

Higgs → Gauge Bosons @ CMS

Simranjit Singh Chhibra^{*} (Politecnico & INFN Bari, Italy)

On behalf of the CMS collaboration

*simranjit.singh.chhibra@cern.ch

Outline

CCMS and a second secon

- Higgs @ LHC
- Overview of CMS data
- Most recent results for H \rightarrow gauge bosons searches @ CMS experiment

 $\Box H \rightarrow \gamma \gamma$ @ 7 + 8 TeV (arXiv:1407.0558) $\square H \rightarrow 77^* \rightarrow 4$ (Phys. Rev. D89 092007 (2014)) @ 7 + 8 TeV $\square H \rightarrow 77 \rightarrow 2/2\tau$ @ 7 + 8 TeV (CMS PAS HIG-13-002) $\Box H \rightarrow 77 \rightarrow 2 | 2 \nu$ @ 7 + 8 TeV (CMS PAS HIG-13-014) $\Box H \rightarrow ZZ \rightarrow 2l2q$ @ 7 + 8 TeV (JHEP 04 (2012) 036, CMS PAS HIG-12-024) $\Box H \rightarrow WW^* \rightarrow |v|v$ @ 7 + 8 TeV (JHEP 01 (2014) 096) $\Box H \rightarrow WW \rightarrow I_{V}qq$ @ 7 + 8 TeV (CMS PAS HIG-13-027) $\Box H \rightarrow Z\gamma$ @ 7 + 8 TeV (CMS PAPER HIG-13-006) $\Box H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$ @ 8 TeV (CMS PAS-HIG-14-003)

Public results @ this link: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>

Overview of CMS data

CMS Integrated Luminosity, pp

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=$ 8 TeV

Very efficient data taking by the CMS experiment in years 2011-12 (>90%)

Analyses in this presentation correspond to total integrated luminosity of
 4.9 to 5.1 fb⁻¹ @7TeV

■ 19.4 to 19.7 fb⁻¹@8TeV

Higgs Hunitng 2014

Higgs @ LHC

Higgs

Ω

ecay

modes

Higgs Hunitng 2014

$H \rightarrow \gamma\gamma$

- Clean signature with excellent mass resolution of (1-2%)
- Small peaking signal on gradually falling QCD background
- Signature: a pair of high quality photons
 - Mass range: [110, 150] GeV
- **Backgrounds:** $\gamma\gamma$, γ + jet and jet-jet
 - Background modeling is obtained by fitting the m_{yy} distribution in data
 - The concept is to profile over various fit function choices and allows data to choose the best fit function 19.7 fb⁻¹ (8 TeV)
- Key points:
- Precise primary vertex finding (~80% efficient)

 - Efficient photon identification to reject fakes (mainly from π^0)
 - Use shower shape and isolation information
 - Event categorization for better sensitivity

$H \rightarrow \gamma\gamma$ categorization

0.02

Т

events

0.02

10

Data

VBF

WH/ZF

MC Background H → γγ (m. = 125 GeV)

0.8

0.8

19.7 fb⁻¹ (8 TeV)

0.6

0.6

Transformed combined BDT classifier score

Transformed diphoton BDT classifier score

Data MC Background $H \rightarrow \gamma\gamma$ (m_. = 125 GeV)

WH/ZH

0.4

0.4

/ 0.02 CMS Exclusive mode tags: events VH: Lepton, E_{T}^{miss} and jet consistent with W or 7ttbar H: b-jets, leptons and E_T^{miss} consistent to 10³ with ttbarH with ttbarH 10^{2} Diphoton boosted decision tree (BDT) classifier: 10 Use kinematics of dipoton system, m_{yy} resolution and photon qualify information 0.2 Cut values are optimized for maximum sensitivity 10[:] Data events / 0.02 CMS Dijet BDT classifier: Trained with VBF events as signal and GGH as background Optimized for VBF signal strength alone 10 Combined diphoton-dijet BDT: 10 Use diphotpn and dijet BDT score + $p_T^{\gamma\gamma}/m_{\gamma\gamma}$ 0.2 Hiaas Hunitna 2014 Simranjit Singh Chhibra

10-1

$H \rightarrow \gamma\gamma$ results

- 25 categories (11 @ 7TeV, 14 @ 8 TeV) targeting all production modes
 Resolution varies from 1.1 to 2.6 GeV
 - S/(S+B) is used to weight the events in particular categories

$H \rightarrow \gamma\gamma$ mass spectrum and statistical interpretation

$H \rightarrow \gamma\gamma$ mass and signal strength

Best-fit measured mass = $124.70 \pm 0.34 = 124.70 \pm 0.31(stat) \pm 0.15(syst)$

A dedicated talk on mass measurement by S. Nourbakhsh

Signal strength @ best-fit mass = $1.14^{+0.26}_{-0.23} = 1.14^{+0.21}_{-0.21}(stat)^{+0.09}_{-0.05}(syst)^{+0.13}_{-0.09}(theo)$

Simranjit Singh Chhibra

CM

$H \rightarrow ZZ^* \rightarrow 4I$

- Golden" channel for the Higgs discovery and properties measurements
 - Clean signature with low background
 - excellent mass resolution (1-2%)
- FSR recovery results in m_{lly} closer to nominal Z mass
- Signature:
 - Both Z's $\rightarrow e^+e^-(\mu^+\mu^-)$
 - 💶 eeee, eeμμ, μμμμ
 - Mass range: [110, 1000] GeV
- Backgrounds:
 - Irreducible: SM ZZ and Zγ^{*} (estimated from simulation)
 - Reducible: Z + jets, W + jets and ttbar (from data)
 - Probability of a jet to fake a lepton is exploited to estimate the reducible backgrounds
- Kinematics of production and decay of Z's is exploited to separate signal and background, and spin/parity hypothesis

Events / 3 GeV

$H \rightarrow ZZ^* \rightarrow 4I$ statistical interpretation

 6.8σ excess is observed @ m₄₁ = 125.7 GeV

$H \rightarrow ZZ^* \rightarrow 4I$ mass and signal strength

CM

Hypotheses tests for J = 1, 2

A dedicated talk on coupling and spin studies by C. Martin

Higgs Hunitng 2014

Higgs width bounding in H \rightarrow ZZ

A dedicated talk on Higgs width bounding by M. Dalchenko

Higgs Hunitng 2014

Simranjit Singh Chhibra

CMS PAS HIG-14-002

14

$H \rightarrow ZZ \rightarrow 2I 2\tau$

Signature:

- Leading Z \rightarrow e⁺e⁻($\mu^+\mu^-$) and sub-leading Z $\rightarrow \tau^+\tau^-$
- Mass range: [190, 1000] GeV

Backgrounds:

- Irreducible: SM ZZ (estimated from simulation)
- Reducible: WZ + jets, Z + jets and ttbar (from data)
 - Probability of a jet to fake a τ_{l} or τ_{h} is exploited to estimate the reducible backgrounds
- No evidence of SM-like Higgs
- Upper limits are set on the ratio of σ(pp→H) x BR(H→ZZ→2l2τ) @ 95% CL and SM xsection
 - Observed exclusion: [300, 470] GeV
 - Expected exclusion: [320, 420] GeV

$H \rightarrow ZZ \rightarrow 2l2q$

Signature:

Leading Z \rightarrow e⁺e⁻($\mu^+\mu^-$) and sub-leading Z \rightarrow gabar (g = u, d, c, s and b)

Mass range: [230, 600] GeV

Backgrounds:

Irreducible: SM ZZ and WZ (estimated from simulation)

- Reducible:
 - Z + jets: (estimated from simulation)
 - ttbar, WW + jets and Z $\rightarrow \tau\tau$: estimated from data using e⁺ μ ⁻(e⁻ μ ⁺) events

No evidence of SM-like Higgs
 Upper limits are set on the ratio of σ(pp→H) × BR(H→ZZ→2l2q) @ 95% CL and SM x-section
 Observed exclusion: [290, 600] GeV

- Expected exclusion: [275, 600] GeV

$H \rightarrow ZZ \rightarrow 2I2\nu$

Signature:

- $\Box \quad Z \rightarrow e^+e^-(\mu^+\mu^-) + E_T^{miss}$
- Mass range: [200, 1000] GeV

Backgrounds:

- Irreducible: SM ZZ and WZ (estimated from simulation)
- Reducible:
 - Resonant: Z + jets (from data)
 - **D** Estimated using γ + jets events reweighted for kinematics and # vertices
 - Non-resonant: WW, W + jets, $Z \rightarrow \tau \tau$, ttbar and tW (from data)
 - **D** Estimated by scaling the # $e^+\mu^-(e^-\mu^+)$ events(N₁) in the side-bands by $\alpha_l = \frac{1}{N}$
 - Events with m_{II} in [40, 70] and [100, 200] GeV fall in side-bands

No evidence of SM-like Higgs

- □ Upper limits are set on the ratio of σ(pp→H) x BR(H→ZZ→2l2v) @ 95% CL and SM xsection
 - Observed exclusion: [248, 930] GeV
 - Expected exclusion: [254, 898] GeV

17

$H \rightarrow ZZ \rightarrow 2I2v$ beyond SM

EWK singlet model: a hidden scalar field coupled with SM Higgs boson field (h, H are mass eigenstates)
JHEP 0703 (2007) 036

CMS preliminary, (s=7 TeV (L= 5.0fb⁻¹, (s=8 TeV (L= 19.6fb⁻¹

 $\phi_{SM} = \cos \omega h + \sin \omega H$

- $\phi_H = -\sin\omega h + \cos\omega H$
- One coupling modifier:

 $\Box C'^2 = \sin^2 \omega$

Scales Γ and x-section

$$\Gamma' = \frac{C'^2}{1 - BR_{new}} \Gamma_{SM}$$
$$\mu' = C'^2 (1 - BR_{new})$$

- BR_{new} is BR of new decay modes (not allowed in SM)
- The whole analysis is reinterpreted and exclusion upper limits are derived
 - Expected (upper plots)
- Observed (lower plots) Higgs Hunitng 2014

$H \to WW^* \to |_V|_V$

Signature:

- Two or three charged leptons + E_T^{miss} (trilepton states to probe the VH production mode)
- Mass range:
 - GGF and VBF: [110, 600] GeV
 - □ VH: [110, 200] GeV since the x-section is very small for high masses
- Key points:
 - **D** m_{\parallel} , m_{T} and $\Delta \phi$ between leptons
 - Categorization is done for better sensitivity

Backgrounds:

- Non-resonant WW, WZ and ZZ for dilepton, trilepton categories respectively (estimated from simulation)
- ttbar and tW for high jet multiplicity states (from data)
 - Probability of a jet to be a b-tagged jet is exploited to estimate this backgrounds part
- Reducible W + jets (from data)
 - Probability of a jet to fake a lepton is exploited to estimate this backgrounds part
- Reducible Z + jets (from data)
 - Z + jets off-peak contribution is estimated by scaling the # events in a narrow mass window around Z by ratio of # events in and outside of window (after subtracting the non-resonant contribution)

$H \rightarrow WW^* \rightarrow I_VI_V$ categorization

Dilepton categories:

- 0,1 jet(s) same flavor or different flavor: GGH
- 2 jets same or different flavor: VBF
- 2 jets same or different flavor: WH, ZH
 - Jets from the decay of associated vector boson
 - Different characteristics from VBF topology

Excess of events is observed over a broad background

$H \rightarrow WW^* \rightarrow I_V I_V$ statistical interpretation

Signal strength @ 125.6 GeV = 0.72^{+0.20}_{-0.19} = 0.72^{+0.12}_{-0.12}(stat)^{+0.1}_{-0.1}(syst)^{+0.12}_{-0.10}(theo)

A dedicated talk on coupling and spin studies by C. Martin

Simranjit Singh Chhibra

CMS

$H \rightarrow WW \rightarrow I_V qq$

Signature:

- 1 charged lepton + E_T^{miss} + qqbar (q = u, d, c, s and b)
- Mass range: [170, 600] GeV

Backgrounds:

- Irreducible: SM WW, WZ and ZZ
- Reducible: W + jets, Z + jets, single top and ttbar
- No evidence of SM-like Higgs
- □ Upper limits are set on the ratio of σ(pp→H) x BR(H→WW→lvqq) @ 95% CL and SM xsection
 - Observed exclusion: [170, 180], [255, 565] GeV
 - Expected exclusion: [170, 180], [230, 545] GeV

- Signature: Z \rightarrow e⁺e⁻($\mu^+\mu^-$) + γ (sensitive to the physics beyond the SM)
 - \blacksquare Proceeds via top and W loops like H $\rightarrow \gamma\gamma$
 - Mass range: [120, 160] GeV

- Backgrounds: SM $Z\gamma$, Z → II + FSR, Z + jets and ttbar
 - Background modeling is obtained by fitting the m_{llγ} in distribution in data
- No evidence of SM-like Higgs
- □ Upper limits are set on the ratio of $\sigma(pp \rightarrow H) \times BR(H \rightarrow Z\gamma)$ @ 95% CL and SM x-section
 - Observed limit: 4 to 25 times the SM x-section
 - Expected limit: 5 to 16 times the SM x-section

- Signature: Clean μ⁺μ⁻ + γ signature with mass resolution of 1.5%
 Mass range: [120, 150] GeV
- Backgrounds: Z + ISR, Z + FSR and Z + jets
 - Background modeling is obtained by fitting the $m_{\mu\mu\gamma}$ in distribution in data
- No evidence of SM-like Higgs
- Upper limits are set on the ratio of σ(pp→H) x BR(H→γ*γ→μμγ) @ 95% CL and SM x-section
 - Observed limit: 4 to 19 times the SM x-section
 - Expected limit: 8 to 13 times the SM x-section

Summary

- \blacksquare H \rightarrow gauge bosons searches @ CMS are presented for complete Run I
- \square A Higgs boson is discovered in H \rightarrow diboson channels

Channel	$\mathbf{H} \! ightarrow \gamma \gamma$	$\mathbf{H} \rightarrow ZZ^* \rightarrow 4l$	$\mathbf{H} \rightarrow WW^* \rightarrow l\nu l\nu$
Expected significance	5.2σ	6.7σ	5.8σ
Observed significance	5.7σ	6.8σ	4.3σ
Signal strength	$1.14_{-0.23}^{+0.26}$	$0.93^{+0.29}_{-0.25}$	$0.72^{+0.20}_{-0.19}$

- Signal strength is consistent with SM prediction
- Measured mass:
 - 124.70 ± 0.34 GeV in H → $\gamma\gamma$ channel
 - 125.6 ± 0.45 GeV in H → ZZ^{*} → 4l channel
- Higgs boson properties measurements:
 - Higgs boson Mass measurement (S. Nourbakhsh) tomorrow
 - Higgs boson couplings and spin studies (C. Martin) tomorrow
 - Bounding the Higgs boson width (M. Dalchenko) today

Higgs Hunitng 2014

Back up

The CMS experiment

$H \rightarrow \gamma\gamma$ categorization

Table 2: Event classes for the 7 and 8 TeV datasets and some of their main selection requirements. Events are tested against the selection requirements of the classes in the order they are listed here.

Labol	No. of classes		Main requirements			
Laber	7 TeV	8 TeV	Main requirements			
		1	$p_{\rm T}^{\gamma 1} > m_{\gamma \gamma}/2$			
ttH lepton tag	*	1	1 b-tagged jet + 1 electron or muon			
		1	$p_{\rm T}^{\gamma 1} > 3m_{\gamma \gamma}/8$			
VH tight ℓ tag	1		[e or μ , p_T > 20 GeV, and E_T^{miss} > 45 GeV] or			
			[2e or 2 μ , $p_{\rm T}^{\ell}$ > 10 GeV; 70 < $m_{\ell\ell}$ < 110 GeV]			
VH loose l tag	1	1	$p_{\rm T}^{\gamma 1} > 3m_{\gamma \gamma}/8$			
VFI 100se & tag	1		e or μ , $p_{\rm T} > 20 {\rm GeV}$			
VRE dijot tog 0.2	2	3	$p_{\rm T}^{\gamma 1} > m_{\gamma \gamma}/2$			
V Dr uijet tag 0-2			2 jets; classified using combined diphoton-dijet BDT			
VLI Emiss too	1	1	$p_{\rm T}^{\gamma 1} > 3m_{\gamma \gamma}/8$			
VII L _T ^{and} tag			$E_{\rm T}^{\rm miss} > 70 {\rm GeV}$			
till multiint to a		1	$p_{\rm T}^{\gamma 1} > m_{\gamma \gamma}/2$			
ttri multijet tag	*	1	1 b-tagged jet + 4 more jets			
VII diint taa	1	1	$p_{\rm T}^{\gamma 1} > m_{\gamma \gamma}/2$			
v ri dijet tag			jet pair, $p_T^j > 40 \text{ GeV}$ and $60 < m_{ij} < 120 \text{ GeV}$			
Untergod 0.4	4	5	The remaining events,			
Untagged 0-4			classified using diphoton BDT			

* For the 7 TeV dataset, events in the ttH lepton tag and multijet tag classes are selected first, and combined to form a single event class.

$H \rightarrow \gamma\gamma$ mass uncertainties

Higgs Hunitng 2014

$H \rightarrow \gamma\gamma$ mass spectrum

More clearly visible signal peak on the expected background for S/(S+B) weighted events, near a mass of 125 GeV

$H \rightarrow \gamma\gamma$ background modeling

- Imagine a simple case with one POI, x, and one nuisance parameter, θ
 - o Black line standard likelihood scan of x profiling θ
 - o Blue line standard likelihood scan of x freezing θ (stat only)
 - Red lines standard likelihood scans of freezing θ to different values
 - Pink line Envelope around this
- If you sample enough of the infinite θ phasespace eventually you can reproduce the black curve with the pink "envelope"

$H \rightarrow \gamma\gamma$ background modeling

For a toy example

- o one category
- o two function choices, e^{-px} and x^{-p} both with 1 free param
- Profile "envelope" gives best fit with x^{-p}
- 2 sigma error is enlarged by the envelope
- In principle envelope method will increase uncertainty because of different function choices

$H \rightarrow ZZ^* \rightarrow 4I$ key points

Higgs Hunitng 2014

 $\mathcal{D}_{jet 33}$

$H \rightarrow ZZ^* \rightarrow 4I$ results and statistical interpretation

$H \rightarrow ZZ^* \rightarrow 4I$ spin/parity studies

FIG. 27 (color online). Summary of the expected and observed values for the test-statistic q distributions for the twelve alternative hypotheses tested with respect to the SM Higgs boson. The orange (blue) bands represent 1σ , 2σ , and 3σ around the median expected value for the SM Higgs boson hypothesis (alternative hypothesis). The black point represents the observed value.

TABLE VIII. List of models used in the analysis of the spin and parity hypotheses corresponding to the pure states of the type noted. The expected separation is quoted for two scenarios, where the signal strength for each hypothesis is predetermined from the fit to data and where events are generated with SM expectations for the signal cross section ($\mu = 1$). The observed separation quotes consistency of the observation with the 0⁺ model or J^P model and corresponds to the scenario where the signal strength is floated in the fit to data. The last column quotes the CL_s value for the J^P model.

J^P	J^P	Expected			
model	production	$(\mu = 1)$	Obs. 0 ⁺	Obs. J^P	CL _s
0-	any	2.4 <i>o</i> (2.7 <i>o</i>)	-1.0σ	$+3.8\sigma$	0.05%
0 ⁺	any	1.7σ (1.9σ)	-0.3σ	$+2.1\sigma$	4.5%
1 ⁼	$q\bar{q} \rightarrow X$	2.7σ (2.7σ)	-1.4σ	$+4.7\sigma$	0.002%
1-	any	2.5σ (2.6σ)	-1.8σ	$+4.9\sigma$	0.001%
1^{+}	$q\bar{q} \rightarrow X$	2.1σ (2.3σ)	-1.5σ	$+4.1\sigma$	0.02%
1^{+}	any	2.0σ (2.1 σ)	-2.1σ	$+4.8\sigma$	0.004%
$2_{\rm m}^+$	$gg \rightarrow X$	1.9σ (1.8σ)	-1.1σ	$+3.0\sigma$	0.9%
$2_{\rm m}^+$	$q\bar{q} \rightarrow X$	1.7σ (1.7σ)	-1.7σ	$+3.8\sigma$	0.2%
$2_{\rm m}^+$	any	1.5σ (1.5σ)	-1.6σ	$+3.4\sigma$	0.7%
$2_{\rm b}^+$	$gg \rightarrow X$	1.6σ (1.8σ)	-1.4σ	$+3.4\sigma$	0.5%
2_{h}^{+}	$gg \rightarrow X$	3.8 <i>o</i> (4.0 <i>o</i>)	$+1.8\sigma$	$+2.0\sigma$	2.3%
2	$gg \rightarrow X$	4.2σ (4.5σ)	$+1.0\sigma$	$+3.2\sigma$	0.09%

Higgs Hunitng 2014

\Box Largest BR of all H \rightarrow ZZ channels but large Z + jets background

Signature:

- □ Leading Z → $e^+e^-(\mu^+\mu^-)$ and sub-leading Z → qqbar (q = ν , d, c, s and b)
- Mass range: [230, 600] GeV
- Backgrounds:
 - Irreducible: SM ZZ and WZ (estimated from simulation)
 - Reducible:
 - Z + jets: (estimated from simulation)
 - ttbar, WW + jets and Z $\rightarrow \tau\tau$: estimated from data using e⁺ μ ⁻(e⁻ μ ⁺) events

Event selection:

- Well identified and isolated leptons from leading Z decay ($p_T > 40(20)$ GeV for leading(sub-leading))
- Geometrically separated jets from isolated leptons ($p_T > 30 \text{ GeV}$)
- I Kinematics of decay mechanism and balance of E_{T}^{miss} in p_{T} for the signal events are exploited to reduce the background
- Categorization is done on basis of # b-jets for the better sensitivity 0, 1 and 2 b-jet(s) events Higgs Hunitng 2014 Simranjit Singh Chhibra

$H \rightarrow ZZ \rightarrow 2I2q$ results

Observed events, expected background and expected signal event yields for few SM Higgs mass

doints	0 btag		1 btag		2 btag	
	$\mu^+\mu^- jj$	e+e-jj	$\mu^+\mu^- jj$	e+e-jj	$\mu^+\mu^-jj$	e⁺e⁻ <i>jj</i>
expected background	14809	13490	5478	4786	525	440
observed data	14697	13312	5458	4819	522	461
$M_{\rm H} ({\rm GeV}/c^2)$	signal expectation					
250	110.6	100.8	55.8	51.1	18.4	16.9
300	124.4	112.3	66.6	57.0	24.5	21.0
400	121.9	107.2	68.2	60.4	27.4	24.1
500	57.0	52.1	33.4	29.9	13.8	12.3
600	21.7	19.7	13.2	11.9	5.4	4.9

m_{zz} invariant mass distribution in 0 b-tag category for final state with electrons

Higgs Hunitng 2014

$H \rightarrow ZZ \rightarrow 2I2q$ statistical interpretation

No evidence of SM-like Higgs

- □ Upper limits are set on the ratio of $\sigma(pp \rightarrow H) \times BR(H \rightarrow ZZ \rightarrow 2l2q)$ @ 95% CL and SM x-section
 - Observed exclusion: 290 to 600 GeV
 - Expected exclusion: 275 to 600 GeV
- □ Upper limit @ 95% CL is set on the $\sigma(pp \rightarrow H) \times BR(H \rightarrow ZZ \rightarrow 2I2q)$ @ 8 TeV

Simranjit Singh Chhibra

CMS

$H \rightarrow ZZ \rightarrow 2I2\nu$

Signature:

- $\Box \quad Z \rightarrow e^+e^-(\mu^+\mu^-) + E_T^{miss}$
- Mass range: [200, 1000] GeV

Backgrounds:

- Irreducible: SM ZZ and WZ (estimated from simulation)
- Reducible:
 - Resonant: Z + jets (from data)
 - **D** Estimated using γ + jets events reweighted for kinematics and # vertices
 - Non-resonant: WW, W + jets, $Z \rightarrow \tau \tau$, ttbar and tW (from data)
 - Estimated by scaling the # $e^+\mu^-(e^-\mu^+)$ events(N₁) in the side-bands by $\alpha_l = \frac{N_{ll}}{N_{e\mu}}$
 - \blacksquare Where the events with m_{\parallel} in [40, 70] and [100, 200] GeV fall in side-bands
- Large E_T^{miss} for the signal events are exploited to reduce the background

Event selection:

- Well identified and isolated leptons from leading Z decay (both with $p_T > 20 \text{ GeV}$)
- Mass dependent selection (based on Etmiss and mT)

Categorization is done on basis of # reconstructed jets for the better sensitivity

□ 2 jets tagged events for VBF and 0, >=1 jet(s) tagged events for GGH

$H \rightarrow ZZ \rightarrow 2I2v$ distributions

- m_T and E_T^{miss} comparison of data and estimated backgrounds along with event yields for 300 and 600 GeV SM Higgs @ 8TeV
 - combined for all categories and final states with electrons and muons
 - Good agreement is observed validating the background estimations

$H \rightarrow ZZ \rightarrow 2I2v$ statistical interpretation

No evidence of SM-like Higgs

- □ Upper limits are set on the ratio of σ(pp→H) x BR(H→ZZ→2l2v) @ 95% CL and SM x-section (left plot)
 - Observed exclusion: 248 to 930 GeV
 - Expected exclusion: 254 to 898 GeV
- □ Upper limit @ 95% CL is set on the $\sigma(pp \rightarrow H) \times BR(H \rightarrow ZZ \rightarrow 2I2v)$ @ 8TeV
 - Right plots: GGH(upper) and VBF(lower)
 - Cross-contamination is excluded

$H \to WW^* \to |_V|_V$

Signature:

- Two or three charged leptons + E_T^{miss} (trilepton states to probe the VH production mode)
- Mass range:
 - GGF and VBF: [110, 600] GeV
 - □ VH: [110, 200] GeV since the x-section is very small for high masses
- Key points:
 - \square m_T, m_{II} and $\Delta \phi$ between leptons
 - Categorization is done for better sensitivity

Backgrounds:

- Non-resonant WW, WZ and ZZ for dilepton, trilepton categories respectively (estimated from simulation)
- ttbar and tW for high jet multiplicity states (from data)
 - Probability of a jet to be a b-tagged jet is exploited to estimate this backgrounds part
- Reducible W + jets (from data)
 - Probability of a jet to fake a lepton is exploited to estimate this backgrounds part
- Reducible Z + jets (from data)
 - Z + jets off-peak contribution is estimated by scaling the # events in a narrow mass window around Z by ratio of # events in and outside of window (after subtracting the non-resonant contribution)

$H \rightarrow WW^* \rightarrow I_V I_V$ categorization

Dilepton categories:

- 0,1 jet(s) same flavor or different flavor: GGH
- 2 jets same or different flavor: VBF
- 2 jets same or different flavor: WH, ZH
 - Jets from the decay of associated vector boson
 - Different characteristics from VBF topology

Trilepton categories:

- $\square WH \rightarrow 3I3n$
- $\Box ZH \rightarrow 3ln + 2jets$

$H \rightarrow WW^* \rightarrow I_V I_V$ categorization

Catagory	ggH (%)	VEF (%)	VH (%)	Total $\mathbf{H} \to \mathbf{W} \mathbf{W}$ yield			
Category		VBF (70)		$\sqrt{s}=7\text{TeV}$	$\sqrt{s}=8{\rm TeV}$		
Two-lepton analyses							
0-jet different-flavor (shape-based)	95.7	1.2	3.1	52.6	245		
0-jet same-flavor (counting)	98.1	0.9	1.0	10.4	58.5		
1-jet different-flavor (shape-based)	81.6	10.3	8.1	19.8	111		
1-jet same-flavor (counting)	83.6	11.2	5.2	3.1	19.6		
2-jet VBF tag different-flavor (shape-based)	22.3	77.7	0.0	1.3	6.4		
2-jet VBF tag same-flavor (counting)	14.2	85.8	0.0	0.3	2.3		
2-jet VH tag different-flavor (counting)	55.5	4.7	39.8	0.8	4.3		
2-jet VH tag same-flavor (counting)	65.1	4.1	30.8	0.2	2.8		
Three-lepton analyses							
WH $\rightarrow 3\ell 3\nu$ (shape-based)	0.0	0.0	100.0	0.7	3.8		
$ZH \rightarrow 3\ell\nu 2$ jets (shape-based)	0.0	0.0	100.0	0.3	1.0		

Same flavor: Counting analysis using cut-based analysis
 Difficult to model Z/γ* background

Different flavor category: 2D template fit to extract the signal and background in m_T, m_{II} phase space

Higgs Hunitng 2014

$H \rightarrow WW^* \rightarrow I_V I_V$ statistical interpretation

- □ Upper limits are set on the ratio of $\sigma(pp \rightarrow H) \times BR(H \rightarrow WW^* \rightarrow IvIv)$ @ 95% CL and SM x-section
 - @ 125.6 GeV, an upper limit of 1.1 is observed for 0.3 expected
 - Observed exclusion: [127, 600] GeV
 - Expected exclusion: [115, 600] GeV
- Additional test is performed taking SM Higgs of mH = 125.6 GeV as a background process
 - Observed exclusion: [114, 600] GeV

$H \rightarrow WW^* \rightarrow I_V I_V$ statistical interpretation

Significance of 4.3σ is observed for 5.8σ expected @ 125.6 GeV
 Very large significance @ ~160 GeV since the BR ~1

Signal strength @ 125.6 GeV = 0.72^{+0.12}_{-0.12}(stat)^{+0.1}_{-0.1}(syst)^{+0.12}_{-0.10}(theo)

- Decay is sensitive to the physics beyond the SM
 - \square Proceeds via top and W loops like H $\rightarrow \gamma\gamma$
 - Mass range: [120, 160] GeV

- Signature: $Z \rightarrow e^+e^-(\mu^+\mu^-) + \gamma$
- Backgrounds (estimated using data-driven technique):
 - Irreducible: SM Ζγ
 - Reducible: $Z \rightarrow II + FSR$, Z + jets and ttbar

Event selection:

- Well identified and isolated leptons from Z decay (p_T > 20(10) GeV for leading(sub-leading))
- Well identified and isolated photon ($p_T > 15 \text{ GeV}$)

Categorization is done on basis of # reconstructed jets for better sensitivity

2 jets tagged events for VBF and untagged events for GGH

$H \rightarrow Z\gamma$ categorization

				$e^+e^-\gamma$	$\mu^+\mu^-\gamma$	
				Event cla	lss 1	
				Photon $0 < \eta < 1.44$	Photon $0 < \eta < 1.44$	
		Class 1 and 2: both leptons and the		Both leptons $0 < \eta < 1.44$	Both leptons $0 < \eta < 2.1$	
	p	photon are in barrol			and one lepton $0 < \eta < 0.9$	
		photon dre in baller	Data	$R_9 > 0.94$	$R_9 > 0.94$	
		Interface a substant of the later of the substant of the su		17%	20%	
		photon conversion is taken into account	Signal	29%	33%	
			$\sigma_{\rm eff}$ (GeV)	1.9 GeV	1.6 GeV	
		Highest S/B of Untagged category	FWHM (GeV)	4.5 GeV	3.7 GeV	
				Event class 2		
σ		Resolution = 1.9(1.6) GeV for $eey(\mu\mu\gamma)$ state		Photon $0 < \eta < 1.44$	Photon $0 < \eta < 1.44$	
()				Both leptons $0 < \eta < 1.44$	Both leptons $0 < \eta < 2.1$	
ň				P (0.01	and one lepton $0 < \eta < 0.9$	
S		Class 3: one of the lentons is in endcans	Data	K9 < 0.94	K9 < 0.94	
\underline{O}			Signal	20%	20%	
ΟI		and one lepton and photon are in barrel	$\sigma = (CoV)$	21 CoV	19CoV	
			FWHM (CeV)	5.0 GeV	4.6 CeV	
		Resolution = 2.1(1.9) GeV for $eey(\mu\mu\gamma)$ state	TWING (Gev)	Event class 3		
\supset				Photon $0 < n < 1.44$	$\frac{1.44}{2}$	
				At least one lepton $1.44 < n < 2.5$	Both leptons in $ n > 0.9$	
		Class 1: the photon is in the onderns		······································	or one lepton in $2.1 < n < 2.4$	
				No requirement on R_9	No requirement on R_9	
		and leptons can be in barrel or endcaps	Data	26%	20%	
			Signal	23%	18%	
		Resolution = $3.3(3.2)$ GeV for eey(uuy) state	$\sigma_{\rm eff}$ (GeV)	3.1 GeV	2.1 GeV	
			FWHM (GeV)	7.3 GeV	5.0 GeV	
				Event class 4		
				Photon 1.57 < $ \eta $ < 2.5	Photon 1.57 < $ \eta < 2.5$	
				Both leptons $0 < \eta < 2.5$	Both leptons $0 < \eta < 2.4$	
$\overline{\mathbf{\nabla}}$			Data	No requirement on K ₉	No requirement on K ₉	
			Data	31% 10%	29%	
$\underline{\Phi}$			Signal	19% 2.2 CoV	1/% 2.2 C N	
D				3.3 Gev	3.2 Gev	
\mathcal{D}	VBF allet tagged: better 3/B than			VBE cla	7.5 Gev	
ň		untagged category		Photon $0 < n < 2.5$ Photon $0 < n < 2.5$		
et to		unuggeu cuicgury		Both leptons $0 < \eta < 2.5$	Both leptons $0 \le n \le 2.4$	
	Enhance the consitivity by $10 \text{ to } 15 \%$			No requirement on R_0	No requirement on R_0	
			Data	0.1%	0.2%	
. <u>Ψ</u>			Signal	1.8%	1.7%	
$\overline{\mathbf{O}}$			$\sigma_{\rm eff}$ (GeV)	2.6 GeV	2.2 GeV	
			FWHM (GeV)	4.4 GeV	3.8 GeV	

Higgs Hunitng 2014

luminosity

 (fb^{-1})

5.0

5.1

19.6

19.6

2011 ee

2011 µµ

2012 ee

2012 µµ

Simranjit Singh Chhibra

Background model is obtained by fitting the m_{llv} distribution for both categories

Peaks at 110 to 115 GeV with gradually falling tail on the right

signal events for

 $m_{\rm H} = 125 \, {\rm GeV}$

1.2

1.4

6.3

7.0

Potential bias model is accounted by performing different background models fits on pseudo data ("truth model")

yield for

 $100 < m_{\ell\ell\gamma} < 190 \,{\rm GeV}$

2353

2848

12899

13860

$H \rightarrow Z\gamma$ statistical interpretation

- No evidence of SM-like Higgs
- **D** Upper limits are set on the ratio of $\sigma(pp \rightarrow H) \times BR(H \rightarrow Z\gamma) @ 95\%$ CL and SM x-section
 - Observed limit: 4 to 25 times the SM x-section
 - Expected limit: 5 to 16 times the SM x-section
 - @ 125 GeV: both observed and expected limits are ~10 times the SM x-section

■ An exclusion of $\sigma(pp \rightarrow H) \times BR(H \rightarrow Z_{\gamma})@$ 95% CL in the mass range of [125, 157] GeV is expected for 10 times SM x-section @ 8TeV

Higgs Hunitng 2014

- Signature: Clean μ⁺μ⁻ + γ signature with mass resolution of 1.5%
 Mass range: [120, 150] GeV
- Backgrounds: Z + ISR, Z + FSR and Z + jets
- Event selection
 - Well identified and isolated muons (p_T > 23(4) GeV for leading(sub-leading))
 - Well identified and isolated photon (p_T > 25 GeV)
 - \blacksquare Events with $m_{\mu\mu}$ in [2.9, 3.3] and [9.3, 9.7] GeV are vetoes to reject J/ Ψ and \bm{Y}
- Key variables:
 - Geometrical separation between each lepton and photon, m_{μμ}
- Background modeling is obtained by fitting the m_{μμγ} in distribution in data
 Similar to H → γγ and H → Zγ analyses

$H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$ results and statistical interpretation

145

150

No evidence of SM-like Higgs

Upper limits are set on the ratio of $\sigma(pp \rightarrow H) \times BR(H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma) @ 95\% CL and SM x-section @ 8TeV$

ĭ20

125

130

135

140

- Observed limit: 4 to 19 times the SM x-section
- Expected limit: 8 to 13 times the SM x-section
- @ 125 GeV: both observed and expected limits are ~10 times the SM xsection