

PLIC Pulsed Laser Injected Cavity

R&D goals summary

- Use of a 2m Fabry-Perot optical cavity to amplify pico-second laser pulses
 - Finesse = 1000 then 30 000
- 800 mW (mean power) resonator @ λ =800 nm
 - Pumped by a 6W CW laser
 - Repetition rate : 76 Mhz (2m cavity matching)
 - Achievable Finesse of 1 000 000 limited by spontaneous emission @800mW
- Particular studies to put the laser & cavity on an accelerator (part of the experiment presented by Yasmina Fedala)

- Brief experiment principles
- Technical details
- Status & Prospects

Brief experiment principles

PW laser amplifying principle in time domain

$$Trep \triangleq \frac{Lrep}{Vg} = Tcav \triangleq \frac{Lcav}{Vg} \Rightarrow Lrep = Lcav$$
$$Tce \triangleq Lrep \left(\frac{1}{Vg} - \frac{1}{V\varphi}\right) = 0 \Rightarrow Vg - V\varphi = 0$$

Amplifying principle in frequency domain

Locking principle

- 1) Ramping Lrep
- 2) I_{TR}>0 & PDH=0 => Lrep = Lcav
- 3) Trigger to hold Lrep (Lcav is free)
- 4) Measurement & feedback to cancel phase shift @P1 & P2

Locking principle

- 1) Ramping Lrep
- 2) I_{TR}>0 & PDH=0 => Lrep = Lcav
- 3) Trigger to hold Lrep (Lcav is free)
- 4) Measurement & feedback to cancel phase shift @P1 & P2

Locking bricks

- One needs signals sensitive to frequency difference to control Frep=Fcav and Fce=0 => 3 Pound-Drever-Hall measurement blocks
- One needs actuators to allow feedback on LASER parameters Lrep, Vg-Vφ => Motors, PZT, AOM, Shifter, GTI & starter
- One needs a system to acquire, make a feedback and output analog signals : we chose a digital system with ADC, FPGA, DAC => Lyrtech DAQ board

Technical details

Main optical elements

Coherent Verdi :

- CW DPSS
- Power : 6 W
- Wavelength : 532 nm

Coherent Mira :

- Ti:Al₂O₃ pulsed resonator by Kerr effect
- Repetition rate : Frep = 76 MHz $\overline{P} = 760 \text{ mW}$
- Energy per pulse : E = 10 nJ / pulse
- Pulse width : $T_{FWHM} = 1 \text{ ps} / 100 \text{ fs}$
- Wavelength : λ = 800 nm

- LAL made FP cavity :
- Length : 2 m
- Finesse : 1000 then 30000

6W pumping CW laser

760mW PW laser

Laser, resonator & cavity picture

Pound-Drever-Hall phase detection technique

2.46

2.48

2.52

length (m.)

2.54

2.56

x 10

Digital Feedback System (DFS)

14 bits of resolution

Actuators

2) AOM & Frequency shifter change local refractive index :

16

Status & Prospects

Status (1)

- Laser, resonator & cavity installed on optical table with vibration damping feet.
- Cavity is now with a vacuum tube & vacuum is done
 - Finesse is presently about 1000 but 30000 finesse mirrors are on the shelf
 - For the present finesse the short term stability of the laser cavity should be better than the FP cavity
 - Then one only needs to compensate (long term) low frequency drifts < < kHz
- Phase measurement with the PDH technique gives good results.
 - Max signal of 1V with 750µV RMS of noise means a precision better than 0,1% inside the cavity linewidth and this precision is independent of the finesse.
 - 1MHz PDH bandwidth ensures a low phase delay @ kHz
 - 1 block produced for the global spectrum measurement
 - 2 blocks are designed with gain 10x and same output noise for P1 & P2
- Used actuators are a mirror motor and mirror PZT.
 - PZT driver and signal transmission need to be improved (differential scheme for PZT driving and signal transmission)

Status (2)

- Digital feedback conception flow is now masterized (Simulink/Matlab/ISE/VHDL/Synthesis)
 - IIR SOS structure has a double loop scheme on output data to improve the precision
 - Digital ramping signal produced then hold when resonance is reached
 - Linear feedback is triggered in same time (currently under definition for PZT)
 - First feedback loop on motor gave good result but was not fast enough to keep locking
 - Working on PZT with the global frequency offset only (we are waiting 2 more PDH blocks)
- Many measurements & simulations are under way
 - Gain calibration of the system
 - Noise sources measurement (Seismic / accoustic / electronics / phase noise) & coupling reduction
 - Simulink simulation to predict feedback & cavity behavior

Prospects

- Lock the 1000 finesse cavity at short term
- Use 30000 finesse mirrors => increase Feedback bandwidth @ 1MHz
- PDH :
 - Needs optimization for delay response to prevent from stability problems with the feedback system.
 - Increase PDH bandwidth => increase noise
- Feedback :
 - Need of a non-stationnary cavity model
 - 100ns of structural delay (10 clock counts for ADC+DAC) => predictive model ?
 - Fixed point => Filters coefficients generation algorithm needs improvement
- Actuators :
 - Need of several actuators for dynamics bandwidth trade-off
 - Need of improved drivers noise

