



# Accurate predictions for Higgs pair production at the LHC





R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou, MZ arXiv: 1401.7340, PLB

### Marco Zaro, LPTHE - UPMC Paris VI

HiggsHunting 2014, Orsay

July 22, 2014











# Is it THE Higgs boson as expected in the SM?

| RESIDENCE PERMI                                                                                                                                                                                               | ZU1234567 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| NAMEHiggs bosonDATE OF BIRTHJul 4th 2012 (presumed)SPIN 0CP evenFERMIONIC COUPLINGm <sub>f</sub> /vBOSONIC COUPLING2m <sub>v</sub> <sup>2</sup> /vSELF COUPLINGλ=M <sub>H</sub> <sup>2</sup> /2v <sup>2</sup> |           |
| UK RESIDENCE PERMIT                                                                                                                                                                                           |           |



# Many properties have been measured...



### **LHCPhenoNet**

Marco Zaro, 22-07-2014





## ... but one!





### ... but one!







# The Higgs self-coupling





# The Higgs self-coupling

- The only parameter of the Higgs boson Lagrangian which cannot be measured in single Higgs production is its self-coupling  $\lambda$
- $\lambda$  drives the Higgs potential shape: V( $\phi$ )= $\mu^2 \phi^2/2 + \lambda \phi^4/4$

• In the SM: 
$$M_H^2 = 2\lambda v^2 = -2\mu^2$$







# The Higgs self-coupling

- The only parameter of the Higgs boson Lagrangian which cannot be measured in single Higgs production is its self-coupling  $\lambda$
- $\lambda$  drives the Higgs potential shape: V( $\phi$ )= $\mu^2 \phi^2/2 + \lambda \phi^4/4$ 
  - In the SM:  $M_H^2 = 2\lambda v^2 = -2\mu^2$
- To measure lambda one has to look at double Higgs production



Marco Zaro, 22-07-2014





# Single Higgs production channels



#### Marco Zaro, 22-07-2014





# Double Higgs production channels







# The tricky case: gg→H 00

Marco Zaro, 22-07-2014





• Use an effective theory in the limit  $m_t \rightarrow \infty$ 



• Use an effective theory in the limit  $m_t \rightarrow \infty$ 

• Does it work?



• For the cross-section it does quite well (if  $m_h < m_t$ )

#### Marco Zaro, 22-07-2014



- Does it work? 9
  - For the cross-section it does quite well (if  $m_h < m_t$ )
  - Be careful for differential distributions (e.g Higgs pT)

#### Marco Zaro, 22-07-2014





# The trickier case: $gg \rightarrow HH$





# The trickier case:



- $gg \rightarrow HH$  at the LO is a loop induced process too!
  - Triangle and box diagrams interfere destructively







# The trickier case:



- $gg \rightarrow HH$  at the LO is a loop induced process too!
  - Triangle and box diagrams interfere destructively
- Unlike the single-Higgs case, EFT ( $m_t \rightarrow \infty$ ) does not work well







# The trickier case:



- $gg \rightarrow HH$  at the LO is a loop induced process too!
  - Triangle and box diagrams interfere destructively
- Unlike the single-Higgs case, EFT ( $m_t \rightarrow \infty$ ) does not work well
  - Need to consistently take into account loop effects
    - Include the exact one-loop matrix elements





# gg→HH @NLO with MADGRAPH5\_AMC@NLO

 $d\sigma_{NLO}^n = d\sigma_{LO}^n + d\sigma_V^n + \int d\Phi_1 \, d\sigma_R^{n+1}$ 





# with MADGRAPH5\_AMC@NLO

gg→HH @NLO

$$d\sigma_{NLO}^n = d\sigma_{LO}^n + d\sigma_V^n + \int d\Phi_1 \, d\sigma_R^{n+1}$$

Include exact one-loop born and real emission ME









# with MADGRAPH5\_AMC@NLO

gg→HH @NLO

$$d\sigma_{NLO}^n = d\sigma_{LO}^n + d\sigma_V^n + \int d\Phi_1 \, d\sigma_R^{n+1}$$

- Include exact one-loop born and real emission ME
- Two-loop virtual ME is currently unknown
  - Approximate with the born-rescaled EFT







# Results

Marco Zaro, 22-07-2014





# Total cross-section



### LHCPhenoNet

Marco Zaro, 22-07-2014





# Lambda dependence



Marco Zaro, 22-07-2014



# HH differential observables SORBONNE UNIVERSITÉS (for the first time at NLO + PS)





# HH differential observables SORBONNE UNIVERSITES (for the first time at NLO + PS)







# Conclusions

- Higgs pair production will be a key process to be looked at the next run of the LHC and at a FC
- It is the simplest class of processes which is sensitive to the Higgs boson self coupling  $\lambda$
- Accurate predictions for the Higgs pair production mechanisms are needed
- All production mechanisms can be computed at NLO accuracy within the MADGRAPH5\_AMC@NLO framework,
  - All automated, but  $gg \rightarrow HH$
  - General approach to include loop-ME
- Fully differential predictions at NLO + PS are available for the first time for all production channels





# Conclusions







# Conclusions

- Higgs pair production will be a key process to be looked at the next run of the LHC and at a FC
- It is the simplest class of processes which is sensitive to the Higgs boson self coupling  $\lambda$
- Accurate predictions for the Higgs pair production mechanisms are needed
- All production mechanisms can be computed at NLO accuracy within the MADGRAPH5\_AMC@NLO framework,
  - All automated, but  $gg \rightarrow HH$
  - General approach to include loop-ME
- Fully differential predictions at NLO + PS are available for the first time for all production channels





# Backup slides



# Different approximations for $gg \rightarrow HH$

- Only consider terms  $\sim \lambda$ 
  - Reweight everything with the Born ME (as HPAIR) or with the Born and real ME



Marco Zaro, 22-07-2014





# NLO: how to?





### NLO: how to?







## NLO: how to?



- Warning! Real emission ME is divergent!
  - Divergences cancel with those from virtuals (in D=4-2eps)
  - Need to cancel them before numerical integration (in D=4)





## NLO: how to?



- Warning! Real emission ME is divergent!
  - Divergences cancel with those from virtuals (in D=4-2eps)
  - Need to cancel them before numerical integration (in D=4)
- Structure of divergences is universal:



$$p+k)^{2} = 2E_{p}E_{k}(1-\cos\theta_{pk})$$
$$\lim_{p//k} |M_{n+1}|^{2} \simeq |M_{n}|^{2} P^{AP}(z)$$

$$\lim_{k \to 0} |M_{n+1}|^2 \simeq \sum_{ij} |M_n^{ij}|^2 \frac{p_i p_j}{p_i k \ p_j k}$$

Marco Zaro, 22-07-2014





### NLO: how to?







## NLO: how to?



- Add local counterterms in the singular regions and subtract its integrated finite part (poles will cancels against the virtuals)
- The *n* and *n*+1 body integral now are finite in 4 dimension
  - Can be integrated numerically





# NLO: how to?



- Add local counterterms in the singular regions and subtract its integrated finite part (poles will cancels against the virtuals)
- The *n* and *n*+1 body integral now are finite in 4 dimension
  - Can be integrated numerically

### How to do this in an efficient way?





# The FKS subtraction

Frixione, Kunszt, Signer, arXiv:hep-ph/9512328

- Soft/collinear singularities arise in many PS regions
- Find parton pairs *i*, *j* that can give collinear singularities
- Split the phase space into regions with one collinear sing
  - Soft singularities are split into the collinear ones

$$|M|^{2} = \sum_{ij} S_{ij} |M|^{2} = \sum_{ij} |M|^{2}_{ij} \qquad \sum S_{ij} = 1$$
$$S_{ij} \to 1 \text{ if } k_{i} \cdot k_{j} \to 0 \qquad S_{ij} \to 0 \text{ if } k_{m\neq i} \cdot k_{n\neq j} \to 0$$

- Integrate them independently
  - Parallelize integration
  - Choose ad-hoc phase space parameterization
- Advantages:
  - # of contributions ~ n^2
  - Exploit symmetries: 3 contributions for X Y > ng





# Loops: the OPP Method

Ossola, Papadopoulos, Pittau, arXiv:hep-ph/0609007 & arXiv:0711.3596

- Passarino & Veltman reduction:
  - Write the amplitude at the integral level as linear combination of I-...-4-point scalar integrals

$$\begin{aligned} A(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} d(i_0 i_1 i_2 i_3) D_0(i_0 i_1 i_2 i_3) \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} c(i_0 i_1 i_2) C_0(i_0 i_1 i_2) \\ &+ \sum_{i_0 < i_1}^{m-1} b(i_0 i_1) B_0(i_0 i_1) \\ &+ \sum_{i_0}^{m-1} a(i_0) A_0(i_0) \\ &+ R \end{aligned}$$

• Do this at the integrand level





# Loops: the OPP Method

Ossola, Papadopoulos, Pittau, arXiv:hep-ph/0609007 & arXiv:0711.3596

$$\begin{split} A(\bar{q}) &= \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}} \quad N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[ d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[ c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[ b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[ a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \\ &+ \tilde{P}(q) \prod_{i=1}^{m-1} D_i . \end{split}$$

- Sample the numerator at complex values of the loop momenta in order to reconstruct the *a,b,c,d* coefficients and part of the rational terms (RI)
- Use CutTools: fed with the loop numerator outputs the coefficients of the scalar integrals and CC rational terms (RI)
- Add R2-rational terms/UV counterterms
  - Model dependent but process-independent





# Loop ME evaluation: MadLoop

Hirschi et al. arXiv:1103.0621

- Load the NLO UFO model
- Generate Feynman diagrams to evaluate the loop ME
- Add R2/UV renormalisation counter terms
- Interface to CutTools or to tensor reduction programs (in progress)
- Check PS point stability (and switch to QP if needed)
- Improved with the OpenLoops method Cascioli, Maierhofer, Pozzorini
- And much more (can be used as standalone or external OLP via the BLHA, handle loop-induced processes, ...)

arXiv:1111.5206





# Matching in MC@NLO

• Use suitable counterterms to avoid double counting the emission from shower and ME, keeping the correct rate at order  $\alpha_s$ :

 $\frac{d\sigma_{MC@NLO}}{dO} = \left(\mathcal{B} + \mathcal{V} + \int d\Phi_1 MC\right) d\Phi_n \ I_{MC}^n(O) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events \right) + \left(\mathcal{R} - MC\right) d\Phi_n \ d\Phi_1 \ I_{MC}^{n+1}(O) + S-events + S-events$ 

• MC depends on the PSMC's Sudakov:

$$MC = \left| \frac{\partial \left( t^{MC}, z^{MC}, \phi \right)}{\partial \Phi_1} \right| \frac{1}{t^{MC}} \frac{\alpha_s}{2\pi} \frac{1}{2\pi} P\left( z^{MC} \right) \mathcal{B}$$

- Available for Herwig6, Pythia6 (virtuality-ordered), Herwig++, Pythia8 (in the new release)
- MC acts as local counterterm
- Some weights can be negative (unweighting up to sign)
  - Only affects statistics

Marco Zaro, 22-07-2014