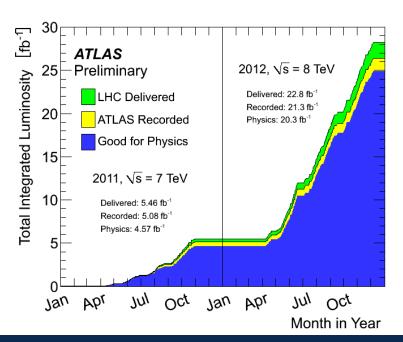
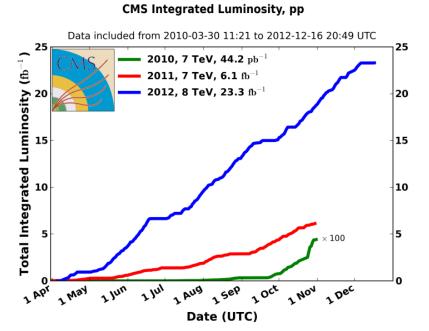


BSM Higgs Searches in ATLAS and CMS (part 1)

Felix Friedrich (TU Dresden)

On Behalf of the ATLAS and CMS Collaborations


Outline


- Introduction
- Constraints on New Physics via Higgs Couplings
- Search for Flavor-Changing Neutral Currents
- SM-like Higgs bosons at high masses
- Charged Higgs Boson Searches
- Neutral (N)MSSM Higgs Boson Searches

searches including invisible decay modes, di-Higgs, Higgs cascades etc. are covered by <u>L. Soffi</u> in the following talk

Introduction

- Extended Higgs sector predicted in many BSM theories
 - additional Higgs bosons
- Search strategies:
 - additional charged or neutral Higgs bosons
 - Higgs production in Flavor-Changing Neutral Currents
 - re-interpretation of measured properties of SM-like Higgs boson
- results based on run1 data sets from ATLAS and CMS

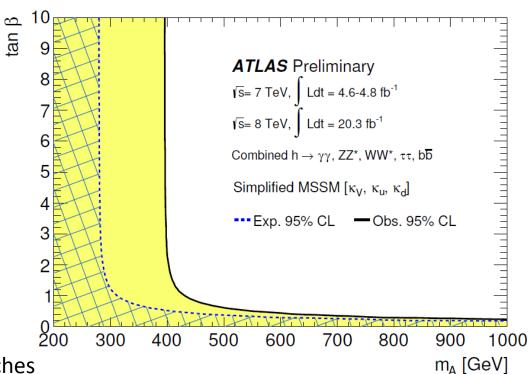
Introduction

Two-Higgs-Doublet Model (2HDM)

- 2 Higgs doublets (Separate Vacuum Expectation Values: $tan \beta = v_2/v_1$)
- 5 Higgs bosons: 3 neutral h⁰,H⁰ (CP even), A⁰ (CP odd), 2 charged (H[±])
- α = mixing angle between h⁰ and H⁰

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
κ_u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
κ_l	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

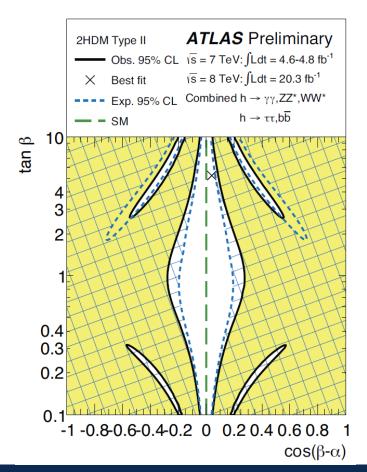
- Type I: One Higgs doublet couples to bosons, the other to fermions
- Type II: One doublet couples to up-type quarks, the other to down-type quarks + leptons
- Type III: 'Lepton-specific', quark couplings like Type I, but lepton couplings like Type II
- Type IV: 'flipped Type III'

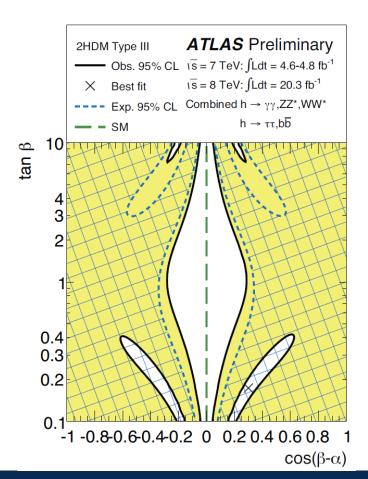

Minimal Supersymmetric Standard Model (MSSM): 2HDM Type II + SUSY sector

Next-to-Minimal Supersymmetric Standard Model (NMSSM)

- MSSM + 1 additional singlet
- 7 Higgs bosons: 5 neutral h¹, h², h³ (CP even), a¹, a² (CP odd), 2 charged (H±)

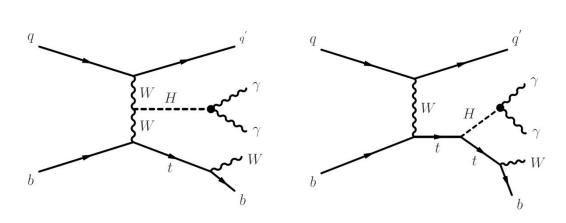
Simplified MSSM[†]

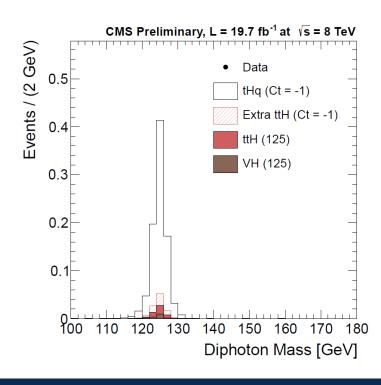

- light Higgs couplings measured by combination of various channels (7+8 TeV)
- using SM higgs boson mass $m_h \approx 125.5 \ {
 m GeV}$
- MSSM: Higgs sector defined by m_A and tanβ
- simplified: effects of sparticles not included
- Constrain m_A and $\tan\beta$ via Coupling measurements: 95% CL, $2 < \tan\beta < 10$ $m_A > 400$ (290) GeV obs. (exp)
- observed limits stronger than exp. due to higher $h \to \gamma \gamma$ and ZZ* rates than predicted by SM



complementary to direct MSSM searches

2HDMs


- express SM couplings in context of the four types of 2HDMs
- observed 95% exclusion limits in $(\cos(\beta \alpha), \tan\beta)$ plane
- data consistent with SM-like alignment at $cos(\beta \alpha) = 0$ within 1-2 σ for all models



tHq

- SM: couplings Higgs to W (C_W) and top (C_t) suffer from destructive interference
- non-SM fits still allow $C_t = -1 \rightarrow$ increase of tHq cross section
- associated production of single top: $tHq \rightarrow b(W \rightarrow l\nu) \ q(H \rightarrow \gamma\gamma)$
- a cut-and-count analysis is performed
- no events seen in signal region
- 95% CLs upper limit: $4.1 \times \sigma_H(C_t = -1)$

$$t \rightarrow cH$$

- FCNC supressed in SM: BR $(t \to cH) \sim 10^{-15}$
- Couplings increase in types of 2HDM models: ~0.15% (e.g. present at tree level)
- Study done by CMS (8 TeV, 19.5 fb⁻¹) using $t\bar{t}$ topology and various final states:

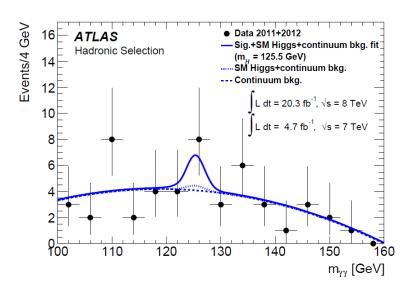
Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($\mathcal{B} = 23.1\%$)	1.58 %	1.57 %	(1.02–2.22) %
$H \rightarrow \tau \tau$ $(\mathcal{B} = 6.15\%)$	7.01 %	4.99 %	(3.53–7.74) %
$H \rightarrow ZZ^*$	5.31 %	4.11 %	(2.85–6.45) %
combined multileptons (WW*, $\tau\tau$, ZZ*)	1.28 %	1.17 %	(0.85–1.73) %
$H \rightarrow \gamma \gamma$	0.69 %	0.81 %	(0.60–1.17) %
combined multileptons + diphotons	0.56 %	0.65 %	(0.46–0.94) %

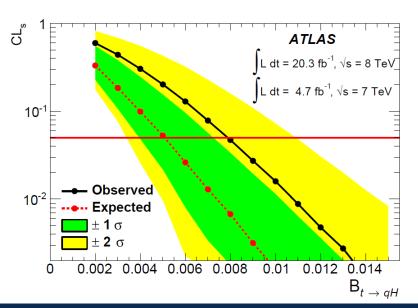
Limit on Branching Fraction:

$$BR(t \rightarrow cH) < 0.56 (0.65)\%$$
 Observed (Expected)

Limit on left- and right handed top Flavor-Changing Yukawa Couplings:

$$\sqrt{|\lambda_{tc}^H|^2 + |\lambda_{ct}^H|^2} < 0.14$$

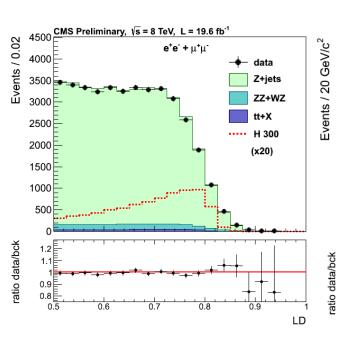

$$t \rightarrow qH$$

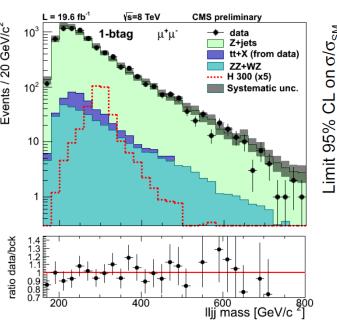

- search done in top-pair events: $t\bar{t} \to b(W \to ff) \ q(H \to \gamma\gamma)$
- Limits:

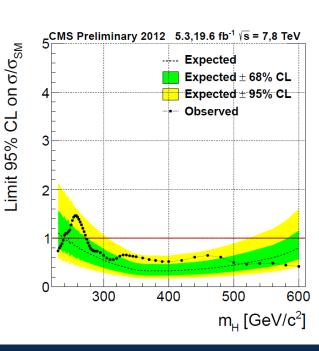
$$BR(t \to cH) < 0.79\% (0.51\%)$$

 $\lambda_{tcH} < 0.17 (0.14)$

Equally sensitive to tuH and tcH:

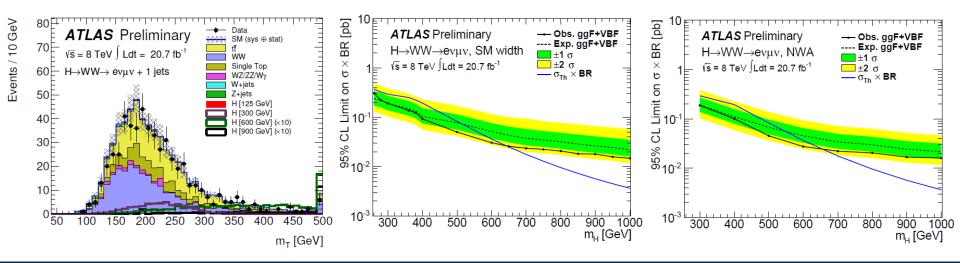

$$\sqrt{\lambda_{tcH}^2 + \lambda_{tuH}^2} < 0.17$$

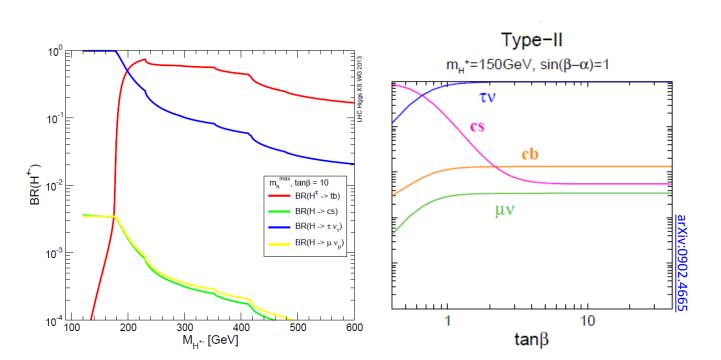


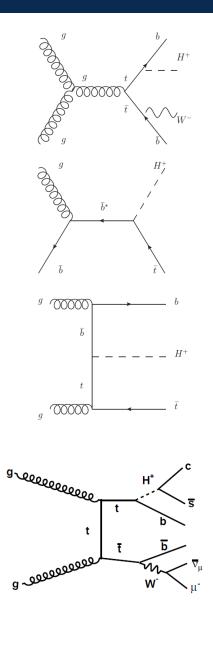


$$H \to ZZ \to l^+l^-q\bar{q}$$
 ($l = e, \mu$)

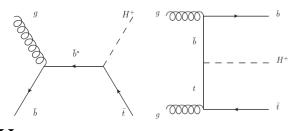
- angular observables fully describe kinematics in rest frame
- take advantage of discrimination power using likelihood discriminant
- 0,1,2 b-tag categories increase further significance via rejecting Z+jets
- for $m_H < 400~GeV$ consider SM width and neglect interference effects
- effects on σ and mass shape taken into account for high mass (Complex-Pole Scheme)
- excluded resonance with SM Higgs boson properties in $275 < m_H < 600 \, \mathrm{GeV}$

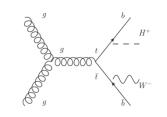


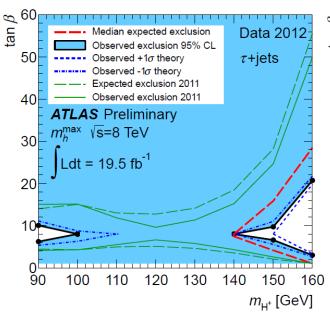

$H \rightarrow WW \rightarrow lvlv$

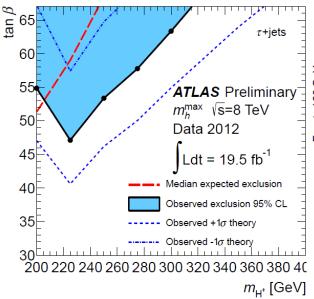

- only different lepton-flavour final state used ($l_1 \neq l_2$), no hadronic τ decay mode
- optimized for 0, 1 and ≥2 additional jets, sensitive to ggF or VBF production
- contribution from $m_H \sim 125$ GeV treated as background
- analysis performed for Higgs bosons with SM width and a narrow width
- SM-like Higgs boson excluded at 95% CLs in mass range $260 < m_H < 642 \ {
 m GeV}$

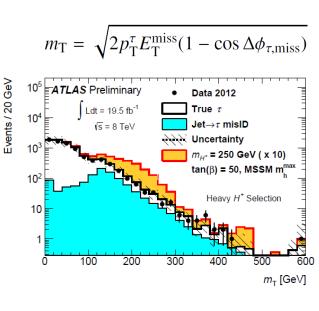
Charged Higgs Boson searches

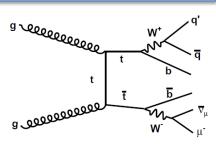

- charged Higgs bosons predicted by many BSM theories
- dominant modes in 2HDM type-II: $t \to H^+ b$ for $m_{H^+} < m_t$ (light charged Higgs) assoc. production (tH^+) for $m_{H^+} > m_t$ (heavy charged Higgs)
- $H^+ \rightarrow \tau \nu$ important decay channel for tan β >3
- $H^+ \rightarrow c\bar{s}$ get dominant for tan β <1 in specific models

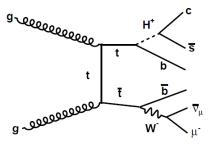


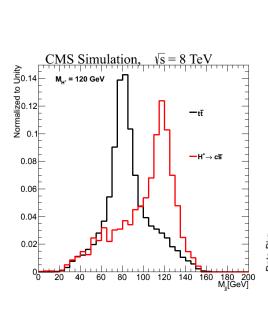


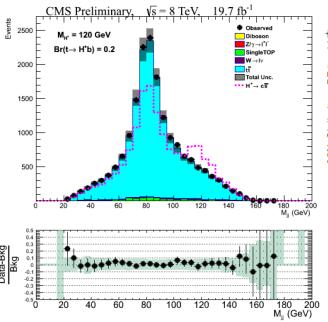

$$H^+ \rightarrow \tau \nu$$

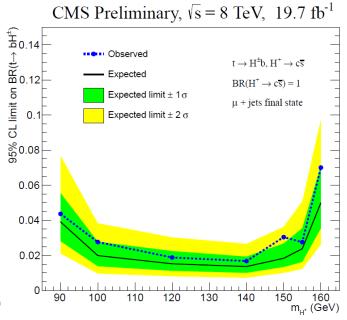

- assume $BR(H^+ \to \tau v) = 1$
- model-independent limits: ${\rm BR}(t \to H^+ b) = 0.24 - 2.1\%$ for $90 < m_{H^+} < 160$ GeV $\sigma(H^+) = 0.017 - 0.9$ pb for $180 < m_{H^+} < 600$ GeV
- results interpreted in MSSM mhmax scenario

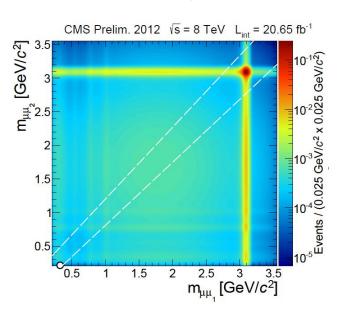


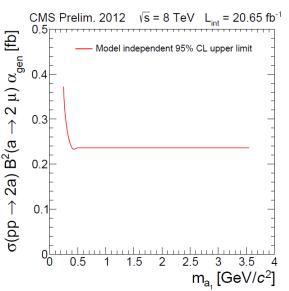


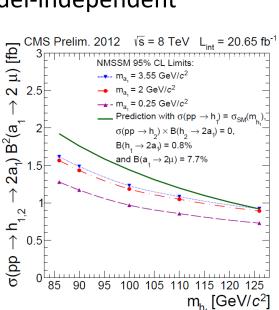

$$H^+ \rightarrow c\bar{s}$$


- search performed in $t\bar{t} \to W^{\pm}bH^{\mp}\bar{b} \to \mu + \text{jets}$
- kinematic fit used to improve separation of W/H mass
- assume $BR(H^+ \to c\bar{s}) = 1$
- model-independent limits set:


$$BR(t \to H^+ b) = 2 - 7\%$$
 for $90 < m_{H^+} < 160$ GeV

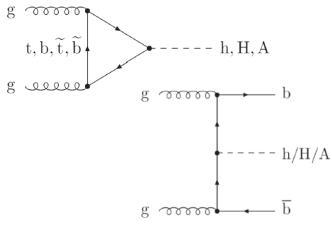


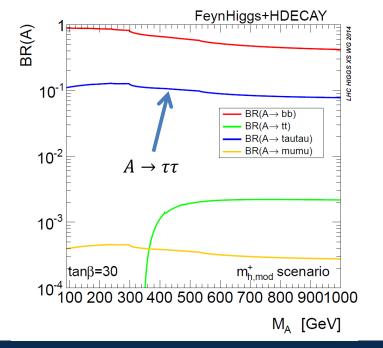


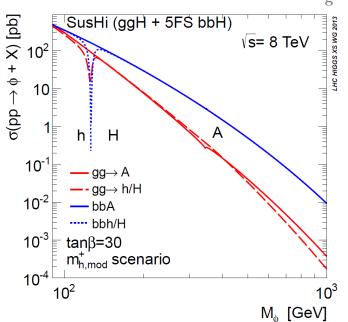


$$h \rightarrow 2a + X \rightarrow 4\mu + X$$

- non-SM decay of h including two new light bosons
- NMSSM: substantial BR $a
 ightarrow \mu \mu$ if $2 m_{\mu} < m_a < 2 m_{ au}$
- background dominated by $b\bar{b}$ and J/ψ pair production
- 1 event observed in signal region, compatible with bkg. prediction 3.8 ± 2.1
- limit obtained for $0.25 < m_a < 3.55$ GeV, $m_h > 86$ GeV
- search interpreted for dark-SUSY models as well as model-independent


Neutral MSSM Higgs Boson searches


CMS-PAS-HIG-13-021 ATLAS-CONF-2014-049


$$\phi \to \tau \tau$$

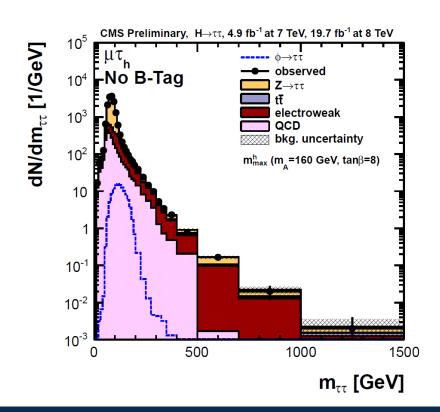
- tau decay modes are most dominant (10%) next to b-quarks modes
- two production modes:

gluon-fusion \rightarrow dominant for small tan β b-associated production \rightarrow dominant for large tan β

Neutral MSSM Higgs Boson searches

CMS-PAS-HIG-13-021 ATLAS-CONF-2014-049

$$\phi \to \tau \tau$$

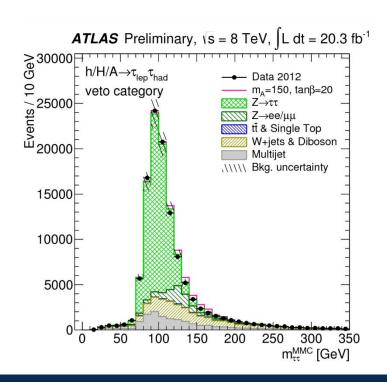

- tau decay modes are most dominant (10%) next to b-quarks modes
- two production modes:
 gluon-fusion → dominant for small tanβ
 b-associated production → dominant for large tanβ
 and at high mass

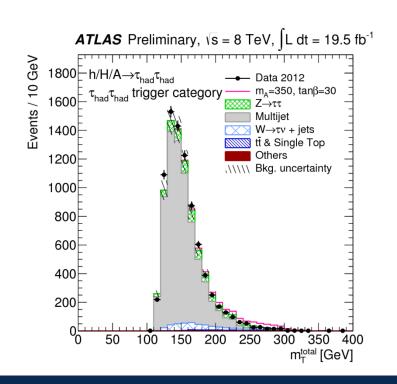

overview about analyses channels:

	ATLAS	CMS
Channels	$τ_h τ_h$, $e τ_h$, $μ τ_h$, $e μ$ (94%)	$τ_h τ_h$, $e τ_h$, $μ τ_h$, $e μ$, $μ μ$ (97%)
Categories	II, Ih: b-tag / b-vetoIh high-mass: incl.hh: single-/di-tau trigger	all channels: b-tag / no b-tag
Discriminant	II, Ih: di-tau mass taking missing energy into account (MMC) hh: total transverse mass	all channels: di-tau mass taking missing energy into account (SVFit)

$$\phi \to \tau \tau$$

- di-tau mass reconstruction method (SVFit) based on likelihood method using $e/\mu/\tau$ momenta and missing E_{τ} information (see J.Phys.Conf.Ser. 513 (2014) 022035 for details)
- no evidence for signal beyond SM found
- interpretation of results on new MSSM benchmark scenarios in preparation

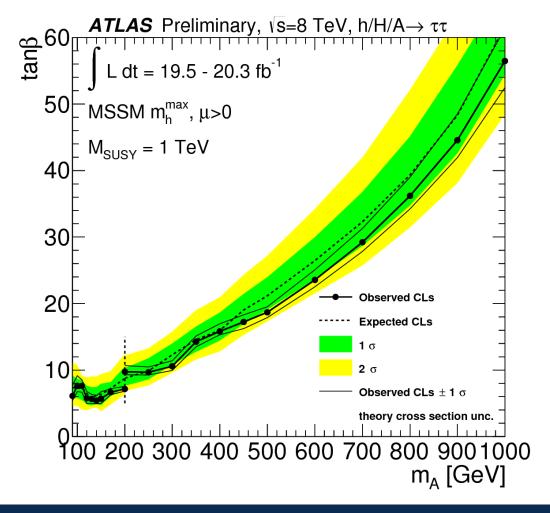


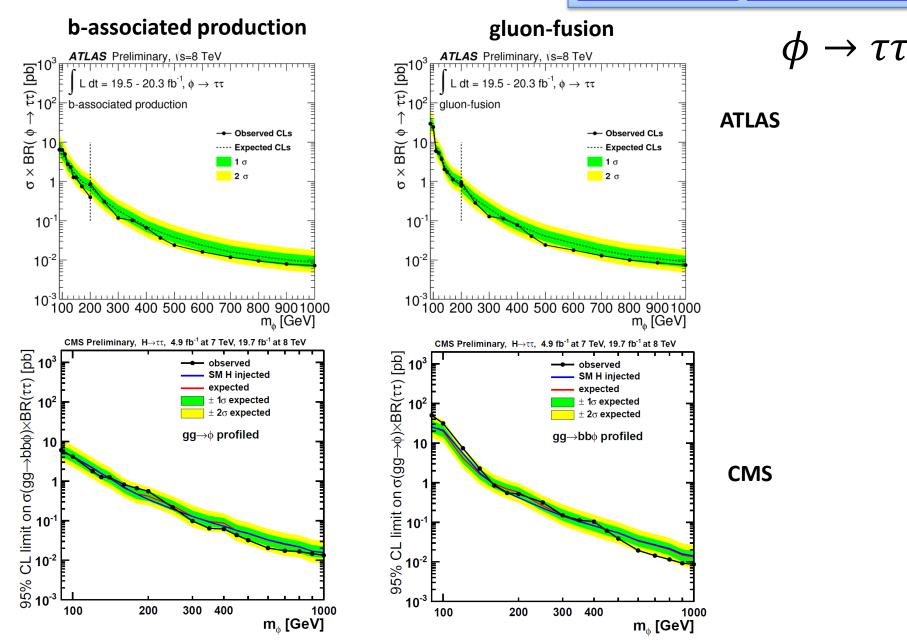


$$\phi \to \tau \tau$$

MMC: Nucl.Instrum.Meth. A654 (2011) 481-489, [arXiv:1012.4686]

- MMC-mass based on lepton/tau momenta and missing energy information
- total transverse mass used in had-had due to better separation from multijet background
- lep-lep and lep-had channels combined for $m_A < 200 \text{ GeV}$
- lep-had and had-had channels combined for $m_A \ge 200 \text{ GeV}$
- limits for various MSSM benchmark scenarios calculated
- see also talk by F. Scutti tomorrow afternoon





$$\phi \to \tau \tau$$

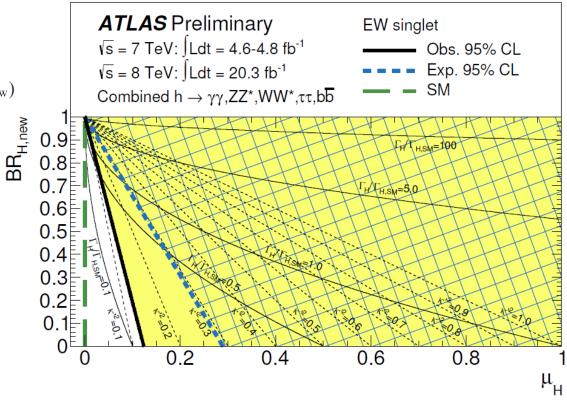
first time shown at a conference

- very competitive exclusion limits at high m_A masses
- no evidence found for physics beyond SM

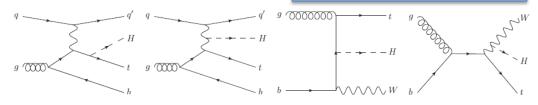
Conclusion

- Observation of SM-like Higgs boson excludes large regions of MSSM parameter space
- Still room left for BSM models to be compatible with observed Higgs boson
- Search for new Higgs bosons performed in various channels and with different strategies
- No evidence found
- Many BSM analyses with 8 TeV data still on-going in ATLAS + CMS
- Run-II with 13(14) TeV will enhance discovery potential of Beyond Standard Model searches
- New challenges for the analyses (e.g. detector, trigger)

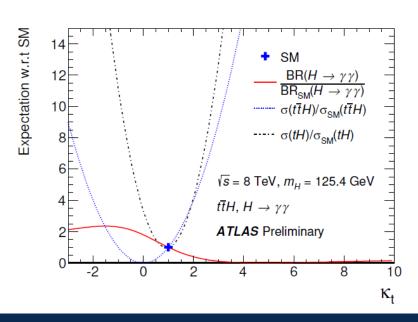
Backup

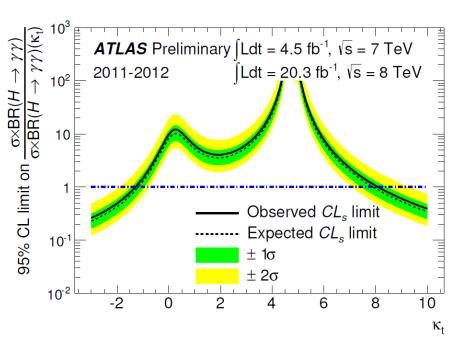

Electroweak Singlet

- mixing of singlet and one state of doublet → two CP-even Higgs bosons h,H
- new decay modes possible for H: H→hh (BR_{H,new})
- couplings of h(H) reduced by κ(κ')
- cross section, width, signal strength modified wrt SM accordingly

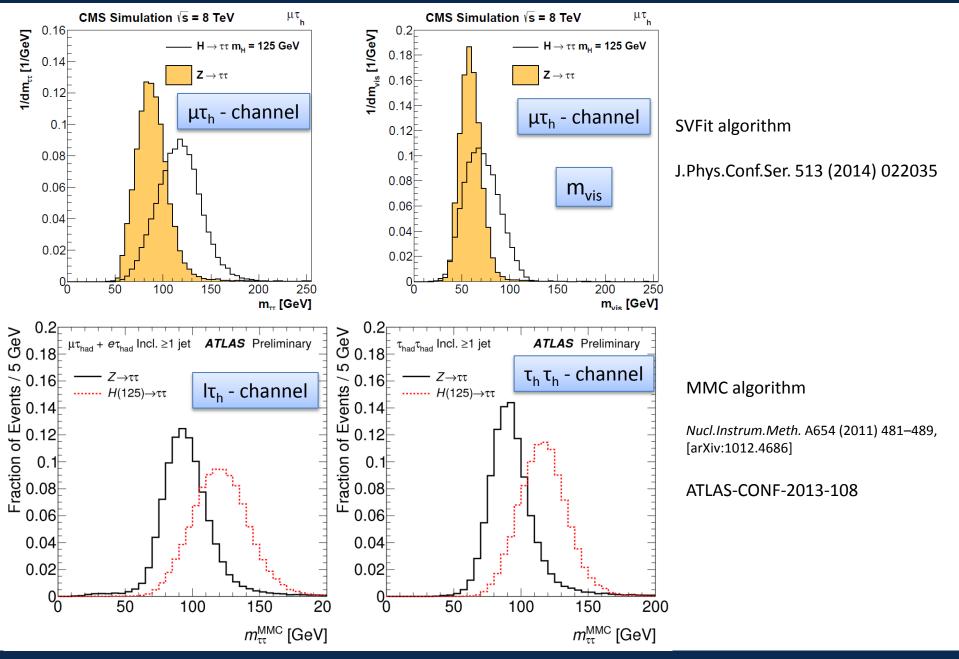

$$\mu_{h} = \frac{\sigma_{h} \times BR_{h}}{(\sigma_{h} \times BR_{h})_{SM}} = \kappa^{2}$$

$$\mu_{H} = \frac{\sigma_{H} \times BR_{H}}{(\sigma_{H} \times BR_{H})_{SM}} = \kappa'^{2} (1 - BR_{H,new})$$


- EW singlet: physical boundary $\kappa'^2 \ge 0$ (SM: $\kappa'^2 = 0$)
- ignoring boundary, H coupling $\kappa'^2 = 1 \mu_h = -0.30^{+0.17}_{-0.18} (0.00^{0.15}_{-0.17})$
- 95% CL upper limit
 κ'< 0.12 (0.29) obs (exp)



tH(tHqb,WtH)



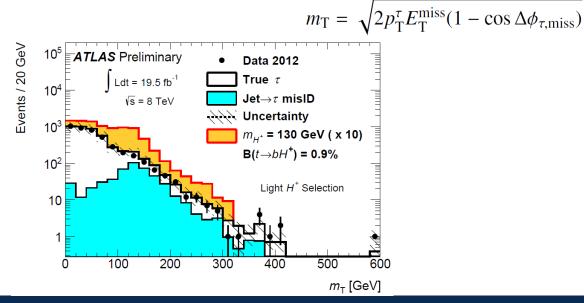
- Y_t = top quark-Higgs boson Yukawa coupling; can be different in BSM theories
- $\kappa_t = Y_t / Y_t^{SM}$
- analysis performed in $H \to \gamma \gamma$ channel, optimized for ttH production
- requirements kept loose enough to have high efficiency for tH as well
- $\sigma(\text{ttH})$, $\sigma(\text{th})$ and $\text{BR}(H \to \gamma \gamma)$ depend on κ_t , $\text{BR}(H \to \gamma \gamma)$ has minimum at $\kappa_t = +4.7$
- 95% CL lower(upper) limit: $-1.3 < \kappa_t < +8.1$

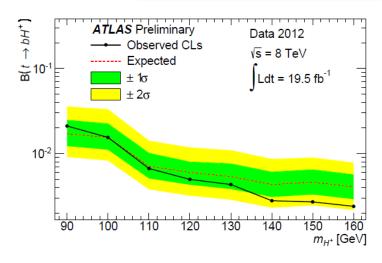
Di-Tau Mass Reconstruction Methods

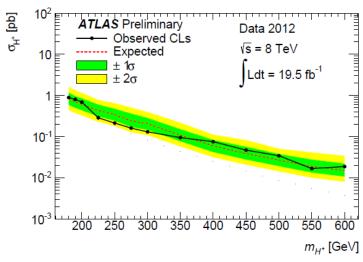
Di-Tau Mass Reconstruction Methods

total transverse mass

$$m_T^{\text{total}} = \sqrt{m_T(\tau_1, \tau_2,)^2 + m_T(\tau_1, E_T^{\text{miss}})^2 + m_T(\tau_2, E_T^{\text{miss}})^2}$$

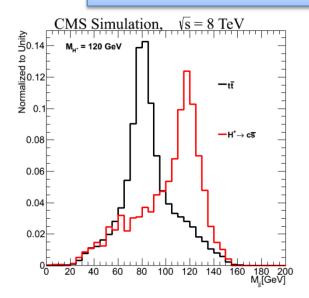

transverse mass between two particles

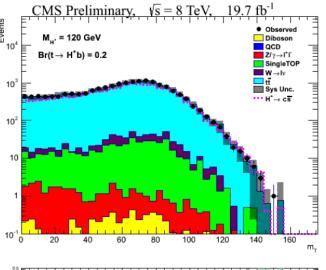

$$m_T = \sqrt{2p_{T1}p_{T2}(1 - \cos \Delta \phi)}$$


$H^+ \rightarrow \tau \nu$

Analysis details:

- ≥ 4(3) jets with pT> 25 GeV, |η|<2.5 for light (heavy) signal selection
- ≥ 1 b-tagged jet
- 1 tau with pT > 40 GeV, matched to trigger
- no e/ μ with pT>25 GeV or τ with pT>20 GeV
- Etmiss > 65 (80) GeV, $\frac{E_{\text{T}}^{\text{miss}}}{0.5 \cdot \sqrt{\sum p_{T}^{\text{PV trk}}}} > 13 (12) \,\text{GeV}^{1/2}$
- final discrimination done on mT

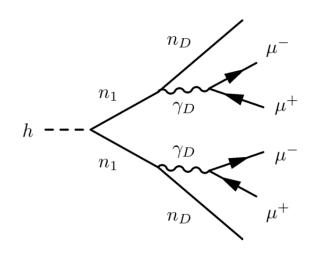


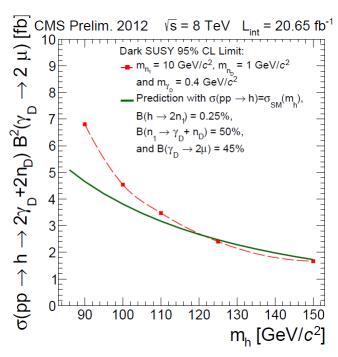


$$H^+ \rightarrow c\bar{s}$$

Analysis details:

- at least 1 isolated muon, pT>25 GeV, |η|<2.1
- reject events with additional e/ μ with pT>10 GeV $|\eta|$ <2.5 and looser isolation
- \geq 4 jets, pT> 30 GeV, $|\eta|$ < 2.5
- ≥ 2 b-tagged jets
- Etmiss>20GeV
- kinematic fit constrains events using $m_t = 172.5 \; GeV$ for each of the top quarks

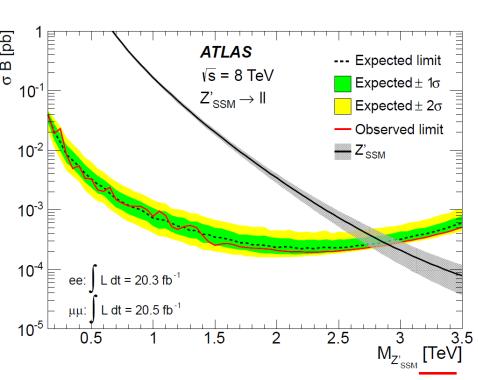


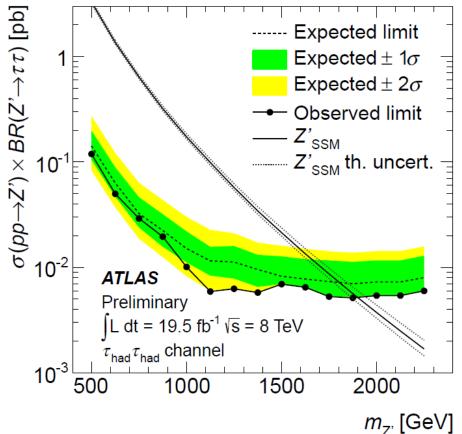


$$h \rightarrow 2a + X \rightarrow 4\mu + X$$

Analysis details:

- at least 4 muons, pT>8GeV, |η|<2.4
- at least 1 muon with pT>17, |η|<0.9
- 2 isolated di-muons pairs with $m_{\mu\mu} < 5~GeV$ and be compatible among both

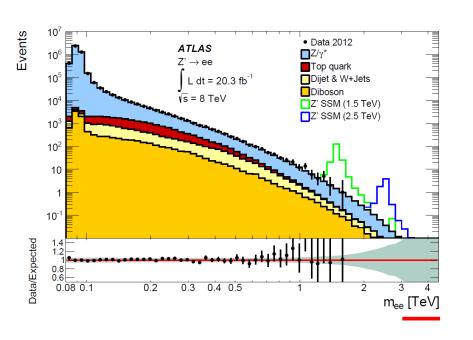

Further High Mass searches

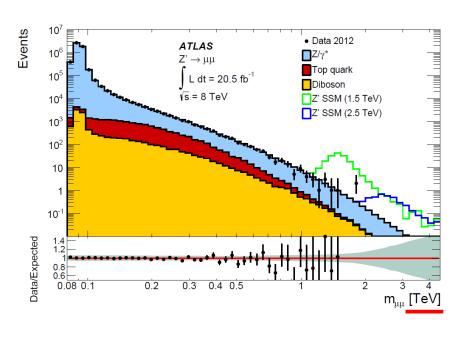

arXiv:1405.4123 ATLAS-CONF-2013-066

$Z' \rightarrow ll$ at high mass

- complementary studies to ATLAS high mass Higgs boson searches
- Sequential Standard Model (SSM)
- setup of full hadronic tau channel very similar to $\phi
 ightarrow au_{had} au_{had}$

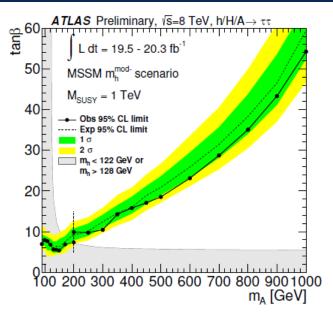
no evidence of new physics found

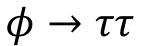


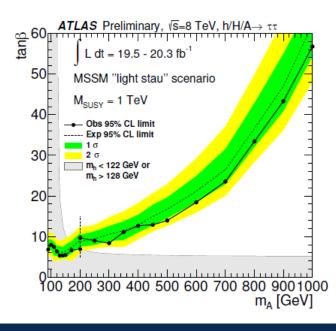

Further High Mass searches

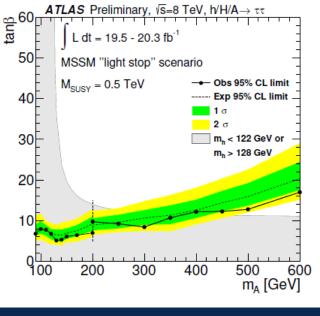
arXiv:1405.4123 ATLAS-CONF-2013-066


$Z' \rightarrow ll$ at high mass


Sequential Standard Model (SSM)






see also <u>ATLAS-CONF-2014-030</u> for constraints on contact interactions and large extra dimensions using the same search channel

