\left\langle K_{2}(t)\right|\right)\left(\left|K_{1}(t=0)\right\rangle+\left|K_{2}(t=0)\right\rangle\right) \\
& =\frac{1}{2}\left(\left\langle K_{1}(t) \mid K_{1}(t=0)\right\rangle-\left\langle K_{2}(t) \mid K_{2}(t=0)\right\rangle\right) \\
& =\frac{1}{2}\left(\exp ^{-i M_{S} t} \exp ^{-\Gamma_{s} t / 2}-\exp ^{-i M_{L} t} \exp ^{-\Gamma_{L} t / 2}\right) \\
A(t) A^{\star}(t) & =\frac{1}{4}\left(\exp ^{-\Gamma_{s} t}+\exp ^{-\Gamma_{L} t}-2 \cos (\Delta M t) \exp ^{-\left(\Gamma_{L}+\Gamma_{S}\right) t / 2}\right)
\end{aligned}
$$

- $\Gamma_{S} \gg \Gamma_{L}$: decay with Γ_{L}

- oscillation with frequency $\Delta M=M_{L}-M_{S}$

Oscillation

$A(t)$: amplitude to produce at $t=0 \mathrm{a} \mathrm{K}^{\circ}$ and find at $t \mathrm{a} \overline{\mathrm{K}}^{\circ}$:

$$
\begin{aligned}
A(t) & =\left\langle\overline{\mathrm{K}}^{\circ}(t) \mid \mathrm{K}^{\circ}(t=0)\right\rangle \\
& =\frac{1}{2}\left(\left\langle K_{1}(t)\right|-\left\langle K_{2}(t)\right|\right)\left(\left|K_{1}(t=0)\right\rangle+\left|K_{2}(t=0)\right\rangle\right) \\
& =\frac{1}{2}\left(\left\langle K_{1}(t) \mid K_{1}(t=0)\right\rangle-\left\langle K_{2}(t) \mid K_{2}(t=0)\right\rangle\right) \\
& =\frac{1}{2}\left(\exp ^{-i M_{S} t} \exp ^{-\Gamma_{s} t / 2}-\exp ^{-i M_{L} t} \exp ^{-\Gamma_{L} t / 2}\right) \\
A(t) A^{\star}(t) & =\frac{1}{4}\left(\exp ^{-\Gamma_{s} t}+\exp ^{-\Gamma_{L} t}-2 \cos (\Delta M t) \exp ^{-\left(\Gamma_{L}+\Gamma_{S}\right) t / 2}\right)
\end{aligned}
$$

- $\Gamma_{S} \gg \Gamma_{L}$: decay with Γ_{L}
- oscillation with frequency $\Delta M=M_{L}-M_{S}$

Follow fermion line: transition between generations inevitable!

Need CKM non-diagonal:
$\sim \sin ^{2} \theta_{C}$

- need interference term!
- $\Delta M \sim 3.5 \cdot 10^{-6} \mathrm{eV}$

All settled?

- BNL AGS 30GeV protons
- K K_{1} die out (can be regenerated)
- expect no $\pi^{+} \pi^{-}$decays at the K° mass (theoretically)
- experimentally: combinatorics
- use angle between beam and reconstructed $\pi^{+} \pi^{-}$system
- no peak expected

All settled?

- BNL AGS 30GeV protons
- K_{1} die out (can be regenerated)
- expect no $\pi^{+} \pi^{-}$decays at the K° mass (theoretically)
- experimentally: combinatorics
- use angle between beam and reconstructed $\pi+\pi$ - system
- no peak expected

All settled?

- BNL AGS 30GeV protons
- K_{1} die out (can be regenerated)
- expect no $\pi^{+} \pi^{-}$decays at the K° mass (theoretically)
- experimentally: combinatorics
- use angle between beam and reconstructed $\pi^{+} \pi^{-}$system
- no peak expected

All settled?

- BNL AGS 30GeV protons
- K_{1} die out (can be regenerated)
- expect no $\pi^{+} \pi^{-}$decays at the K° mass (theoretically)
- experimentally: combinatorics
- use angle between beam and reconstructed $\pi^{+} \pi^{-}$system
- no peak expected

All settled?

- BNL AGS 30GeV protons
- K_{1} die out (can be regenerated)
- expect no $\pi^{+} \pi^{-}$decays at the K° mass (theoretically)
- experimentally: combinatorics
- use angle between beam and reconstructed $\pi^{+} \pi^{-}$system
- no peak expected

All settled?

- BNL AGS 30GeV protons
- K_{1} die out (can be regenerated)
- expect no $\pi^{+} \pi^{-}$decays at the K° mass (theoretically)
- experimentally: combinatorics
- use angle between beam and reconstructed $\pi^{+} \pi^{-}$system
- no peak expected

- PEAK!!!
- level: 10^{-3}
- CP must be violated!
- CKM has a complex phase

Kaon description

$$
\begin{aligned}
& K_{S}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\left|K_{1}\right\rangle+\epsilon\left|K_{2}\right\rangle\right) \\
& K_{L}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\epsilon\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right)
\end{aligned}
$$

```
= }\sqrt{}{\frac{\mp@subsup{\Gamma}{L}{}(\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-})}{\mp@subsup{\Gamma}{S}{}(\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-})}
\[
=2.268 \pm 0.023 \cdot 10^{-3}
\]
```


$C P$ violation in

- CP violation discovered
- good for our existence

Kaon description

$$
\begin{aligned}
& K_{S}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\left|K_{1}\right\rangle+\epsilon\left|K_{2}\right\rangle\right) \\
& K_{L}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\epsilon\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right)
\end{aligned}
$$

$C P$ violation in mixing

$$
\begin{aligned}
|\epsilon| & =\sqrt{\frac{\Gamma_{L}\left(\pi^{+} \pi^{-}\right)}{\Gamma_{S}\left(\pi^{+} \pi^{-}\right)}} \\
& =2.268 \pm 0.023 \cdot 10^{-3}
\end{aligned}
$$

$C P$ violation in

$($ NA31 $)=23 \pm 6.5 \cdot 10$

- CP violation discovered
- good for our existence

Kaon description

$$
\begin{aligned}
& K_{S}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\left|K_{1}\right\rangle+\epsilon\left|K_{2}\right\rangle\right) \\
& K_{L}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\epsilon\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right)
\end{aligned}
$$

$C P$ violation in mixing

$$
\begin{aligned}
|\epsilon| & =\sqrt{\frac{\Gamma_{L}\left(\pi^{+} \pi^{-}\right)}{\Gamma_{s}\left(\pi^{+} \pi^{-}\right)}} \\
& =2.268 \pm 0.023 \cdot 10^{-3}
\end{aligned}
$$

$C P$ violation in decay

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{\epsilon^{\prime}}{\epsilon}\right)=\frac{1}{6}(1- \\
&\left.\frac{\Gamma_{L}\left(\pi^{0} \pi^{0}\right) \Gamma_{S}\left(\pi^{+} \pi^{-}\right)}{\Gamma_{S}\left(\pi^{0} \pi^{0}\right) \Gamma_{L}\left(\pi^{+} \pi^{-)}\right)}\right) \\
&(\text {NA31 })=23 \pm 6.5 \cdot 10^{-4} \\
&(F N A L)=7.4 \pm 5.9 \cdot 10^{-4} \\
&(\text { FNAL })=28 \pm 4.1 \cdot 10^{-4} \\
&(N A 48)=18.5 \pm 7.3 \cdot 10^{-4}
\end{aligned}
$$

- CP violation discovered
- good for our existence

Kaon description

$$
\begin{aligned}
& K_{S}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\left|K_{1}\right\rangle+\epsilon\left|K_{2}\right\rangle\right) \\
& K_{L}=\frac{1}{\sqrt{1+|\epsilon|^{2}}}\left(\epsilon\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right)
\end{aligned}
$$

$C P$ violation in mixing

$$
\begin{aligned}
|\epsilon| & =\sqrt{\frac{\Gamma_{L}\left(\pi^{+} \pi^{-}\right)}{\Gamma_{s}\left(\pi^{+} \pi^{-}\right)}} \\
& =2.268 \pm 0.023 \cdot 10^{-3}
\end{aligned}
$$

$C P$ violation in decay

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\epsilon^{\prime}}{\epsilon}\right) & =\frac{1}{6}(1- \\
& \left.\frac{\Gamma_{L}\left(\pi^{0} \pi^{0}\right) \Gamma_{S}\left(\pi^{+} \pi^{-}\right)}{\Gamma_{S}\left(\pi^{0} \pi^{0}\right) \Gamma_{L}\left(\pi^{+} \pi^{-}\right)}\right) \\
(N A 31) & =23 \pm 6.5 \cdot 10^{-4} \\
(F N A L) & =7.4 \pm 5.9 \cdot 10^{-4} \\
(F N A L) & =28 \pm 4.1 \cdot 10^{-4} \\
(N A 48) & =18.5 \pm 7.3 \cdot 10^{-4}
\end{aligned}
$$

- CP violation discovered
- good for our existence
- $\alpha_{S}\left(\mathrm{~K}^{\circ}\right)!$

B-sector

- Flavour oscillation in all neutral systems
- $m_{\mathrm{B}^{\circ}} \sim 5 \mathrm{GeV} \gg m_{\mathrm{K}^{\circ}} \sim$ 0.5 GeV
- lifetime (tag)

Experiments

large production

- BABAR@SLAC PEP-II

- BFIIF@KFK-B
- asymmetric colliders
- $\mathrm{e}^{-}: 9.1 \mathrm{GeV}$
- $\mathrm{e}^{+}: 3.4 \mathrm{GeV}$
- resonance b \bar{b}
- decay to $\mathrm{B}_{\mathrm{d}}^{\circ} \overline{\mathrm{B}}_{\mathrm{d}}^{\circ}$ and $\mathrm{B}_{\mathrm{s}}^{\circ} \overline{\mathrm{B}}$
- $250 \mu \mathrm{~m}$ need great vertex detector

B-sector

- Flavour oscillation in all neutral systems
- $m_{\mathrm{B}^{\circ}} \sim 5 \mathrm{GeV} \gg m_{\mathrm{K}^{\circ}} \sim$ 0.5 GeV
- lifetime (tag)

Experiments

large production

- dedicated machine: $\mathrm{e}^{+} \mathrm{e}^{-}$
- or pp
- good PID

- BABAR@SLAC PEP-II

- BELIL@KEKB
- asymmetric colliders
- $\mathrm{e}^{-}: 9.1 \mathrm{GeV}$
- $\mathrm{e}^{+}: 3.4 \mathrm{GeV}$
- resonance b \bar{b}
- decay to $\mathrm{B}_{\mathrm{d}}^{\circ} \overline{\mathrm{B}}_{\mathrm{d}}^{\circ}$ and $\mathrm{B}_{\mathrm{s}}^{\circ} \overline{\mathrm{B}}$
- $250 \mu \mathrm{~m}$ need great vertex detector

B-sector

- Flavour oscillation in all neutral systems
- $m_{\mathrm{B}^{\circ}} \sim 5 \mathrm{GeV} \gg m_{\mathrm{K}^{\circ}} \sim$ 0.5 GeV
- lifetime (tag)

Experiments

large production

- dedicated machine: $\mathrm{e}^{+} \mathrm{e}^{-}$
- or pp
- good PID
- BABAR@SLAC PEP-II
- BELLE@KEK-B
- asymmetric colliders
- $\mathrm{e}^{-}: 9.1 \mathrm{GeV}$
- $\mathrm{e}^{+}: 3.4 \mathrm{GeV}$
- $\Upsilon^{4 s}$:
- resonance b̄̄
- decay to $\mathrm{B}_{\mathrm{d}}^{\circ} \overline{\mathrm{B}}_{\mathrm{d}}^{\circ}$ and $\mathrm{B}_{\mathrm{s}}^{\circ} \overline{\mathrm{B}}_{\mathrm{s}}^{\circ}$
- $250 \mu \mathrm{~m}$ need great vertex detector

Back to CKM

Measurements

- V complex
- $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$: 9 equations
- 6 equations with complex $=0$
- 2-coordinate plane: triangle
- α, β, γ

Unitary triangle

\square

Back to CKM

Measurements

- V complex
- $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$: 9 equations
- 6 equations with complex $=0$
- 2-coordinate plane: triangle
- α, β, γ

Unitary triangle

$$
\begin{aligned}
\left(\mathrm{V}^{\dagger} \mathrm{V}\right)_{31} & =0 \\
& =V_{u b}^{\star} V_{u d}+V_{c b}^{\star} V_{c d}+V_{t b}^{\star} V_{t d}
\end{aligned}
$$

Back to CKM

- V complex
- $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$: 9 equations
- 6 equations with complex $=0$
- 2-coordinate plane: triangle
- α, β, γ

Unitary triangle

$$
\begin{aligned}
\left(\mathrm{V}^{\dagger} \mathrm{V}\right)_{31} & =0 \\
& =V_{u b}^{\star} V_{u d}+V_{c b}^{\star} V_{c d}+V_{t b}^{\star} V_{t d}
\end{aligned}
$$

Measurements

- Δm_{s}
- Δm_{d}
- $\overline{\mathrm{B}}^{\circ} \rightarrow \pi^{+} \pi^{-}$
- $\overline{\mathrm{B}}^{\circ} \rightarrow J / \psi K_{S}$
- $B^{+} \rightarrow D K^{+}$
- $B \rightarrow \tau \nu$
- overconstrained

Back to CKM

- V complex
- $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$: 9 equations
- 6 equations with complex $=0$
- 2-coordinate plane: triangle
- α, β, γ

Unitary triangle

Measurements

- Δm_{s}
- Δm_{d}
- $\overline{\mathrm{B}}^{\circ} \rightarrow \pi^{+} \pi^{-}$
- $\overline{\mathrm{B}}^{\circ} \rightarrow J / \psi K_{S}$
- $B^{+} \rightarrow D K^{+}$
- $B \rightarrow \tau \nu$
- overconstrained

$$
\begin{aligned}
\left(\mathrm{V}^{\dagger} \mathrm{V}\right)_{31} & =0 \\
& =V_{u b}^{\star} V_{u d}+V_{c b}^{\star} V_{c d}+V_{t b}^{\star} V_{t d}
\end{aligned}
$$

- relationship angles-V:
Problem Solving
- all
measurements in agreement
- no sign of BSM
- impressive progress in 10 years
- D0 like-sign di-muons?

[^0]: $\mathrm{V}^{\dagger} \mathrm{V}=1_{3}$: does not have a Lorentz index, only family index

