

MSSM Higgs $\rightarrow TT$ searches in ATLAS

Federico Scutti On behalf of the ATLAS collaboration

22.07.2014 Higgs Hunting 2014 Orsay

ATLAS

Federico Scutti (Uni Bonn)

FSP 101

Higgs Hunting 2014 - MSSM Higgs→TT

22.07.2014

Outline

- Search for MSSM neutral Higgs bosons
- Channels:
 - Selection
 - Bkg estimation
- Exclusion limits

The neutral MSSM Higgs

radiative corrections

to m_h maximized

- Two CP even states: h / H
- One CP odd: A

-- M_{μ} , tan $\beta = 5$

 $-M_{\rm h}$, tan $\beta = 5$

– M_H, tan β = 20

 $M_{\rm h}$, tan $\beta = 20$

M [GeV]

170

160

150

140

130

120

110

100

100

 Free parameters at tree level: m_A, tanβ (VEV ratio of Higgs doublets)

m_{h/H/A} vs m_A

90 $\vdash m_H(m_A, tan\beta) > m_A > m_h(m_A, tan\beta)$

110 115 120 125 130 135 140

m_h^{max} scenario

105

150

145

M_A [GeV]

Channels and preselection

Lep-Had:

- Single-µ or single-e trigger
- One τ_{had} and one isolated e/μ (identified)
- Opposite charge between τ_{had} and e/μ

Lep-Lep:

- Single-e trigger or µ+e trigger
- Isolated and identified e and μ
- Veto on Thad
- Opposite charge between e and μ

Had-Had:

- At least two T_{had} with $p_T > 50 \text{ GeV}$
- Identified τ_{had}
- Opposite charge between Thad lead. and Thad sub-lead.

Categorization and main backgrounds

Lep-Had channel

Higgs Hunting 2014 - MSSM Higgs→TT

Lep-Lep channel

Federico Scutti (Uni Bonn)

Higgs Hunting 2014 - MSSM Higgs→TT

Had-Had channel

Exclusion limits

ATLAS-CONF-2014-049

- No excess observed...
- ... but the exclusion is very competitive and rules out a large region of the parameter space
- Stay tuned for the next round!

Backup

Federico Scutti (Uni Bonn)

Missing Mass Calculator arXiv:1012.4686 [hep-ex]

6 to 8 unknowns: x,y,z components of invisible momentum from neutrino(s) in the τ decay
invariant mass of neutrinos for leptonic decay

- Using PDFs of expected angular distance b/w neutrino(s) and visible decay products
- Construct globas event likelihood

• Performance highly correlated with E_T^{miss} resolution (largely influenced by jets in the event)

Total Transverse Mass

$$m_T^{\text{total}} = \sqrt{m_T(\tau_1, \tau_2,)^2 + m_T(\tau_1, E_T^{\text{miss}})^2 + m_T(\tau_2, E_T^{\text{miss}})^2}$$

• Used in the Had-Had channel only offers better separation from Multi-jet

Embedding technique

- Selection on $Z \rightarrow \mu\mu$ events: two isolated muons with $p_T > 25$ GeV, with common primary vertex and $m_{\mu\mu} > 40$ GeV
- Muons replaced by taus at truth level: $p(\tau) = \sqrt{(E(\tau)-m_{\tau})}$
- Production of simulated $Z \rightarrow \tau \tau$ events: pure τ decay with TAUOLA and PHOTOS (no UE). Truth filter applied. Processed by full ATLAS detector simulation if $p_{\tau}(e/\mu/\tau) > 15$ GeV
- Muon tracks removed from data events: $Z \rightarrow \mu\mu$ simulated with initial kinematics. Simulated calorimeter energy subtracted at cell level. Merge $Z \rightarrow \tau\tau$ event.

(c) embedded event

Embedding technique (ATLAS-CONF-2012-160)

Federico Scutti (Uni Bonn)

Alternative scenarios <u>arXiv:1302.7033v1</u> [hep-ph]

Parameter	m_h^{\max}	$m_h^{\rm mod+}$	$m_h^{\rm mod-}$	$light\ stop$	light stau	au-phobic	low - M_H
m_t	173.2	173.2	173.2	173.2	173.2	173.2	173.2
M_A	varied	varied	varied	varied	varied	varied	110
aneta	varied	varied	varied	varied	varied	varied	varied
$M_{\rm SUSY}$	1000	1000	1000	500	1000	1500	1500
$M_{\tilde{l}_3}$	1000	1000	1000	1000	245 (250)	500	1000
$X_t^{\rm OS}/M_{\rm SUSY}$	2.0	1.5	-1.9	2.0	1.6	2.45	2.45
$X_t^{\overline{\rm MS}}/M_{\rm SUSY}$	$\sqrt{6}$	1.6	-2.2	2.2	1.7	2.9	2.9
A_t	Given by $A_t = X_t + \mu \cot \beta$						
A_b	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$
A_{τ}	$= A_t$	$= A_t$	$= A_t$	$= A_t$	0	$= A_t$	$= A_t$
μ	200	200	200	350	500(450)	2000	varied
M_1	Fixed by GUT relation to M_2						
M_2	200	200	200	350	200 (400)	200	200
$m_{\tilde{g}}$	1500	1500	1500	1500	1500	1500	1500
$M_{\tilde{q}_{1,2}}$	1500	1500	1500	1500	1500	1500	1500
$M_{\tilde{l}_{1,2}}$	500	500	500	500	500	500	500
$A_{f \neq t,b, au}$	0	0	0	0	0	0	0

Federico Scutti (Uni Bonn)

Alternative scenarios (I)

Alternative scenarios (II)

Federico Scutti (Uni Bonn)

Model independent limits

ATLAS vs CMS

