INSTITUTE OF APPLIED PHYSICS

THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE

Joint LAL-INR NASU Workshop on HEP instrumentation Orsay, France, May, 22-24, 2013

The IAP NASU analytical accelerator-based facility

Andriy Kramchenkov

Ion-matter interaction and IBA techniques

IAP NASU accelerator-based facility

2 MV electrostatic accelerator

H+, He+ and *He++* ions (RF ion source); Accelerator voltage stability < 1 keV at 1 MV on the terminal ($\Delta E/E < 10-3$)

Six analytical end-stations (+seventh is under construction):

-Resonant nuclear reactions (NRA, PIGE);

- ion induced luminescence (IL)

-scanning ion microprobe;

- high-resolution Rutherford backscattering spectrometry (HRBS);
- high-resolution elastic recoil detection analysis (HERDA);

- quasimonochromatic X-ray source based on the electrostatic accelerator;

- proton beam writing - under construction .

Ion-induced luminescence end-station

IL spectrum from fluorite (CaF₂) sample

NRA end-station

N_γ / канал

2500

NRA end-station is equipped with two types of gamma detectors – Nal scintillator detector and HpGe detector.

On the right side there is a PIGE spectrum of LiF sample.

19F(p,αγ)16O

24.05.2013

High current mode: beam spot 1,2×2 μm, ion current 100 pA; Low current mode: beam spot 100×100 nm, ion current 20 nA. Techniques available: μRBS, μPIXE, SE imaging, IBIC.

Scanning ion microprobe

Ion microprobe is based on two integrated doublets of magnetic quadrupole lenses ("russian quadruplet").

μΡΙΧΕ, μ*R*BS, μ*ERDA,* SE imaging, IBIC techniques are available.

Proton beam writing beamline is now being constructed.

Quasimonochromatic X-ray source based on the electrostatic accelerator

-based facility

3D model and a general view of the quasimonochromatic X-ray source with ion excitation.

X-ray spectra from copper converter:

- Y1 with a Ni filter;
- Y2 without Ni filter;
- Y3 without Ni filter, detector is in vacuum

10

High-resolution RBS end-station

Magnetic spectrometer with double focusing with relative energy resolution $(\Delta E/E=3,2\times10^{-3})$

HRBS energy spectrum from Zr-Ti thin film deposited on silicon substrate.

ator-based facility

High-resolution ERDA and RBS end-station

Special specimen holder for investigation of melted metals by means of HRBS

A special specimen holder for *in situ* investigation of metal melts by means of high-resolution Rutherford backscattering spectrometry: a quartz tube with a heater and thermocouple for temperature monitoring.

In situ study of tin melting by means of RBS

RBS spectra of pure tin at different temperatures

Bismuth-tin alloy melting investigation by means of HRBS

IAP NASU accelerator-based facility

Thank you for attention!

Institute of Applied Physics, National Academy of Sciences *Andriy Kramchenkov* <u>akramchenkov@yandex.ru</u> 58, Petropavlivs'ka str., Sumy, Ukraine 40000

