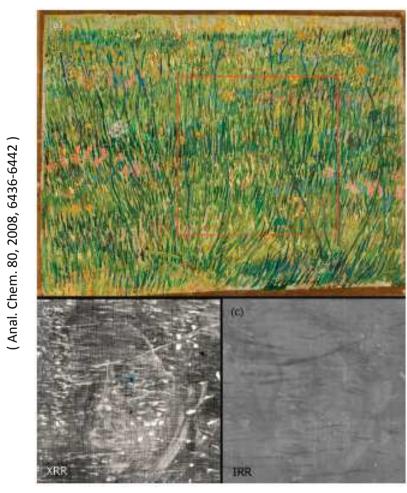
# BTML 2013 13 septembre 2013





# High flux Compact Compton X-ray Sources ThomX, a demonstrator

**Marie Jacquet** 


Laboratoire de l'Accélérateur Linéaire Orsay, France (IN2P3,CNRS)

mjacquet@lal.in2p3.fr

▶ In many scientific domains synchrotron sources are currently the only machines in term of brightness to perform and carry out the most ambitious analyses and searches requiring ~ 10-100 KeV X-rays.

# Vincent van Gogh "Un coin d'herbe" (1887) at synchrotron DESY

# Conventional X Radiography & IR Reflectography



X Transmission

IR Reflectography

# Vincent van Gogh "Un coin d'herbe" (1887) at synchrotron DESY

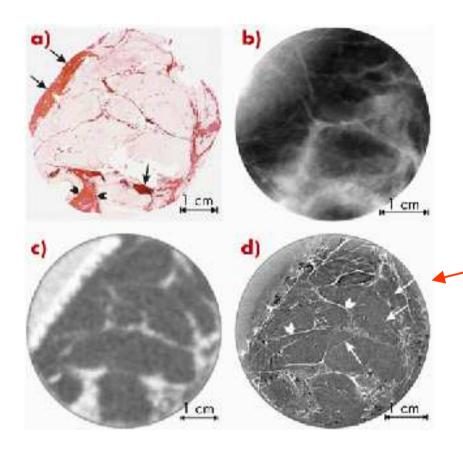
# Conventional X Radiography & IR Reflectography



X Transmission

IR Reflectography

# Analyses at synchrotron DESY (non destructive)


#### **Colored reconstruction**



(Anal. Chem. 80, 2008, 6436-6442)

# **Biomedical: imaging human breast tissue at synchrotron ESRF**

#### Mapping of a breast tissue sample



( Phys. Med. Biol. 52, 2007, 2197-2211 )

- a) Histological section(used as a standard for interpretation)
- b) Clinical planar screen-film mammogram taken at the hospital
- c) Clinical scanner
- d) ID17 ESRF (Phase constrast imaging)Same dose as c)

#### **Stronger contrast**

→ Improvement in the visualisation of the morphology and of the overall architecture of the breast tissues

- ► In many scientific domains synchrotron sources are currently the only machines in term of brightness to perform and carry out the most ambitious analyses and searches requiring ~ 10-100 KeV X-rays.
- ► Compact lab sources today does not allow to carry out many of the techniques used at synchrotrons.

```
<u>X-ray tubes</u>: The most efficient are rotating anodes (Rigaku \sim 10^{10} ph/sec, polychromatic)
```

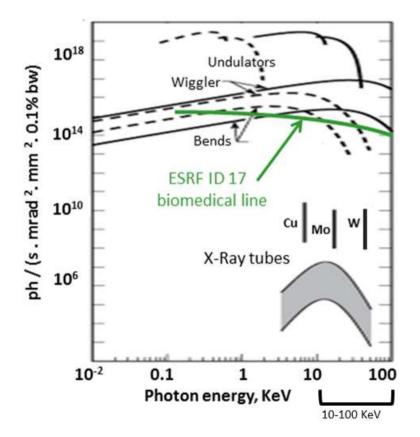
#### Synchrotron sources are very powerful, but,

- not very "pratical" for some applications,
- with a limited access time.
  - → Developing intense lab sources should avoid these limitations
- Compact Compton Sources (CCS)

Methods currently used at synchrotrons and requiring a high brightness beam could be largely developed in a lab size environment (hospitals, labs, museums).

- Compactness (surface ~ 100 m²)
- High intensity (1012 1014 ph/sec)
- Tunable beam
- High quality beam (brightness 10<sup>11</sup> 10<sup>15</sup> ph/sec/ mm<sup>2</sup> / 0.1% bw / mrad<sup>2</sup>)

- ► In many scientific domains synchrotron sources are currently the only machines in term of brightness to perform and carry out the most ambitious analyses and searches requiring ~ 10-100 KeV X-rays.
- ► Compact lab sources today does not allow to carry out many of the techniques used at synchrotrons.


<u>X-ray tubes</u>: The most efficient are rotating anodes (Rigaku  $\sim 10^{10}$  ph/sec, polychromatic)

#### Synchrotron sources are very powerful, but,

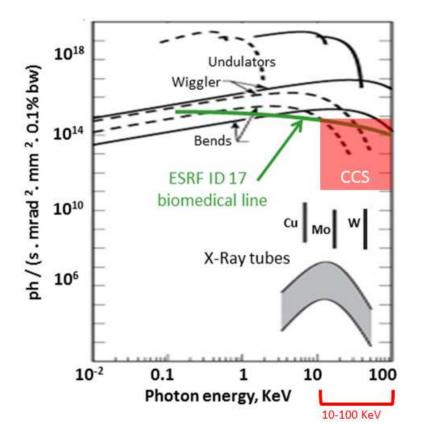
- not very "pratical" for some applications,
- with a limited access time.
  - → Developing intense lab sources should avoid these limitations
- Compact Compton Sources (CCS)

Methods currently used at synchrotrons and requiring a high brightness beam could be largely developed in a lab size environment (hospitals, labs, museums).

- Compactness (surface ~ 100 m<sup>2</sup>)
- High intensity (10<sup>12</sup> 10<sup>14</sup> ph/sec)
- Tunable beam
- High quality beam (brightness 10<sup>11</sup> 10<sup>15</sup> ph/sec/ mm<sup>2</sup> / 0.1% bw / mrad<sup>2</sup>)

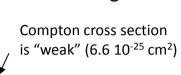


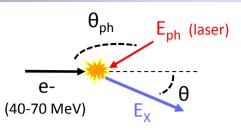
- In many scientific domains synchrotron sources are currently the only machines in term of brightness to perform and carry out the most ambitious analyses and searches requiring ~ 10-100 KeV X-rays.
- ► Compact lab sources today does not allow to carry out many of the techniques used at synchrotrons.


<u>X-ray tubes</u>: The most efficient are rotating anodes (Rigaku  $\sim 10^{10}$  ph/sec, polychromatic)

#### Synchrotron sources are very powerful, but,

- not very "pratical" for some applications,
- with a limited access time.
  - → Developing intense lab sources should avoid these limitations
- Compact Compton Sources (CCS)

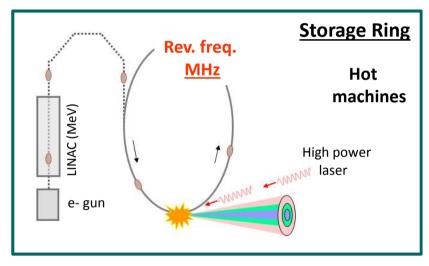

Methods currently used at synchrotrons and requiring a high brightness beam could be largely developed in a lab size environment (hospitals, labs, museums).

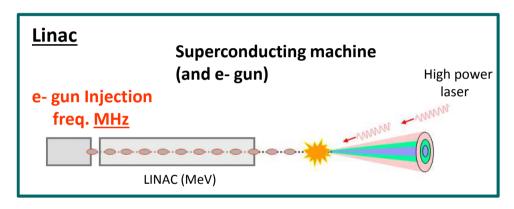

- Compactness (surface ~ 100 m<sup>2</sup>)
- High intensity (10<sup>12</sup> 10<sup>14</sup> ph/sec)
- Tunable beam
- High quality beam (brightness 10<sup>11</sup> 10<sup>15</sup> ph/sec/ mm<sup>2</sup> / 0.1% bw / mrad<sup>2</sup>)



## X-ray Compton Sources: principle and specifications

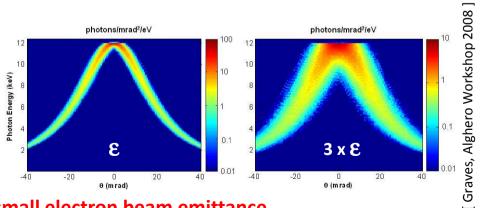
Compton scattering where the electron is no longer at rest




$$E_{X} \sim \frac{2 \gamma^2 E_{ph} [1 - \cos(\theta_{ph})]}{1 + (\gamma \theta)^2}$$

$$\gamma = E_e / m_e >> 1$$
$$E_{ph} << m_e$$

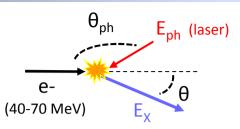

1. <u>High flux</u>  $(10^{12} - 10^{14} \, \text{ph/sec}) \rightarrow \text{Increase } f_{\text{rep}} \text{ e}^{\text{-}/\text{laser}} \ (^{\sim} 10\text{-}100 \, \text{MHz}) \rightarrow 2 \, \text{main schemes}$ 





**2. High brightness**  $(10^{11} - 10^{15})$ 

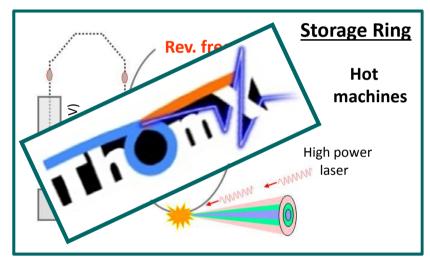
Br ~ 
$$\frac{\text{Flux}}{(\text{mm}^2 \text{ source}) (\text{dE}_x/\text{E}_x) (\text{mrad})^2} \sim \frac{\text{Flux} \cdot \gamma^2}{\epsilon_N^2}$$
  
 $\sigma_e^2 \sigma_e'^2 = \epsilon^2$ 

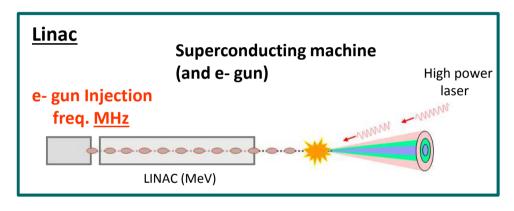



→ small electron beam emittance

# X-ray Compton Sources: principle and specifications

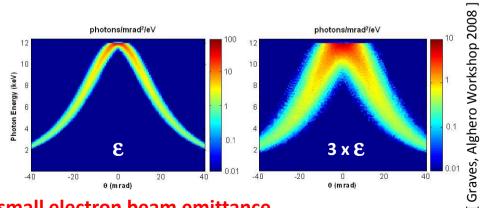
Compton scattering where the electron is no longer at rest


> Compton cross section is "weak" (6.6 10<sup>-25</sup> cm<sup>2</sup>)




$$E_{X} \sim \frac{2 \gamma^{2} E_{ph} [1 - \cos(\theta_{ph})]}{1 + (\gamma \theta)^{2}}$$

$$\gamma = E_e / m_e >> 1$$
$$E_{ph} << m_e$$


1. <u>High flux</u>  $(10^{12} - 10^{14} \, \text{ph/sec}) \rightarrow \text{Increase } f_{\text{rep}} \text{ e}^{\text{-}/\text{laser}} \ (^{\sim} 10\text{-}100 \, \text{MHz}) \rightarrow 2 \, \text{main schemes}$ 





**2. High brightness**  $(10^{11} - 10^{15})$ 

Br ~ 
$$\frac{\text{Flux}}{(\text{mm}^2 \text{ source}) (\text{dE}_x/\text{E}_x) (\text{mrad})^2} \sim \frac{\text{Flux} \cdot \gamma^2}{\epsilon_N^2}$$
  
 $\sigma_e^2 \sigma_e'^2 = \epsilon^2$ 



→ small electron beam emittance











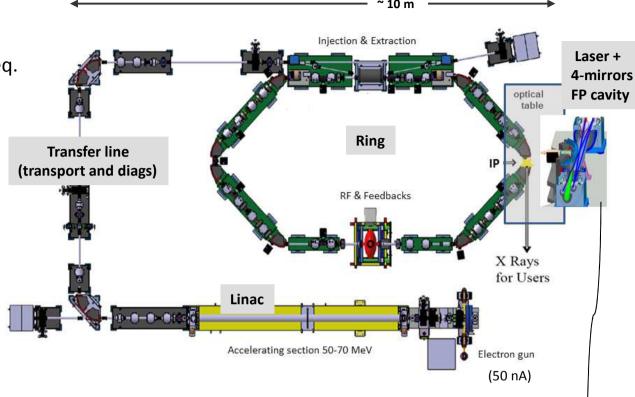










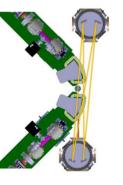

# **ThomX design**



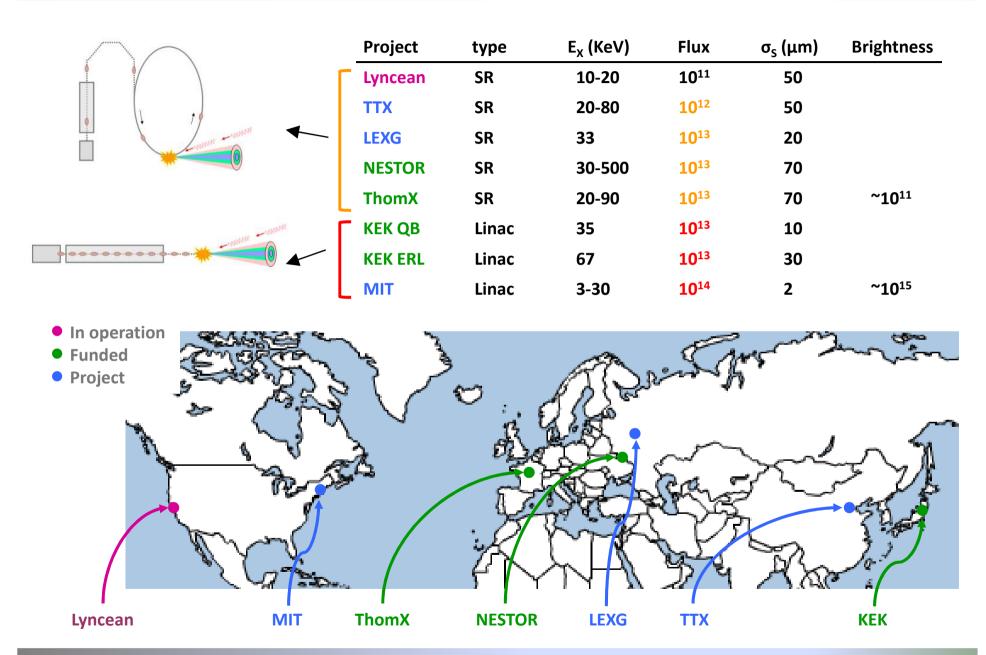
#### **Electron machine**

- 1 nc / bunch , 50 Hz inj. freq.
- Ring, 20 MHz frep.
- $\sigma_e \sim 70 \, \mu m$
- $\varepsilon_N \sim 4 \text{ mm.mrad}$
- $\tau_e \sim 10\text{-}20 \text{ ps}$

Machine funded In construction




#### X-ray beam


| •              |                  |
|----------------|------------------|
| Flux           | 10 <sup>13</sup> |
| Brigthness     | 10 <sup>11</sup> |
| Transv. size   | 70 μm            |
| E <sub>X</sub> | 20-90 KeV        |

#### **Laser / Cavity system**

- Laser ~ 1W
- Optical fiber amplification (100 W) 2-3 μJ/pulse
- Optical FP cavity amplification (gain 10000)
- 1 MW stored inside the cavity (20-30 mJ/pulse)



# **Compact Compton projects** (X-ray flux > 10<sup>12</sup> ph/sec)

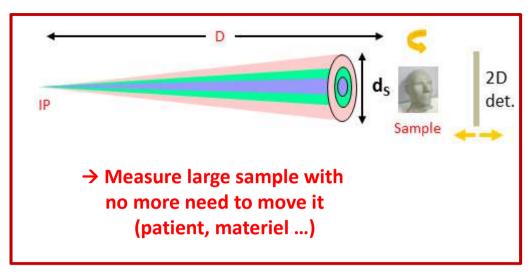


# **Compact Compton projects** (X-ray flux > 10<sup>12</sup> ph/sec) → Chalenges

|                                     | Project | type  | E <sub>x</sub> (KeV) | Flux                    | $\sigma_{\rm S}$ ( $\mu$ m) | Brightness        |
|-------------------------------------|---------|-------|----------------------|-------------------------|-----------------------------|-------------------|
| Achieve the laser/cavity            | Lyncean | SR    | 10-20                | <b>10</b> <sup>11</sup> | 50                          |                   |
| system requirements $\leftarrow$    | TTX     | SR    | 20-80                | <b>10</b> <sup>12</sup> | 50                          |                   |
| → 1 MW stored                       | LEXG    | SR    | 33                   | <b>10</b> <sup>13</sup> | 20                          |                   |
| inside the cavity                   | NESTOR  | SR    | 30-500               | 10 <sup>13</sup>        | 70                          |                   |
|                                     | ThomX   | SR    | 20-90                | <b>10</b> <sup>13</sup> | 70                          | ~1011             |
| Acquire the control of a            | KEK QB  | Linac | 35                   | 10 <sup>13</sup>        | 10                          |                   |
| low energy storage ring             | KEK ERL | Linac | 67                   | <b>10</b> <sup>13</sup> | 30                          |                   |
| → keep a stable & good quality beam | MIT     | Linac | 3-30                 | 1014                    | 2                           | ~10 <sup>15</sup> |

#### LINAC scheme machine: 2 main technical challenges

- Construction/validation of a superconducting electron gun delivering bunches with an extremely low emittance and ~ 100 MHz of injection frequency
- Difficulties in radioprotection for integration:

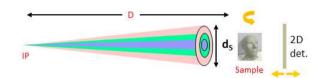

```
MIT \rightarrow 0.01 nc / bunch , 100 MHz, 40 MeV \rightarrow 40 KW to be absorbed ThomX \rightarrow 1 nc / bunch , 50 Hz, 50 MeV \rightarrow 2.5 W
```

# 1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

**IMAGING** 

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging
- Magnification
- Radiotherapy




Pink beam (3-30% bw)

#### 1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging
- Magnification
- Radiotherapy



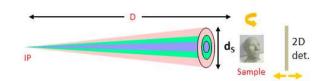
- **High energy** (~ 80KeV) to test high-Z element drug
- No need of monochromaticity (pink beam, bw ~ 30%)

Ex. : Human head phantom



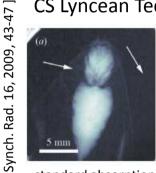
- 5 mrad opening angle
- $d_S = 12 \text{ cm} \text{ at D} \sim 15 \text{ m}$
- 6.10<sup>12</sup> ph/s
- bw 60-90 KeV

ThomX and Synchrotron (ID17/ESRF) → comparable


**Compared to hospital sources:** 

- → allow the reduction of the dose
- → better image quality

#### 1. Using the 2D divergent beam


(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging
- Magnification
- Radiotherapy



- bw 2-3%
- Small source size (to have transv. coherence)

CS Lyncean Tech. (only CCS in operation in the word)





13.5 KeV, 3% bw 10<sup>9</sup> ph/sec  $\sigma$  = 165  $\mu$ m

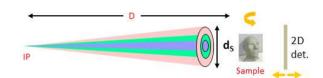
**Proof of principle** 

standard absorption

phase-contrast



- 70 KeV, 2-3% bw,  $\sigma \sim 70 \mu m$   $d_S = 4 cm$  at D  $\sim 15 m$


#### **Hospital sources**

(large focal spot size, broad spectrum, low flux)

#### 1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging
- Magnification
- Radiotherapy

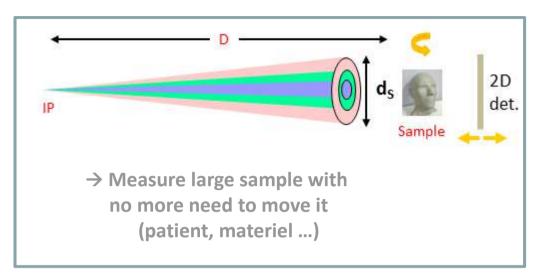


- High energy (~ 80KeV)
- bw ~ 10%



- 80 KeV ± 10 KeV
- $d_s = 5 \text{ cm} \text{ at D} \sim 10 \text{ m}$
- 3.10<sup>12</sup> ph/s

Ex.: Human head tumor (tumor deliver dose ~ 10-20 Gy)

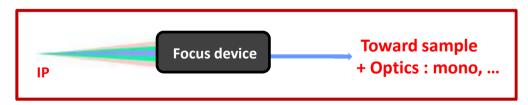

- ThomX → 9 mGy/sec → 20-30 min of irradiation
- **ESRF/ID17** ( ~ 6 mGy/sec)
- Hospital sources → broad spectrum,
   and continuously operation not possible

# 1. Using the 2D divergent beam

(biomedical and cultural heritage applications)

**IMAGING** 

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging
- Magnification
- Radiotherapy




Pink beam (3-30% bw)

#### 2. Using the central part of the beam

(cultural heritage / material science applications)

- Fluorescence Spectroscopy
- XANES Spectroscopy
- Diffraction
  - → Structural analyses
  - → Pump-probe experiments

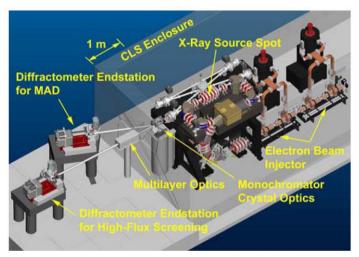


Quasi-monochromatic beam (~ 1% - 0.01 % bw)

#### 1. Using the 2D divergent beam

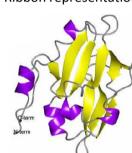
(biomedical and cultural heritage applications)

- Conventional radiography
- K-edge substraction imaging
- Phase contrast imaging
- Magnification
- Radiotherapy


#### 2. Using the central part of the beam

(cultural heritage / material science applications)

- Fluorescence Spectroscopy
- XANES Spectroscopy
- Diffraction
  - → Structural analyses
  - **→** Pump-probe experiments


#### - Quasi-monochromatic beam

1<sup>st</sup> determination of the 3D structure of a protein CS Lyncean Tech. source



15 KeV, 1.4% bw  $5.10^6$  ph/sec  $\sigma = 120 \mu m$ 

Ribbon representation



[ J. Struct. Funct. Gen. 11, 2010, 91-100 ]

**<u>Proof of principle</u>** (~ Rigaku rotating anode)



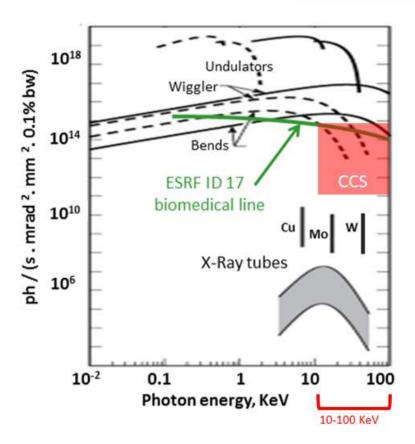
•  $10^9$  ph/s ,  $\Delta E/E \approx 10^{-2} - 10^{-3}$ 



# **Conclusions/Outlook**

#### CCS combine

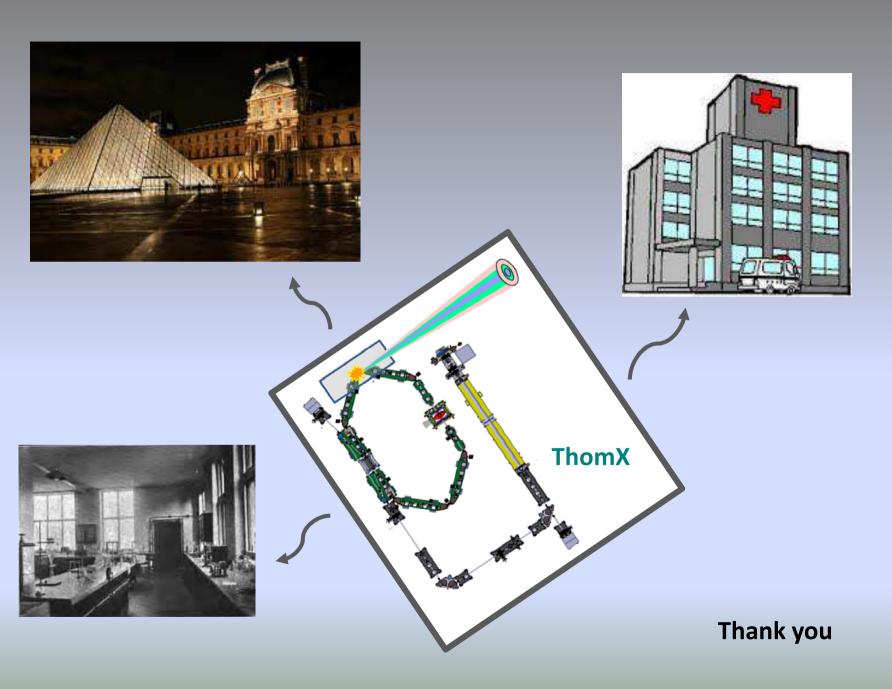
- Compactness
- High flux/brightness
- Tunable energy
- Transverse coherence


### Today

→ Hot machines

- THE STATE OF THE S
- → Brightness ~ 10<sup>11</sup>

#### ... and tomorrow


- → Supra machines (e- gun)
- $\rightarrow$  Brightness ~  $10^{13}$ - $10^{15}$



# CCS will open a new approach in research and development of applications

- Biomedical science
- Cultural heritage research
- Material science

- → Imaging techniques using a large 2D beam = golden applications
- → Fill the great lack of intense lab sources.

